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Abstract:  
 

Robot dynamics is necessary not just for simulation and control, but also for the analysis 

of robot motion planners and controllers. There are a number of dynamic modelling 

investigations of robots with the different approaches and these investigations mostly 

focus on the link flexibility, joint friction or actuator dynamics. In addition to that these 

studies present dynamic model without any attached linear or torsion springs. In this 

study, the dynamic modelling of a two-link rigid manipulator with attached torsion 

springs is presented using the Lagrangian approach. The Lagrangian approach is a 

variational method that relies on the kinetic and potential energy of the mechanism, 

making it well-suited for the analysis of the two-link planar manipulator considered in 

this study. Initially, the equations of motion for the two-link rigid mechanism is derived 

without any attached torsion springs. Subsequently, two torsion springs are attached to 

the joints of the mechanism, and the existing equations of motion are modified 

accordingly. The study also presents the kinetic, potential and total energies of the two 

link-manipulator, angular positions of the links and their velocities. By considering the 

dynamic modelling of the torsion spring attached two-link rigid manipulator, this study 

contributes to understanding and analysis of the two-link manipulators and the dynamic 

effects of the attached springs. 
 

1. Introduction 

 
The representative dynamic model is essential and 

required to design and control of the mechanisms; 

therefore, having accurate dynamic model is very 

significant. There are different mechanisms for the 

different tasks and robotic manipulator mechanism 

is one them. The robotic manipulators are widely 

used in the industrial manufacturing tasks due to 

their versatility and precision. Some of these tasks 

require high sensitivity, where even small deviations 

can have significant consequences. The robotic 

manipulators typically consist of joints and links, 

which can be either rigid or flexible. The flexible 

manipulators have some advantages over the rigid 

manipulators such as low energy consumption, small 

size, larger workspace or light weight. Hence, a 

number of studies and designs have been 

investigated for the flexible manipulators. On the 

other hand, there are not many studies on the 

dynamic modelling of the rigid manipulators 

because rigid manipulators are simpler to model due 

to their inherent stiffness and lack of deformations. 

The following articles present some of the dynamic 

modelling investigations: Khairudin et. al [1] 

investigates the dynamic modelling and 

characterization of a two-link flexible robot 

manipulator. This study combines Euler and 

Lagrange approaches, considering structural 

damping, hub inertia and payload. Subudhi and 

Morris [2] present the dynamic modelling and 

control of a manipulator with multiple flexible links 

and flexible joints. This study uses a combined 

Euler-Lagrange formulation, which simplifies the 

control of the complex two-link flexible 

manipulator. In this study, the results demonstrate 

good tracking performance and stabilization of the 

links. Chen [3] investigates the dynamic model of a 

multi-link flexible robotic manipulator. This study 

proposes a linearized dynamic model for a planar 

flexible manipulator with an arbitrary number of 

flexible links. The study employs the Lagrangian 

approach with Euler-Bernoulli beams and presents 

numerical simulations. Subedi et. al. [4] presents a 

closed-form dynamic model for planar multi-link 

flexible manipulators. This study utilizes the 

Lagrangian formulation and discuss the robot’s 
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configuration with a payload. The study focuses on 

both static and dynamic modelling. Morris and 

Madani [5] investigate static and dynamic modelling 

for a two-link flexible robotic manipulator. This 

study separately examines the elastic and rigid 

motions of the two links and then combine them 

using the superposition principle. Nicosia et. al. [6] 

presents dynamic modelling and experimental 

validation of a two-link flexible robot. This article 

provides an exact dynamic model for the robotic arm 

and carries out simulations along with experimental 

validation. Mayeda et. al. [7] investigates the base 

parameters of dynamic models for parallel and 

perpendicular manipulators with only rotational 

joints. This study focuses on non-redundant 

parameters of the dynamic model for these 

manipulators. Thomas and Tesar [8] present 

dynamic modelling for serial manipulator arms. This 

article derives the dynamic model for a serial 

manipulator with a rigid link model. Mehrjooee [9] 

