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Abstract. We prove that if a group ring RG is a (quasi) Baer ∗-ring, then so

is R, whereas converse is not true. Sufficient conditions are given so that for

some finite cyclic groups G, if R is (quasi-) Baer ∗-ring, then so is the group

ring RG. We prove that if the group ring RG is a Baer ∗-ring, then so is RH

for every subgroup H of G. Also, we generalize results of Zhong Yi, Yiqiang

Zhou (for (quasi-) Baer rings) and L. Zan, J. Chen (for principally quasi-Baer

and principally projective rings).
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1. Introduction

A ∗-ring R is a ring equipped with an involution x → x∗, that is, an additive

anti-automorphism of period at most two. Let R be a ∗-ring. An element e ∈ R is

called a projection if it is self-adjoint (i.e. e = e∗) and idempotent (i.e. e2 = e). Let

S be a nonempty subset of R. We write rR(S) = {a ∈ R ∣ sa = 0, ∀ s ∈ S}, and is

called the right annihilator of S in R, and lR(S) = {a ∈ R ∣ as = 0, ∀ s ∈ S}, is the

left annihilator of S in R.

In [9], Kaplansky introduced Baer rings and Baer ∗-rings to abstract various

properties of AW ∗-algebras, von Neumann algebras and complete ∗-regular rings.

Clark [6] introduced quasi-Baer rings as a generalization of Baer rings. He uses

this condition to characterize a finite dimensional algebra with unity over an al-

gebraically closed field which is isomorphic to a twisted matrix units semi-group

algebra. A ring R is said to be a Baer (respectively, quasi-Baer) ring if the left

annihilator of any nonempty subset (respectively, any ideal) of R is generated by an

idempotent. A ∗-ring R is said to be a Baer ∗-ring, if for every nonempty subset S

of R, rR(S) = eR, where e is a projection in R. A ring R is called a right (left) p.p.

(principally projective) ring, if for every a ∈ R, rR(a) = eR (lR(a) = Re), for some
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idempotent e ∈ R. A ring R is called a p.p. ring (Rickart ring) if it is both right and

left p.p. In [11], Waphare and Khairnar introduced multiplicatively finite elements

in a ring. By restricting multiplicatively finite elements, Khairnar and Waphare [10]

introduced generalized projections, a partial order on them and studied this poset

in a Rickart ∗-ring. Birkenmeier [3] called a ring R to be a right (left) principally

quasi-Baer (p.q.-Baer) ring, if for every a ∈ R, rR(aR) = eR (lR(Ra) = Re), for

some idempotent e ∈ R. A ring R is called a p.q.-Baer ring if it is both right and

left p.q.-Baer. In [4] Birkenmeier et al. introduced quasi-Baer ∗-rings, a ∗-ring R

is said to be a quasi-Baer ∗-ring, if for every right ideal I of R, rR(I) = eR, where

e is a projection in R. In the same paper [4], they provide examples of Baer rings

which are quasi-Baer ∗-rings but not Baer ∗-rings.

The concept of Baer ∗-ring is naturally motivated by the study of functional

analysis. For example, every von Neumann algebra is a Baer ∗-algebra. Herstein

was convinced that the simplicity of the simple Lie algebra should follow solely from

the fact that R =Mn(F ) (F a field) is a simple ring. This led him in the 1950′s to

develop his Lie theory of arbitrary simple rings with involutions. Early motivation

for studying rings with involution (also called ∗-rings) came from rings of operators.

If B(H) is the set of all bounded linear operators on a (real or complex) Hilbert

space H, then each φ ∈ B(H) has an adjoint, adj(φ) ∈ B(H), and φ → adj(φ) is

an involution on the ring B(H).
A natural question for a given class of rings is, how does the given class behave

with respect to polynomial extensions? In [1], Armendariz seems to be the first to

consider the behavior of a polynomial ring over a Baer ring. Later, the extensions

of such properties have been studied by several authors, Birkenmeier et al. [2,4]

(quasi-Baer, quasi-Baer ∗ and principally quasi-Baer property for polynomial and

Laurent polynomial), Birkenmeier and Park [5] (quasi-Baer property for monoid

ring), Hirano [8] (Baer and quasi-Baer property for monoid rings RG, where the

monoid G is an ordered monoid) and Groenewald [7] (Baer property for semigroup

ring RG, where R is a reduced ring and G is a u.p. (unique product) semigroup).

