
Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

European Journal of Technique

journal homepage: https://dergipark.org.tr/en/pub/ejt

Vol.13, No.1, 2023

Enhancing Algorithm Design Education:
Interactive Learning with Jupyter Notebooks

Oguzhan Topsakal1*

1*Florida Polytechnic University, 33805, Lakeland, Florida, USA. (e-mail: otopsakal@floridapoly.edu).

1. INTRODUCTION

The famous quote, "Tell me and I forget, teach me and I may
remember, involve me and I learn," underscores the pivotal role
of interaction in effective learning. Algorithm design, being an
abstract concept, is best taught through active involvement.
Algorithm design approaches offer techniques for solving
computer science problems, resulting in improved performance
in terms of time complexity. [1,2] However, the conventional
teaching methods employed in classrooms and textbooks
primarily revolve around examples of computer science
problems with limited or no interactive elements. [3]
Consequently, much of the learning diminishes over time.

To address this issue, we propose the utilization of Jupyter
Notebooks—an open-source web-based interactive computing
environment—as a valuable tool for enhancing understanding
and facilitating effective teaching of algorithm design
approaches and time complexity analysis. [4] Jupyter
Notebooks provide users with a flexible platform for creating

and sharing interactive documents called notebooks. They
support multiple programming languages, including Python,
making them versatile for various data analysis and scientific
computing tasks.

By leveraging the interactive and exploratory workflow
offered by Jupyter Notebooks, learners can actively engage in
running code snippets, visualizing results, and iteratively
modifying their analyses. Jupyter Notebooks empower users to
seamlessly combine code, visualizations, and explanatory text
within a single document, fostering an interactive and
comprehensive learning experience.

In this study, we have developed Jupyter Notebook pages
that incorporate detailed descriptions, code implementations,
and visualizations to present practical examples of algorithm
design approaches (techniques). These notebooks serve as a
powerful methodology for teaching algorithm design, enabling
learners to actively participate in interactive sessions and gain
a deep understanding of the approaches employed. We strongly
believe that the adoption of Jupyter Notebooks as a standard

ARTICLE INFO

ABSTRACT

Received: Jan., 04. 2023

Revised: Jun., 27. 2023

Accepted: Jun, 30. 2023

 Interactive learning environments play a crucial role in facilitating effective education.
Traditional approaches to teaching algorithm design techniques often lack interactivity,
resulting in a limited learning experience. In this article, we propose the utilization of Jupyter
Notebooks, renowned for their versatility in combining code, visualizations, and
explanations, as a powerful tool for enhancing understanding and promoting an engaging
learning experience in teaching algorithm design techniques. We provide a comprehensive
structure for a Jupyter Notebook page, encompassing problem descriptions, brute force
solutions, algorithm design techniques, application areas, and references, to present a
thorough solution for computer science problems using these design techniques. Our study
includes experiments conducted with computer science students, demonstrating the practical
application of Jupyter Notebooks in algorithm design education. Furthermore, we share
sample Jupyter Notebooks for popular algorithm design techniques, including Divide &
Conquer, Greedy, Dynamic Programming, and Backtracking. Importantly, we emphasize
the significance of interactive comparisons between brute force solutions and algorithm
design techniques, which foster valuable learning opportunities by providing insights into
performance improvements, complexity analysis, validation, optimization strategies, trade-
offs, and a deeper understanding of algorithmic principles. In conclusion, we propose the
integration of Jupyter Notebooks as a potent tool for teaching algorithm design approaches,
empowering learners to actively engage with the material, visualize complex concepts, and
collaborate effectively. By incorporating Jupyter Notebooks into algorithm design
education, instructors can enhance students' comprehension, cultivate critical thinking skills,
and facilitate a profound understanding of algorithmic principles and optimization
strategies.

Keywords:
Algorithm

Design
Approach

Technique

Jupyter Notebook
Interactive

Teaching

Education

Learning

Corresponding author: Oguzhan
Topsakal

ISSN: 2536-5010 | e-ISSN: 2536-5134

DOI: https://doi.org/10.36222/ejt.1320404

1

https://orcid.org/0000-0002-9731-6946

EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.1, 2023

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

practice for teaching algorithm design will greatly enhance the
educational experience and contribute to improved learning
outcomes.