conducts a non-linear dynamic analysis of a flexible-

link manipulator. The study investigates the 

possibility of chaos occurrence in a two-link flexible 

robot mechanism and provides experimental 

validation for verification. Gamarra-Rosado and 

Yuhara [10] explore dynamic modelling and 

simulation of a flexible robotic manipulator with 

flexible links and two revolute joints. This article 

employs the Newton-Euler formulation to derive the 

dynamic model. Vakil et. al [11] proposes a new 

method for dynamic modelling of a flexible-link 

rigid-joint manipulator. This article introduces a 

dynamic model in terms of independent generalized 

coordinates without Lagrange multipliers. The 

method is validated through simulation examples. 

De Luca and Sciliano [12] present an explicit 

dynamic model for a planar two-link lightweight 

flexible robot. This article introduces a complete and 

accurate dynamic model using Euler-Bernoulli 

beams with uniform density, a standard Lagrangian 

approach, and rotary joints. Lochan et al. [13] 

provides a survey on two-link flexible robots. The 

article discusses dynamical analysis, complexities, 

modelling methods, and various aspects of works 

related to two-link flexible manipulator. Hasting and 

Book [14] present a linear dynamic model for the 

flexile robotic manipulators. This article introduces 

a linear state-space dynamic model for a single-link 

flexible manipulator. Arteaga [15] investigates some 

properties for the dynamic model of the flexible 

robotic manipulators. This study presents a dynamic 

model of the flexible manipulators based on the 

Lagrange’s equations and discuses several 

significant properties of the presented dynamic 

model. Springs are commonly used in various robot 

designs to provide compliance, damping, or 

force/torque sensing capabilities. When springs are 

present, their dynamics should be properly 

incorporated into the overall dynamic model of the 

robot to accurately capture their effects on the 

system’s behavior. In this study, the dynamic model 

of the torsion springs attached two-link rigid planar 

manipulator is presented. The dynamic model is 

developed using the Lagrangian formulation 

approach, which is a variational method based on the 

kinetic and potential energy of the system. 

Additionally, this study presents the positions and 

velocities of two-link planar manipulator rigid links 

and the kinetic, potential and total energies of the 

two-link manipulator without any attached springs. 

By presenting the dynamic model, this study 

contributes to the understanding and analysis of the 

two-link rigid planar manipulator with attached 

torsion springs. This information can be valuable for 

the designing controllers, analyzing system stability, 

and optimizing the manipulators performance in 

various applications. 

 

2. Design of the Torsion Spring-Attached 

Two-Link Planar Manipulator 

 
Figure 1. The two-link planar manipulator with two 

torsion springs. 

 
Figure 1 illustrates the configuration of a two-link 

planar rigid manipulator with two torsion springs 

and its corresponding parameters. The manipulator 

consists of two revolute joints with torsion springs 

attached, and the links are rigid. The parameters 𝑙1 

and 𝑙2 represent the lengths of Links 1 and 2, 

respectively. The parameter 𝑚1 corresponds to the 

mass of Link 1, while 𝑚2 denotes the mass of Link 

2. The parameter 𝐼1 refers to the centroid moment of 

inertia for Link 1 and 𝐼2 denotes the centroid moment 

of inertia for Link 2. The parameters 𝜏1 and 𝜏2 

represent the joint torques for Joints 1 and 2, 

respectively. The parameters 𝑙𝑐1
 and 𝑙𝑐2

 indicate the 

center of mass positions of Links 1 and 2 relatives to 
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Joints 1 and 2, respectively. The parameter 𝑞1 

represents the angle of Link 1 relative to the 𝑥- axis, 

and the parameter 𝑞2 represents the angle of Link 2 

relative to Link 1. The parameters 𝐷1 and 𝐷2 

represent the center of mass points of the Links 1 and 

2 respectively. The parameter 𝑘1 denotes the 

stiffness of Spring 1, and 𝑘2 refers to the stiffness of 

Spring 2. It is important to note that the two-link 

planar rigid manipulator does not have any motion 

limitations.  