The main idea in proving all these results is similar to that used in the cases

of (Laurent) polynomial rings and it does not help for the group ring extension.

Group rings are interesting algebraic structures and they play a central role in the

representation theory of finite groups. More recently, some applications in algebraic

coding theory were given.

In the Open Problem Section of the Third International Symposium on Ring

Theory (Kyongju, South Korea, 1999), Hirano asked the question, “Whether the

group ring RG is quasi-Baer if R is quasi-Baer and G is a finite group with ∣G∣−1 ∈
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R?”. Zhong Yi and Yiqiang Zhou [12] answer the Hirano’s question. In [13,14], L.

Zan and J. Chen discuss the similar question for a p.p. and p.q.-Baer rings.

The objective of this paper is to answer the question, “Whether the group ring

RG is a (quasi-) Baer ∗-ring if R is a (quasi) Baer ∗-ring and G is a finite group

with ∣G∣−1 ∈ R?”. We prove that, if the group ring RG is a (quasi-) Baer ∗-ring,

then so is R. Examples of a (quasi-) Baer ∗-ring R and a finite group G such that

∣G∣−1 ∈ R but the group ring RG is not a (quasi-) Baer ∗-ring are given.

The following results are proved for a ring R ⊆ C (set of complex numbers) in

[12,13,14].

Lemma 1.1 ([12], Lemma 3.5 (2)). If R ⊆ C be a ring with 3−1 ∈ R, then RC3 ≅
R[x]

(x3−1)
≅ R[x]

(x−1)
× R[x]

(x2+x+1)
≅ R × R[x]

(x2+x+1)
.

Proposition 1.2 ([14], Proposition 2.3). If R ⊆ C be a ring, then RC3 is left

p.q.-Baer if and only if R[x]
(x2+x+1)

is left p.q.-Baer and 3−1 ∈ R.

Proposition 1.3 ([13], Proposition 2.3). If R ⊆ C be a ring, then RC3 is left p.p.

if and only if R[x]
(x2+x+1)

is left p.p. and 3−1 ∈ R.

We obtain these results without assuming R ⊆ C, by using similar algebraic

techniques, and then obtain analogous results to rings with involution.

We give an example to show in general, ring isomorphisms need not be ∗-

isomorphisms. Therefore, whenever we have to prove two ∗-rings are ∗-isomorphic,

we should give an explicit isomorphism that also preserves ∗.

Throughout in this paper, R denotes an associative ring with identity and G

denotes an abelian group.

2. Necessary condition

Let R be a ∗-ring and G be a group. The involution ∗ on R can be naturally

extended to an involution on a group ring RG, on a polynomial ring R[x] and on

a Laurent polynomial ring R[x,x−1] as follows.

Let f = ∑g∈G ag g ∈ RG, then f∗ = ∑g∈G a
∗

g g. If p(x) = ∑n
k=0 rk xk ∈ R[x],

where n is a non-negative integer, then (p(x))∗ = ∑n
k=0 r

∗

k x
k. Similarly for Laurent

polynomial ring R[x,x−1]. If S is a ring with involution ∗̄, define an involution ◇
on the product R × S; for (r, s) ∈ R × S by (r, s)◇ = (r∗, s∗̄).

Remark 2.1. An ideal I of a ∗-ring R is said to be a ∗-ideal, if it is closed under

involution; that is x ∈ I implies x∗ ∈ I. Let R be a ∗-ring, I be a ∗-ideal of R.

We extend an involution ∗ of R to the quotient ring R/I. For (a + I) ∈ R/I,
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(a + I)◇ = a∗ + I. Clearly ◇ is an involution on the ring R/I and hence R/I is a

ring with involution ◇.

We denote all involutions by ∗, since it will not lead to ambiguity. We start by

proving the following theorem.