This article advocates for the use of Jupyter Notebooks as an
invaluable tool to promote understanding of algorithm design
approaches and time complexity analysis through interactive
learning sessions. By offering a platform that integrates code,
visualizations, and explanatory text, Jupyter Notebooks
empower learners to delve into algorithmic problem-solving,
fostering a deeper comprehension of the subject matter. It is our
hope that the methodology presented here, employing Jupyter
Notebooks for teaching algorithm design, becomes widely
embraced to enhance the teaching and learning experience in
algorithm design education.

2. RELATED RESEARCH

Efforts have been made to enhance algorithm teaching
through the utilization of analogies and metaphors [5,6]. For
instance, the book "Explaining Algorithms Using Metaphors"
aims to equip teachers with metaphors and analogies to
facilitate the comprehension of algorithmic concepts by
students. [6] This comprehensive resource offers guidance on
various subjects, including Graph Algorithms, Computational
Geometry, and Strings and Sequences. Each subject is
accompanied by background information, metaphorical
explanations, analytical insights, teaching experiences, and
relevant exercises.

In addition to algorithm teaching, Jupyter Notebooks have
emerged as valuable collaboration and teaching tools across
multiple disciplines, such as architecture [7], mathematics [8],
and geography [9]. Castelo-Branco et al. proposed the
utilization of Jupyter Notebooks in architecture to foster
collaborative work and seamlessly integrate text, formulas,
data, code, and graphics, thereby preserving the design
narrative and supporting reproducibility [7]. Ketcheson
highlights the benefits of Jupyter Notebooks in a Masters-level
numerical analysis course, sharing detailed examples based on
personal teaching experiences [8]. Similarly, Reades leveraged
Jupyter Notebooks to teach geocomputation modules to
Geography undergraduates [9].

Numerous educators have shared their best practices for
utilizing Jupyter Notebooks in teaching [9-11]. Johnson
critically examines the strengths and weaknesses of Jupyter
notebooks for education, drawing on extensive experience
teaching various courses, and provides a set of recommended
best practices [10]. Leitão and Teixeira propose Jupyter
Notebooks as a tool to foster the development of innovative
teaching methodologies [11].

In the field of computer science, Jupyter Notebooks have
also gained recognition and endorsement. For example,
Liubschenko and Parkomenko explore the pedagogical and
technical challenges of using notebooks as an educational tool,
evaluating their effectiveness based on educational criteria
such as complexity, interactivity, and utility [12]. Glick and
Mache employ Jupyter Notebooks to create an open-access
course on high-performance computing, reporting improved
interactivity and enhanced outcomes [13]. Hamouda et al.
develop interactive Jupyter Notebooks as a tool for teaching
recursion, resulting in improved performance in recursion
exam questions compared to students using traditional
instruction methods [14]. Birster adopts individual Jupyter

Notebook pages at different levels of Bloom's Taxonomy to
enhance engagement among computer science students [15].

The widespread adoption and endorsement of Jupyter

Notebooks across various disciplines, including computer

science, reinforce its effectiveness as a versatile tool for

teaching and collaboration. These experiences and best

practices contribute to the growing body of evidence

supporting the use of Jupyter Notebooks in educational

contexts.

3. METHODOLOGY

This section outlines the methodology employed in teaching
algorithm design approaches using Jupyter Notebooks. The
algorithm design approaches are categorized into four main
categories: divide & conquer, greedy, backtracking, and
dynamic programming. A general description of each design
approach and the corresponding steps involved in applying the
approach is provided.

To exemplify the application of these design approaches,
multiple Jupyter Notebooks were prepared, each focusing on a
specific computer science problem such as traveling salesman,
tug-of-war, longest common string, and closest pair of points.
Each Jupyter Notebook page comprises several sections,
including:

1. Introduction of the Computer Science (CS) Problem:

o A comprehensive description of the problem,

o Sample input and output cases,

o Visuals, such as images or short videos, to depict
the problem visually,

2. Brute Force Approach to Solve the CS Problem:

o Description of the brute force solution

o Visualization of the asymptotic complexity,
showcasing the time required for executing the
brute force algorithm as a function of the input
size,

o Graphical representations, such as Figure 1,
demonstrating the time complexity of the brute
force solution, e.g., O(n^2) for the 'Closest Pair
of Points' problem,

3. Applying one of the Algorithm Design Approaches:

o Step-by-step instructions to solve the computer
science problem using the chosen algorithm
design technique,

o Visuals elucidating the algorithm design
technique employed,

o Pseudocode representing the solution using the
design technique in plain English,

o Python implementation code for applying the
approach, including detailed comments for better
comprehension,

o Driver code with sample inputs, enabling the
presentation of results on the Jupyter Notebook
page,

o Asymptotic complexity analysis of the solution,
highlighting the time and space complexity
optimizations achieved,

2

EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.1, 2023

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

4. Application Areas of the CS Problem:

o Identification and enumeration of the practical
application areas associated with the computer
science problem under consideration,

o For instance, the 'closest pair of points' problem
can find application in determining facility
location optimization, enabling the selection of
optimal locations for new facilities or services
based on proximity to existing locations or
customer demand,

Additionally, references to external resources are provided
for further exploration and understanding of the computer
science problem and the algorithmic approach utilized.