 

3. Equations of Motion for the Two-Link 

Planar Manipulator 

 
There are four primary parameters involved in 

dynamic modelling: the joint angle, 𝑞; the joint 

velocity, 𝑞;̇  the joint torque, 𝜏; and the joint 

acceleration, �̈�. Dynamic modelling formulations 

can be approached in two ways: forward dynamics 

and inverse dynamics. Forward dynamics involves 

providing the values of 𝑞, 𝑞 ̇ and 𝜏 and investigating 

the parameter �̈�. This approach is particularly useful 

for simulation purposes, as it allows for the 

prediction of joint accelerations and the resulting 

motion of the system. On the other hand, inverse 

dynamics involves providing the values of 𝑞, 𝑞 ̇ and 

�̈�, and investigating parameter 𝜏. Inverse dynamics 

is commonly employed for robot control, as it 

enables the determination of the required joint 

torques to achieve a desired motion. 

In this study, the dynamic modelling of the 

mechanism is initially presented without attached 

torsion springs. This step allows for a detailed 

presentation of the dynamic modelling process and 

minimizes potential formulation errors. Once the 

dynamic model of the mechanism is established, the 

torsion springs are then introduced and incorporated 

into the equations of motion accordingly. By 

introducing the torsion spring equations, the 

equations of motion for the two-link planar 

manipulator can be easily modified. This sequential 

approach ensures a comprehensive understanding of 

the dynamics modelling steps and facilitates the 

proper integration of the torsion springs into the 

system.As previously mentioned, the dynamic 

modelling in this study utilizes the Lagrangian 

approach. The Lagrangian method is an energy-

based approach to dynamic modelling, defined by 

the following formula: 

 
𝐿(𝑞, �̇�) = 𝑇(𝑞, �̇�) − 𝑉(𝑞) (1) 

where the parameter 𝐿(𝑞, �̇�) denotes Lagrange, 

parameter 𝑇(𝑞, �̇�) refers to the kinetic energy and the 

parameter 𝑉(𝑞) represents potential energy of the 

two-link manipulator. For a system with 𝑛-degree-

of-freedom, the Euler-Lagrange formula is used to 

derive the equations of motion and is defined as 

follows: 

 

𝜏𝑖 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖

) −
𝜕𝐿

𝜕𝑞𝑖

 (2) 

 
where the parameter 𝜏𝑖 represents the 𝑖th joint torque, 

parameter 𝐿 refers to the Lagrange function (Eq. 

(1)), parameter 𝑞𝑖 refers to the angle of 𝑖th joint, 

parameter �̇�𝑖 denotes to the 𝑖th joint velocity, and 

parameter 𝑡 represents time. 

To further analyze the system, the kinetic energy 

formulas for Link 1 and Link 2 can be expressed 

separately. Starting with the kinetic energy formula 

for Link 1, it can be written as: 

 

𝑇1 =
1

2
𝑚1𝑙𝑐1

(�̇�1)2 +
1

2
𝐼1(�̇�1)2 (3) 

 
where the parameter 𝑇1 refers to the kinetic energy 

of the Link 1, the parameter 𝑚1 represents the Link 

1 mass, the parameter 𝑙𝑐1
 denotes the center of mass 

of Link 1 from Joint 1, the parameter 𝐼1 refers to the 

moment of inertia of the Link 1 and parameter �̇�1 

refers to the Joint 1 angular velocity.  