Theorem 2.2. Let R be a ∗-subring of a ∗-ring S such that both share the same

identity. Suppose that S is a free left R-module with a basis B such that 1 ∈ B and

ag = ga for all a ∈ R and g ∈ B. If S is a (quasi-) Baer ∗-ring, then so is R.

Proof. Let I be a right ideal of R. Then IS is a right ideal of S. Since S is a quasi-

Baer ∗-ring, rS(IS) = eS for some e2 = e∗ = e ∈ S. Let e = e01+e1g1+e2g2+⋯+engn,

where ei ∈ R and 1 = g0, gi ∈ B. Let b ∈ I. For all r ∈ R, 0 = bre = br(e01 + e1g1 +
e2g2 + ⋯ + engn) = bre01 + bre1g1 + ⋯ + brengn. Thus brei = 0 for i = 0,1,⋯, n
and for all r ∈ R and b ∈ I. This yields IRei = {0} for i = 0,1,⋯, n, therefore

ISei = I(⊕g∈BRg)ei = (∑g∈B(IR)g)ei = ∑g∈B(IRei)g = {0} for i = 0,1,⋯, n. So

ei ∈ rS(IS) = eS ⇒ ei = eei for i = 0,1,⋯, n. In particular e0 = ee0, that is

e0 = e2
01 + e1e0g1 + ⋯ + ene0gn ⇒ e2

0 = e0. Since g∗i ≠ 1 for any i = 1,2,⋯, n, 1∗ = 1

and e∗ = e, we have e∗0 = e0. Since IRei = {0} for i = 0,1,⋯, n, so IRe0 = {0}⇒ e0 ∈
rR(I)⇒ e0R ⊆ rR(I).

Let x ∈ rR(I), so Ix = {0}. Consider ISx = I(⊕g∈BRg)x = (∑g∈B(IR)g)x =
∑g∈B(IRx)g = {0}. This yields x ∈ rS(IS) = eS, hence x = ex = (e01 + e1g1 + e2g2 +
⋯ + engn)x = e01x + e1g1x + e2g2x + ⋯ + engnx = e0x1 + e1xg1 + e2xg2 + ⋯ + enxgn.

So x = e0x ⇒ x ∈ e0R. Hence rR(IR) = e0R. Therefore R is a quasi-Baer ∗-ring.

Similarly, we can prove if S is a Baer ∗-ring, then so is R. �

Corollary 2.3. Let R be a ∗-ring and G be a group. If the group ring RG is a

(quasi-) Baer ∗-ring, then so is R.

Proof. The proof follows from Theorem 2.2 by considering S = RG = ⊕g∈GRg as a

free right R-module with basis G. �

Corollary 2.4. If the polynomial ring R[x] or the Laurent polynomial ring R[x,x−1]
is a (quasi-) Baer ∗-ring, then so is R.

Proof. The proof follows from Theorem 2.2 by taking into account the basis

{xi ∣ i = 0,1,2,⋯} of R[x] and {xi ∣ i = 0,±1,±2,⋯} of R[x,x−1] over R. �

If R1 and R2 are rings with involutions ∗1 and ∗2 respectively; R1 and R2 are

said to be ∗-isomorphic if there is a ring isomorphism φ ∶ R1 → R2 such that

φ(r∗1) = (φ(r))∗2 for all r ∈ R1, in this case, we write R1 ≅∗ R2. The following
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example shows that in general, a ring isomorphism need not be a ∗-isomorphism.

An involution ∗ of a ring R is said to be proper, if for a ∈ R, a∗a = 0 implies a = 0.

Example 2.5. Let R1 = Z2 × Z2 with the identity involution ∗1 and R2 = Z2 × Z2

with the involution ∗2 ∶ R2 Ð→ R2 given by ∗2((a, b)) = (b, a). Define f ∶ R1 → R2

by f((a, b)) = (a, b), then f is a ring isomorphism but not a ∗-isomorphism. In

fact, there does not exist a ∗-isomorphism between R1 and R2, as involution on R1

is proper where as involution on R2 is not proper.