Figure 1. The asymptotic time complexity of brute force solution for the

closest pair of points computer science problem.

The steps involved in each algorithm design approach
category are summarized in Table 1. However, the steps might
need to be tailored to the specific computer science problem
being discussed. By offering detailed explanations,
pseudocode, and Python implementation code, learners gain
insights into the optimization strategies and techniques used to
develop efficient algorithms. Moreover, the Jupyter Notebooks
facilitate the visual representation of the problem, enabling
learners to grasp the input-to-output transformation. The
inclusion of the brute force solution as a baseline allows for
comparative analysis, showcasing the improvements achieved
through the algorithm design techniques.

The Python implementation of the algorithm for the given
computer science problem is provided, utilizing the designated
algorithm design technique. The implementation includes
comprehensive code comments to enhance understanding and
can be presented in one or multiple code cells within the
Jupyter Notebook. Subsequently, a separate code cell
encompasses the driver code, incorporating sample inputs.
Upon running the driver code, the Jupyter Notebook page
displays the resulting outputs. To analyze the algorithm's
performance, the driver code can be executed with inputs
representing increasing input sizes. The execution times for
each input size can be recorded and plotted on a graph.

For example, Figure 2 illustrates the theoretical and
experienced execution times for the Closest Pair of Points
problem. The theoretical execution time (O(nlogn)) based on
the input size, is depicted under the 'Ideal Graph' section at the
bottom, and the experienced execution time is represented at
the top of Figure 2. Similarly, Figure 3 presents the theoretical
and experienced execution times for the Box Stacking problem.

This proposed structure of a Jupyter Notebook strives to
present a comprehensive and interactive learning experience,
allowing learners to understand algorithm design approaches
and their practical application.

TABLE I
MAIN STEPS OF ALGORITHM DESIGN APPROACHES

Design

Category

Steps

Divide &

Conquer

Divide: Break down the problem into smaller, more

manageable subproblems.

Conquer: Solve the subproblems recursively or by
applying a base case.

Combine: Merge the solutions of the subproblems to

obtain the final solution to the original problem.

Greedy

Approach

Initialization: Set up the initial solution or state.

Determine the Greedy Choice: Make the locally

optimal choice at each step, assuming it will lead to a
globally optimal solution.

Feasibility Check: Verify if the greedy choice is valid.

Update: Update the current solution with the chosen

greedy choice.

Termination: Determine when to stop and return the

final solution.

Backtracking Choose: Select a candidate for the current step or
decision.

Constraints Check: Verify if the chosen candidate

satisfies the problem constraints.
Apply: Apply the chosen candidate to the current step

and move to the next step.
Recurse: Recursively call the algorithm on the next step.

Backtrack: Undo the previous step and go back to

explore other candidates if the current candidate does not
lead to a valid solution.

Termination: Determine when to stop and return the

final solution.

Dynamic
Programming

Determine the objective: Clearly define the problem
and determine the objective and constraints.

Identify Overlapping Subproblems: Identify the

subproblems that overlap or are repeated in the problem-
solving process.

Formulate Recurrence Relation: Define a recurrence

relation that expresses the solution to a larger problem in
terms of the solutions to its subproblems.

Create a Memorization Table or Array: Set up a data

structure to store the solutions to subproblems to avoid
redundant computations.

Solve Bottom-Up or Top-Down: Choose either a

bottom-up or top-down approach to iteratively or
recursively solve the problem by building on the

solutions to subproblems.

Build the Final Solution: Construct the final solution by
combining the solutions to subproblems according to the

recurrence relation.

Figure 2. The theoretical and experienced execution times for the Closest
Pair of Points problem.

3

EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.1, 2023

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

Overall, this methodology empowers learners to actively
engage with the material, experiment with different
approaches, and acquire a deeper understanding of algorithmic
principles and optimization strategies.

Figure 2. The theoretical and experienced execution times for the Box
Stacking problem are presented on a Jupyter Notebook page.