The kinetic energy formula for Link 2 can be 

expressed as: 

 

𝑇2 =
1

2
𝑚2𝑙1

2(�̇�1)2 +
1

2
𝑚2𝑙𝑐2

(�̇�1 + �̇�2)2

+ 𝑚2𝑙1𝑙𝑐2
�̇�1cos 𝑞2 (�̇�1 + �̇�2)

+
1

2
𝐼2(�̇�1 + �̇�2)2 

(4) 

where parameter 𝑇2 represents the kinetic energy of 

Link 2, parameter 𝑚2 is the mass of Link 2, 

parameter 𝑙𝑐2
 denotes the distance from Joint 2 to the 

center of mass of Link 2, parameter 𝐼2 is the Link 2 

moment of inertia and the parameter �̇�2 represents 

the angular velocity of Joint 2, parameter 𝑙1 denotes 

the length of Link 1.  

The total kinetic energy of the two-link planar 

manipulator can be defined as: 

 
𝑇(𝑞, �̇�) = 𝑇1(𝑞, �̇�) + 𝑇2(𝑞, �̇�) (5) 

where parameter 𝑇 represents total kinetic energy of 

the two-link planar manipulator. By substituting 

Eqns. (3) and (4) into Eq. (5), the following equation 

can be written: 

𝑇 =
1

2
𝑚1𝑙𝑐1

(�̇�1)2 +
1

2
𝐼1(�̇�1)2 +

1

2
𝑚2𝑙1

2(�̇�1)2

+
1

2
𝑚2𝑙𝑐2

(�̇�1 + �̇�2)2

+ 𝑚2𝑙1𝑙𝑐2
�̇�1cos 𝑞2 (�̇�1 + �̇�2)

+
1

2
𝐼2(�̇�1 + �̇�2)2 

(6) 
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where the parameter 𝑇 refers to the total kinetic 

energy of the two-link planar manipulator. As 

mentioned earlier, the potential energy of the 

mechanism is essential in the Lagrangian approach. 

The equation for the potential energy of Link 1 is 

defined as follows: 

 
𝑉1 = 𝑚1𝑔𝑙𝑐1

sin 𝑞1 (7) 

where the parameter 𝑉1 is the Link1 potential energy, 

the parameter 𝑔 refers to the gravitational 

acceleration and the parameter 𝑞1 represents the 

angle of Link 1.  

The equation for the potential energy of Link 2 can 

be defined as:  

 
𝑉2 = 𝑚2𝑔(𝑙1 sin 𝑞1 + 𝑙𝑐2

sin(𝑞1 + 𝑞2)) (8) 

where parameter 𝑉2 represents the Link 2 potential 

energy and parameter 𝑞2 refers to the angle of Link 

2 relative to Link 1. The total potential energy of the 

two-link planar manipulator is can be defined as:  

 
𝑉(𝑞) = 𝑉1(𝑞) + 𝑉2(𝑞) (9) 

where the parameter 𝑉 refers to the total potential 

energy of the two-link manipulator. By substituting 

Eqns. (7) and (8) into Eq. (9), the following equation 

can be obtained: 

 
𝑉 = 𝑚1𝑔𝑙𝑐1

sin 𝑞1

+ 𝑚2𝑔(𝑙1 sin 𝑞1

+ 𝑙𝑐2
sin(𝑞1 + 𝑞2)) 

(10) 

 

where the parameter 𝑉 represents the total potential 

energy of the two-link manipulator. By substituting 

Eqns. (6) and (10) into the Lagrangian formula (Eq. 

(1)), the following equation can be written as: 

 

𝐿 =
1

2
𝑚1𝑙𝑐1

(�̇�1)2 +
1

2
𝐼1(�̇�1)2 +

1

2
𝑚2𝑙1

2(�̇�1)2

+
1

2
𝑚2𝑙𝑐2

(�̇�1 + �̇�2)2

+ 𝑚2𝑙1𝑙𝑐2
�̇�1cos 𝑞2 (�̇�1

+ �̇�2) +
1

2
𝐼2(�̇�1 + �̇�2)2

− 𝑚1𝑔𝑙𝑐1
sin 𝑞1

− 𝑚2𝑔(𝑙1 sin 𝑞1

+ 𝑙𝑐2
sin(𝑞1 + 𝑞2)) 