Corollary 2.6. Let R be a ∗-ring. If R[x]/(xn + a1x
n−1 + ⋯ + an) is a (quasi-)

Baer ∗-ring, where a1, a2,⋯, an ∈ R and n is a positive integer, then R is a (quasi-)

Baer ∗-ring.

Proof. Observe that S = R[x]/(xn + a1x
n−1 + ⋯ + an) ≅∗ ⊕n−1

i=0 Rx
i is a free left

R-module with a basis {1, x, x2,⋯, xn−1} satisfying the assumptions of Theorem

2.2. �

Corollary 2.7. If R[x]/(xn + a1x
n−1 + ⋯ + an) is a (quasi-) Baer ring, where

a1, a2,⋯, an ∈ R and n is a positive integer, then R is a (quasi-) Baer ring.

Proof. Similar to the proof of Corollary 2.6 and using [12, Theorem 2.1]. �

The following result is essentially due to Zhong Yi and Yiqiang Zhou [12].

Theorem 2.8. Let R be a ∗-ring and G be a finite group. If the group ring RG is

a quasi-Baer ∗-ring, then R is a quasi-Baer ∗-ring and ∣G∣−1 ∈ R.

Proof. By Corollary 2.3, R is a quasi-Baer ∗-ring. Since every quasi-Baer ∗-ring

is a left quasi-Baer ring, by [12, Theorem 2.4], ∣G∣−1 ∈ R. �

As an application of Theorem 2.8, we have the following example, which shows

that the converse of Corollary 2.3 is not true in general.

Example 2.9. The ring of integers Z is an integral domain, so it is Baer ∗-ring

with identity involution ∗ on Z. By Theorem 2.8, ZG is not a quasi-Baer ∗-ring

for any nontrivial finite group G.

3. (Quasi-) Baer group ring RG with involution, where G is a finite

cyclic group

For a positive integer n, Cn denote the cyclic group of order n. From the following

result, we conclude that for the group G = C2, the converse of Theorem 2.8 is true.

Lemma 3.1. Let R be a ∗-ring. If 2−1 ∈ R, then RC2 ≅∗ R ×R.
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Proof. Let C2 = {1, g}, define f ∶ RC2 → R × R by f(a + bg) = (a + b, a − b), by

[12, Lemma 3.1], f is a ring isomorphism. Consider f((a + bg)∗) = f((a∗ + b∗g)) =
(a∗ + b∗, a∗ − b∗) = (a + b, a − b)∗ = (f(a, b))∗. Hence f is a ∗-isomorphism. Thus

RC2 ≅∗ R ×R. �

Proposition 3.2. RC2 is a (quasi-) Baer ∗-ring if and only if R is a (quasi-) Baer

∗-ring and 2−1 ∈ R.

Proof. If RC2 is a (quasi-) Baer ∗-ring, then by Theorem 2.8, R is a (quasi-) Baer

∗-ring and 2−1 ∈ R. Conversely suppose R is a (quasi-) Baer ∗-ring and 2−1 ∈ R.

By Lemma 3.1, RC2 ≅∗ R ×R, hence RC2 is a (quasi-) Baer ∗-ring. �

The following example shows that the converse of the Theorem 2.8 is not true

in general.

Example 3.3. Let R0 = {n/2k ∣ n ∈ Z, k is a non-negative integer}, R = {a +
pbi ∣ a, b ∈ R0}, where p > 2 is a prime. Observe that R is a subring of C (complex

numbers). Since R is a commutative integral domain, it is a Baer ∗-ring with an

identity involution ∗. Also 1
4
∈ R (hence 1

2
∈ R). By [12, Example 3], RC4 is not a

quasi-Baer ring, hence it is not a quasi-Baer ∗-ring.

From the above example, we conclude that the converse of Theorem 2.8 is not

true for the group G = C4. Next, we try to put some extra condition on a (quasi-)

Baer ∗-ring R, so that the group ring RC4 becomes a (quasi-) Baer ∗-ring.

Lemma 3.4. Let R be a ∗-ring. If 2−1 ∈ R, then RC4 ≅∗ R ×R × R[x]
(x2+1)

.

Proof. Clearly (x2 + 1) is a ∗-ideal of R[x] and hence by Remark 2.1, R[x]
(x2+1)

is a

∗-ring. Let C4 = {1, g, g2, g3} and e = (1 + g2)/2. Since e is a central projection (as

2 is a self-adjoint element of R) of RC4, RC4e and RC4(1 − e) are ∗-rings. Clearly

RC4 ≅∗ RC4e×RC4(1−e). Observe that RC4e = {re+sge ∣ r, s ∈ R} and RC4(1−e) =
{r(1 − e) + sg(1 − e) ∣ r, s ∈ R}. Define φ ∶ RC4e → R[x]

(x2−1)
by, φ(re + sge) = r + sx̄.

By [12, Lemma 3.3], φ is a ring isomorphism. Let z = re + sge ∈ RC4e, consider

φ(z∗) = φ((re + sge)∗) = φ(e∗r∗ + e∗s∗g) = φ(r∗e + s∗ge) = r∗ + s∗x̄ = (r + sx̄)∗ =
(φ(re + sge))∗ = (φ(z))∗. Therefore φ is a ∗-isomorphism, hence RC4e ≅∗ R[x]

(x2−1)
.

Similarly RC4(1 − e) ≅∗ R[x]
(x2+1)

. Note that RC2 ≅∗ R[x]
(x2−1)

with a ∗-isomorphism

ψ ∶ RC2 → R[x]
(x2−1)

define by ψ(r1 + sg) = r + sx̄. By Lemma 3.1, RC2 ≅∗ R ×R. In

nutshell, we have RC4 ≅∗ R ×R × R[x]
(x2+1)

. �

Note: If R is a quasi-Baer ring (∗-ring) and e is a central idempotent (projection)

in R, then eRe = Re = eR is a quasi-Baer ring (∗-ring). Similar result is true for

Baer and Baer ∗-rings.
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Proposition 3.5. RC4 is a (quasi-) Baer ∗-ring if and only if R[x]
(x2+1)

is a (quasi-)

Baer ∗-ring and 2−1 ∈ R.

Proof. If RC4 is a (quasi-) Baer ∗-ring, then by Theorem 2.8, R is a (quasi-) Baer

∗-ring and 2−1 ∈ R. By Lemma 3.4, RC4(1 − e) ≅∗ R[x]
(x2+1)

. As (1 − e) is a central

projection, RC4(1 − e) is a (quasi-) Baer ∗-ring. Hence R[x]
(x2+1)

is a (quasi-) Baer ∗-

ring. Conversely suppose R[x]
(x2+1)

is a (quasi-) Baer ∗-ring and 2−1 ∈ R, by Corollary

2.6, R is a (quasi-) Baer ∗-ring. Since 2−1 ∈ R, by Lemma 3.4, RC4 ≅∗ R×R× R[x]
(x2+1)

,

hence RC4 is a (quasi-) Baer ∗-ring. �

The remaining section is devoted to discuss the situation for G = C3. For the

group G = C3, in [12,13,14] the situation is discussed for the rings R ⊆ C in the

context of quasi-Baer, p.q.-Baer and p.p. rings. We generalized these results to any

ring R. Further, we prove an analogue of these results to (quasi-) Baer ∗-rings.

Example 3.6. Let R0 = {n/6k ∣ n ∈ Z, k is a non-negative integer}, R = {a +
5b

√
3 i ∣ a, b ∈ R0}. Then R is a subring of C. Since R is a commutative integral

domain, it is a Baer ∗-ring with an identity involution ∗. Also 1
3
∈ R. By [12,

Example 4], RC3 is not a quasi-Baer ring, hence it is not a quasi-Baer ∗-ring.

The following lemma can be obtained by using Chinese remainder theorem, but

to prove ∗-isomorphism we explicitly give an isomorphism that preserves ∗.

Lemma 3.7. Let R be a ring. If 3−1 ∈ R, then RC3 ≅ R × R[x]
(x2+x+1)

.