(11) 

where parameter 𝐿 refers to the Lagrangian. The 

two-link rigid manipulator consists of two revolute 

joints, requiring the torque equations for these joints 

to be written separately. The Euler-Lagrange 

equations for Joint 1 and Joint 2 can be expressed as 

follows: 

 

𝜏1 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�1

) −
𝜕𝐿

𝜕𝑞1

 (12) 

𝜏2 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�2

) −
𝜕𝐿

𝜕𝑞2

 (13) 

 

where parameter 𝜏1 refers to the Joint 1 torque and 

parameter 𝜏2 represents to the Joint 2 torque. By 

differentiating Eq. (11) and substituting Eqns. (12) 

and (13), the resulting equations of motion can be 

expressed as: 

 
[𝑚1𝑙𝑐1

2 + 𝑚2(𝑙1
2 + 𝑙𝑐2

2 + 2𝑚2𝑙1𝑙𝑐2
cos 𝑞2)

+ 𝐼𝑐1
+ 𝐼𝑐2

]�̈�1

+ (𝑚2𝑙𝑐2
(𝑙1 cos 𝑞2 + 𝑙𝑐2

)

+ 𝐼𝑐2
)�̈�2

− (2𝑚2𝑙1𝑙𝑐2
sin 𝑞2)�̇�1�̇�2

− (𝑚2𝑙1𝑙𝑐2
sin 𝑞2)(�̇�2)2

+ 𝑚1𝑔𝑙𝑐1
cos 𝑞1

+ 𝑚2𝑔(𝑙1 cos 𝑞1

+ 𝑙𝑐2
cos(𝑞1 + 𝑞2)) = 0 

(14) 

and 

 
[𝑚2(𝑙𝑐2

2 + 𝑙1 𝑙𝑐2
cos 𝑞2) + 𝐼𝑐2

]�̈�1

+ [𝑚2𝑙𝑐2
2 + 𝐼𝑐2

]�̈�2

+ 𝑚2𝑙1𝑙𝑐2
(�̇�1)2 sin 𝑞2

+ 𝑚2𝑔𝑙𝑐2
cos(𝑞1 + 𝑞2) = 0 

(15) 

The Eqns. (14) and (15) represent the equations of 

motion for the planar two-link rigid manipulator 

without any attached springs. 

 

4. Equations of Motion for the Torsion 

Springs Attached Two-Link Planar 

Manipulator 

 
As mentioned earlier, the Lagrange equation without 

any attached springs is defined as: 

 
𝐿(𝑞, �̇�) = 𝑇(𝑞, �̇�) − 𝑉(𝑞) (16) 

where the parameter 𝑇(𝑞, �̇�) represents kinetic 

energy and 𝑉(𝑞) denotes potential energy of the 

mechanism. The torsion springs only possess 

potential energy. Therefore, the potential energies of 

the torsion springs need to be included in the 

potential energy component of the Lagrangian 

equation. As mentioned earlier, two torsion springs 

are attached to Joints 1 and 2. The potential energy 

of Spring 1 can be expressed as: 

 

𝑈1 =
1

2
𝑘1(𝑞1)2 (17) 

where parameter 𝑈1 refers to the Spring 1 potential 

energy, parameter 𝑘1 represents the Spring 1 
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stiffness and parameter 𝑞1 denotes the angle of Link 

1.  