Proof. First we prove RC3 ≅ R[x]
(x3−1)

. A mapping φ ∶ RC3 → R[x]
(x3−1)

defined by

φ(r11+r2g+r3g
2) = r1+r2x+r3x̄ is a ring isomorphism, hence RC3 ≅ R[x]

(x3−1)
. Now we

prove R[x]
(x3−1)

≅ R[x]
(x−1)

× R[x]
(x2+x+1)

. Let I = (x3−1), I1 = (x−1), I2 = (x2+x+1), define ψ ∶
R[x]
I
→ R[x]

I1
×R[x]

I2
, by ψ(r1+r2x+r3x

2+I) = ((r1+r2+r3)+I1, (r1−r3)+(r2−r3)x+I2).
It is easy to verify that ψ is a ring homomorphism. To prove ψ is one-one, suppose

ψ(r1 + r2x + r3x
2 + I) = ψ(r′1 + r′2x + r′3x2 + I), that is ((r1 + r2 + r3) + I1, (r1 −

r3) + (r2 − r3)x + I2) = ((r′1 + r′2 + r′3) + I1, (r′1 − r′3) + (r′2 − r′3)x + I2), this yields

(r1+r2+r3)−(r′1+r′2+r′3) ∈ I1 and ((r1−r3)−(r′1−r′3))+((r2−r3)−(r′2−r′3))x ∈ I2.

Hence (r1+r2+r3)−(r′1+r′2+r′3) = 0, (r1−r3)−(r′1−r′3) = 0 and (r2−r3)−(r′2−r′3) = 0.

From this we have,

r1 + r2 + r3 = r′1 + r′2 + r′3 (1)

r1 − r3 = r′1 − r′3 (2)

r2 − r3 = r′2 − r′3 (3)
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2 − 3⇒ r1 − r2 = r′1 − r′2 ⇒ r2 = r1 − r′1 + r′2. Put this value of r2 in Equation 1, we

get

2r1 + r3 = 2r′1 + r′3 (4)

4 + 2 ⇒ 3r1 = 3r′1. Since 3−1 ∈ R, we have r1 = r′1. So Equation 2 ⇒ r3 =
r′3 and Equation 3 ⇒ r2 = r′2, hence r1 + r2x + r3x

2 + I = r′1 + r′2x + r′3x2 + I.

Therefore ψ is a one-one mapping. Now we prove ψ is an on-to mapping. Let

(a+ I1, b+ cx+ I2) ∈ R[x]
I1

× R[x]
I2

. We have to find r1 + r2x+ r3x
2 + I ∈ R[x]

I
such that

ψ(r1+r2x+r3x
2+I) = ((r1+r2+r3)+I1, (r1−r3)+(r2−r3)x+I2) = (a+I1, b+cx+I2).

Consider equations r1+r2+r3 = a, r1−r3 = b and r2−r3 = c. Using the fact 3−1 ∈ R,

we can solve these equations for r1, r2 and r3 similarly as above. Therefore ψ is an

on-to mapping. Therefore ψ is an isomorphism, hence R[x]
(x3−1)

≅ R[x]
(x−1)

× R[x]
(x2+x+1)

. It

is clear that R[x]
(x−1)

≅ R. In all we get RC3 ≅ R × R[x]
(x2+x+1)

. �

Corollary 3.8 ([12], Lemma 3.5 (2)). If R ⊆ C be a ring with 3−1 ∈ R, then

RC3 ≅ R[x]
(x3−1)

≅ R[x]
(x−1)

× R[x]
(x2+x+1)

≅ R × R[x]
(x2+x+1)

.

Theorem 3.9. RC3 is (quasi-) Baer if and only if R[x]
(x2+x+1)

is quasi-Baer and

3−1 ∈ R.