Spring 2 potential energy can be expressed as: 

 

𝑈2 =
1

2
𝑘2(𝑞2)2 (18) 

where the parameters 𝑈2, 𝑘2 and  𝑞2 represent the 

Spring 2 potential energy, Spring 2 stiffness and 

angle of Link 2 respectively. The torsion springs are 

assumed massless in this study. According to the 

attached springs potential energies, the modified 

Lagrangian equation (Eq. (16)) can be written as 

follows: 

 
𝐿(𝑞, �̇�) = 𝑇(𝑞, �̇�) − [𝑉(𝑞) + 𝑈1(𝑞) + 𝑈2(𝑞)] (19) 

where parameters 𝐿, 𝑇 and 𝑉 represent Lagrange, 

kinetic energy and potential energy of the 

mechanism respectively and parameters 𝑈1 and 𝑈2 

refer to in order to the Springs 1 and 2 potential 

energies.  By substituting Eqns. (6), (10), (17) and 

(18) into the modified Lagrange equation (Eq. (19)), 

the resulting equation can be expressed as: 

 

𝐿 =
1

2
𝑚1𝑙𝑐1

(�̇�1)2 +
1

2
𝐼1(�̇�1)2 +

1

2
𝑚2𝑙1

2(�̇�1)2

+
1

2
𝑚2𝑙𝑐2

(�̇�1 + �̇�2)2

+ 𝑚2𝑙1𝑙𝑐2
�̇�1cos 𝑞2 (�̇�1

+ �̇�2) +
1

2
𝐼2(�̇�1 + �̇�2)2

− 𝑚1𝑔𝑙𝑐1
sin 𝑞1

− 𝑚2𝑔(𝑙1 sin 𝑞1

+ 𝑙𝑐2
sin(𝑞1 + 𝑞2))

−
1

2
𝑘1(𝑞1)2 −

1

2
𝑘2(𝑞2)2 

(20) 

 

For the Euler-Lagrange formulation of the 

mechanism, derivation of the torsion spring potential 

energy equations (Eqns. (17) and (18)) can be 

expressed as: 

 
𝜕𝑈1

𝜕𝑞1

= 𝑘1𝑞1 (21) 

𝜕𝑈2

𝜕𝑞2

= 𝑘2𝑞2 (22) 

𝑑

𝑑𝑡
(

𝜕𝑈1

𝜕�̇�1

) =
𝑑

𝑑𝑡
(

𝜕𝑈2

𝜕�̇�2

) = 0 (23) 

As observed in Eq. (23), the terms  
𝑑

𝑑𝑡
(

𝜕𝑈1

𝜕�̇�1
) and 

𝑑

𝑑𝑡
(

𝜕𝑈2

𝜕�̇�2
) will not affect the equations of motion as 

they are equal to zero. According to the Eqns. (21) 

and (22), the terms  
𝜕𝐿1

𝜕𝑞1
 and  

𝜕𝐿2

𝜕𝑞2
  will have terms 

𝑘1𝑞1 and 𝑘2𝑞2 respectively. Since there is no change 

in the kinetic energy, the kinetic energy component 

of the equations of motion remains unmodified. By 

substituting Eqns. (21), (22) and (23) into the Euler-

Lagrange equations (Eqns. (12) and (13)), the 

following modified equations of motion can be 

obtained: 

 
[𝑚1𝑙𝑐1

2 + 𝑚2(𝑙1
2 + 𝑙𝑐2

2 + 2𝑚2𝑙1𝑙𝑐2
cos 𝑞2)

+ 𝐼𝑐1
+ 𝐼𝑐2

]�̈�1

+ (𝑚2𝑙𝑐2
(𝑙1 cos 𝑞2 + 𝑙𝑐2

)

+ 𝐼𝑐2
)�̈�2

− (2𝑚2𝑙1𝑙𝑐2
sin 𝑞2)�̇�1�̇�2

− (𝑚2𝑙1𝑙𝑐2
sin 𝑞2)(�̇�2)2

+ 𝑚1𝑔𝑙𝑐1
cos 𝑞1

+ 𝑚2𝑔(𝑙1 cos 𝑞1

+ 𝑙𝑐2
cos(𝑞1 + 𝑞2)) − 𝑘1𝑞1

= 0 

(24) 

and 

 
[𝑚2(𝑙𝑐2

2 + 𝑙1 𝑙𝑐2
cos 𝑞2) + 𝐼𝑐2

]�̈�1

+ [𝑚2𝑙𝑐2
2 + 𝐼𝑐2

]�̈�2

+ 𝑚2𝑙1𝑙𝑐2
(�̇�1)2 sin 𝑞2

+ 𝑚2𝑔𝑙𝑐2
cos(𝑞1 + 𝑞2)

− 𝑘2𝑞2 = 0 

(25) 

 
The Eqns. (24) and (25) represent the modified 

equations of motion for the two-link planar robotic 

manipulator when two torsion springs are attached. 