Proof. If RC3 is (quasi-) Baer, then by [12, Corollary 2.2], R is (quasi-) Baer and

by [12, Theorem 2.4], 3−1 ∈ R. By Lemma 3.7, RC3 ≅ R × R[x]
(x2+x+1)

. Observe that
R[x]

(x2+x+1)
≅ (R× R[x]

(x2+x+1)
)(0,1+I2), where I2 = (x2+x+1). As (0,1+I2) is a central

idempotent, (R × R[x]
(x2+x+1)

)(0,1 + I2) is a (quasi-) Baer ring. Hence R[x]
(x2+x+1)

is a

(quasi-) Baer ring. Conversely suppose R[x]
(x2+x+1)

is (quasi-) Baer and 3−1 ∈ R. By

Corollary 2.7, R is a (quasi-) Baer ring. Therefore by Lemma 3.7, RC3 is a (quasi-)

Baer ring. �

The following result is a conclusion made by Zhong Yi and Yiqiang Zhou after

Lemma 3.5 in [12].

Corollary 3.10. If R ⊆ C be a ring, then RC3 is (quasi-) Baer if and only if
R[x]

(x2+x+1)
is (quasi-) Baer and 3−1 ∈ R.

The proofs of Corollary 3.11 and Corollary 3.12 are similar to the proof of Corol-

lary 3.10.

Corollary 3.11 ([14], Proposition 2.3). If R ⊆ C be a ring, then RC3 is left p.q.-

Baer if and only if R[x]
(x2+x+1)

is left p.q.-Baer and 3−1 ∈ R.

Corollary 3.12 ([13], Proposition 2.3). If R ⊆ C be a ring, then RC3 is left p.p.

if and only if R[x]
(x2+x+1)

is left p.p. and 3−1 ∈ R.
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Theorem 3.13. Let R be a ∗-ring. If 3−1 ∈ R, then RC3 ≅∗ R × R[x]
(x2+x+1)

.

Proof. Note that (x3 − 1) and (x2 + x + 1) are ∗-ideals of the ring R[x]. Hence

by Remark 2.1, R[x]
(x3−1)

and R[x]
(x2+x+1)

are ∗-rings. Let φ and ψ are mappings as in

Lemma 3.7. Let z = r11 + r2g + r3g
2 ∈ RC3, consider φ(z∗) = φ(r∗11 + r∗2g + r∗3g2) =

r∗1+r∗2x+r∗3 x̄ = (φ(z))∗. Therefore φ is a ∗-isomorphism. To prove ψ is ∗ preserving,

consider ψ((r1+r2x+r3x
2+I)∗) = ψ(r∗1+r∗2x+r∗3x2+I) = ((r∗1+r∗2+r∗3)+I1, (r∗1−r∗3)+

(r∗2−r∗3)x+I2) = ((r1+r2+r3)+I1, (r1−r3)+(r2−r3)x+I2)∗ = (ψ(r1+r2x+r3x
2+I))∗.

Therefore ψ is a ∗-isomorphism. As R[x]
(x−1)

≅∗ R, we have RC3 ≅∗ R × R[x]
(x2+x+1)

. �

Proposition 3.14. Let R be a ∗-ring. RC3 is a (quasi-) Baer ∗-ring if and only

if R[x]/(x2 + x + 1) is a (quasi-) Baer ∗-ring and 3−1 ∈ R.

Proof. If RC3 is a (quasi-) Baer ∗-ring, then by Theorem 2.8, R is a (quasi-)

Baer ∗-ring and 3−1 ∈ R. By Theorem 3.13, RC3 ≅∗ R × R[x]
(x2+x+1)

. Observe that
R[x]

(x2+x+1)
≅∗ (R× R[x]

(x2+x+1)
)(0,1+I2), where I2 = (x2+x+1). As (0,1+I2) is a central

projection, (R × R[x]
(x2+x+1)

)(0,1 + I2) is a (quasi-) Baer ∗-ring. Hence R[x]
(x2+x+1)

is a

(quasi-) Baer ∗-ring. Conversely suppose R[x]/(x2 +x+1) is a (quasi-) Baer ∗-ring

and 3−1 ∈ R, so by Corollary 2.6, R is a (quasi-) Baer ∗-ring. Since 3−1 ∈ R, by

Lemma 3.7, RC3 ≅∗ R×R[x]/(x2 +x+ 1), hence RC3 is a (quasi-) Baer ∗-ring. �
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