As obtained in Eqns. (24) and (25), the inclusion of 

torsion springs introduces additional terms related to 

the stiffness and deformation of the springs, which 

affect the overall dynamics of the system.  

The one of the important points about torsion spring 

is that they can be initially twisted, meaning they can 

have stored potential energy from the beginning. In 

such cases, the potential energy equations of the 

torsion springs will require an additional term for the 

initial twist angles, and the following equation can 

be written: 

 

𝑈𝑖 =
1

2
𝑘𝑖(𝑞𝑖 − 𝑞0𝑖

)2 (26) 

where the parameters 𝑈𝑖 , 𝑘𝑖, 𝑞𝑖 and 𝑞0𝑖
 represent 

spring potential energy, spring constant, spring angle 

and spring initial angle, respectively. In this study, 

𝑞0𝑖
 assumed to be 0; thus, Eqns. (24) and (25) can be 

written.  

 

5. Results 
 
In this study, thee motion of two-link rigid planar 

manipulator is simulated using MATLAB. The 

initial conditions for the simulation are set as 

𝑞1(0) = 𝜋/3, 𝑞2(0) = 𝜋/4, �̇�1(0) = 0, �̇�2(0) = 0 

and the simulation time is set to 10 seconds. 

Throughout the 10-second simulation, a total of 921 
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data points for the position, velocity, potential 

energy, kinetic energy and total energy of the two-

link rigid planar manipulator are recorded using 

MATLAB. 

The parameters used in the simulation are assumed 

as follows: 𝑙𝑐1
= 0.5𝑙1 and 𝑙𝑐2

= 0.5𝑙2, where all 

other parameters are set to 1.0 in their respective 

consistent MKS units. The gravitational acceleration 

is assumed to be 9.8 m/s2, and the mechanism is 

considered to have free oscillation. The torsion 

springs are assumed to be massless, and joint 

frictions, external forces and vibrations are neglected 

in the simulation. Note that this study specifically 

simulates the two-link planar manipulator without 

any attached-torsion springs. For the direction 

convention, the clockwise direction is considered 

positive, while the counter-clockwise direction is 

considered negative. 

 

 
 

Figure 2. The angular positions of the Link 1 and Link 2. 

 
Figure 2 illustrates the positions of Link 1 and Link 

2, represented by the angles 𝑞1 and 𝑞2, respectively. 

Both of links undergo multiple rotations of 360 

degrees during the 10-second simulation. The links 

sometimes change their rotation direction before 

completing a full 360 degrees. In the simulation, 

Link 1 rotates in the clockwise direction (assumed as 

the negative sign) from the beginning, while Link 2 

rotates in the counter-clockwise direction (assumed 

as the positive sign). Consequently, the angle values 

of 𝑞1 are negative, while the angle values of  𝑞2 are 

positive. From Fig. 2, it can be observed that the 

initial values are 𝑞1 = 1,0472 rad and 𝑞2 = 0,7854 

rad. After 10-second simulation, the final values are 

𝑞1 = −9,8314 rad and 𝑞2 = 6,6568 rad.  According 

to the Fig. 2, the Link 2 exhibits more pronounced 

oscillations compared to Link 1. It is important to 

note that the two-link manipulator mechanism is 

assumed to have free oscillation in this study. Figure 

3 shows the velocities of Link1 and Link 2, 

represented by the angular velocities �̇�1 and �̇�2, 

 
 

Figure 3. The velocities of the Link 1 and Link 2. 

 

respectively. The velocities of both links exhibit 

positive and negative values due to the free 

oscillation of the mechanism. As a result, the links 

undergo rotations in both counter-clockwise and 

clockwise direction during the simulation, leading to 

changes velocity directions. From Fig. 3, it can be 

observed that the fluctuation of �̇�2 is greater than the 

fluctuation of �̇�1. Additionally, the rotation of link 2 

is faster compared to that of Link 1. During the 10-

second motion simulation, the values of �̇�2 range 

between −30,5479 rad/s and 28,8705 rad/s, while 

the values of �̇�1 range between −10,9336 rad/s and 

10,7907 rad/s. as shown in Fig. 3. 

 

 
 

Figure 4. The total, kinetic and potential energy of the 

two-link manipulator. 

 

Figure 4 illustrates the total, potential and kinetic 

energy of the two-link planar manipulator. As seen 

in Fig. 4, the total energy of the system remains 

constant throughout the motion simulation, with a 

value of 17,4636 J. This constancy validates the 

accuracy of the dynamic modelling in this study, as 

friction and attached springs were not considered. 

The potential and kinetic energy exhibit time-

varying behavior during the simulation, 
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characterized by symmetric fluctuations. At the 

beginning of the motion simulation, the kinetic 

energy is zero since the mechanism is initially at rest. 

Conversely, the potential energy starts with a value 

of 17,4636 J, equal to the total energy of the system. 

As shown in Fig. 4, some potential energy values are 

negative, which occurs when certain positions of 

Link 1 and Link 2 fall below the reference 𝑥- axis. 

The kinetic energy values range from 0 to 

36,7360 J, while the potential energy values range 

from −19,1888 J to 17,4636 J.  

 

6. Discussion 

 
In this article, the torsion springs attached two-link 

manipulator plots are not presented. The addition of 

torsion springs imposes limitations on the motions of 

the manipulator, resulting in different joint positions 

and velocities compared to the plots shown in this 

article. Furthermore, due to the potential energy 

stored in the torsion springs during motion, the total 

energy of the spring-attached two-link manipulator 

will not remain constant. The plots and comparison 

of the spring-attached two-link manipulator with 

case of no attached springs will be one of the future 

investigation directions. This will provide valuable 

insights into the impact of torsion springs on the 

dynamics of the manipulator and further enhance our 

understanding of the system’s behavior. According 

to the results, it is observed that the rotation of Link 

2 is faster compared to Link 1. This discrepancy can 

be attributed to the configuration of the mechanism, 

where Link 1 is fixed to the ground while Link 2 is 

connected to Link1. Due to the free oscillation of the 

system, Link 2 undergoes more rotations than Link 

1 throughout the 10-second motion simulation in this 

study. The torsion springs in the system do not 

possess any kinetic energy. As a result, the 

modification in the equations of motion is limited to 

potential energy component. Only two additional 

terms, namely 𝑘1𝑞1 and 𝑘2𝑞2, are introduced due to 

the attachment of the torsion springs. Consequently, 

the overall equations of motion do not undergo 

significant changes. The influence of the torsion 

springs is primarily manifested though these two 

terms, ensuring that the modifications to the 

equations of motion remain relatively minor. 

 

7. Conclusion 

 
In this study, dynamic modelling of a two-link rigid 

planar manipulator with attached torsion springs is 

investigated. Initially, the dynamic model of the two-

link manipulator is presented without the torsion 

springs. Subsequently, the equations of motion are 

modified to incorporate the torsion springs attached 

to the joints of the manipulator. The addition of the 

torsion springs does not significantly alter the 

equations of motion. The results indicate that the 

total energy of the two-link manipulator remains 

constant, validating the accuracy of the dynamic 

model without the presence of attached springs. 

Furthermore, since the two-link manipulator exhibits 

free oscillation in this study, the position and 

velocity graphs illustrate the effects of this 

oscillatory behavior on the motion of the 

mechanism.  
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