4. EXPERIMENTS

In the algorithm design and analysis course, students
specializing in Computer Science were instructed to select a
computer science problem of their choice and employ one of
the algorithm design techniques to present its solutions. To
facilitate their presentations, the aforementioned sections were
provided as a structured template, guiding the creation of
Jupyter notebook pages. Some of the students granted
permission to publish their refined Jupyter Notebook pages,
which are now available on a dedicated website1 [16].

Moreover, the website serves as a comprehensive resource,
organizing well-known computer science problems into
various algorithm design techniques. Each problem is
accompanied by a concise description. The website's extensive
list comprises a total of 118 computer science problems, with
27 categorized under dynamic programming, 41 under
backtracking, 30 under divide and conquer, and 24 under
greedy algorithms. This website aims to provide a valuable
platform for showcasing the Jupyter Notebooks as a practical
educational tool for algorithm design techniques in solving
diverse computer science problems and to contribute to the
academic community by fostering collaboration and sharing
algorithmic insights.

5. DISCUSSION

Utilizing Jupyter Notebooks for teaching algorithm design
approaches can significantly enhance understanding and
facilitate the development and exploration of algorithms.
Jupyter Notebooks provides an interactive environment where
learners can write, execute, and modify code snippets in real-
time. This allows the student to experiment with different
algorithms, tweak parameters, and observe the immediate
results. The interactive nature of Jupyter Notebooks promotes

———
1 Interactive Examples of Algorithm Design Techniques:

https://sites.google.com/view/algorithm-design-approaches/

an iterative and exploratory approach to algorithm design.
Jupyter Notebooks allow you to include rich text, markdown
cells, and visualizations alongside your code. This helps
provide detailed explanations, document the thought process,
describe the algorithm steps, and include mathematical
equations or diagrams to clarify concepts. The ability to
combine code and explanations in a single document enhances
understanding and promotes self-contained documentation.
Moreover, Jupyter Notebooks support the integration of
various data visualization libraries, such as Matplotlib or
Seaborn. This enables you to visualize data, plot graphs, or
display intermediate results during algorithm execution.
Visualizations help you grasp patterns, observe algorithm
behavior, and gain insights into the underlying data structures
or problem-solving techniques. The implementation can be
spread into various code cells, which can execute code cells
step-by-step, observing the intermediate results at each stage.
This is particularly useful for complex algorithms or iterative
processes, allowing you to examine the algorithm's progress,
verify intermediate computations, and identify any potential
issues or bugs. Another great benefit of Jupyter Notebooks is
enabling users to share them easily through cloud-based servers
such as Google Colab, allowing for collaboration and
knowledge exchange among colleagues, researchers, or
instructors. The ability to collaborate and receive input from
others can enhance your understanding and help refine your
algorithms. Jupyter Notebooks also promote reproducibility by
enabling others to reproduce your algorithms, verify your
findings, or build upon your work.

The Jupyter Notebooks make it possible to review the
theoretical and practical outputs of asymptotic complexity
results side by side, as seen in Figure 2, and help to achieve a
better understanding of the concepts. To better understand the
asymptotic complexity, Jupyter Notebooks offer an interactive,
visual, and collaborative learning experience. By combining
code execution, visualizations, mathematical equations,
explanations, and documentation in a single document, Jupyter
Notebooks enhance your comprehension of complexity
analysis concepts and provide a flexible platform for
exploration, analysis, and sharing.

The proposed content for teaching algorithm design
approaches via interactive Jupyter Notebooks encompasses
sections to compare the brute force solution with the solution
achieved by applying an algorithm design technique.
Comparing the brute force solution with the solution achieved
by applying an algorithm design technique provides insights
into performance improvements, complexity analysis,
validation, optimization strategies, trade-offs, and learning
opportunities. It enables you to evaluate and appreciate the
benefits of algorithm design techniques in solving
computational problems efficiently and effectively. These
benefits can be explained as follows:

• Performance Evaluation: By comparing the two solutions,
you can assess the performance improvement achieved
through the algorithm design technique. This includes
evaluating factors such as execution time, memory usage,
and overall efficiency. Comparing the performance
metrics allows you to quantify the gains achieved by
employing the algorithm design technique and determine
its effectiveness in optimizing the solution.

4

https://sites.google.com/view/algorithm-design-approaches/

EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.1, 2023

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

• Complexity Analysis: Comparing the brute force solution
with the algorithm design technique provides an
opportunity to analyze the time and space complexity of
both approaches. It helps you understand how the
algorithm design technique reduces the computational
requirements compared to the brute force solution. This
analysis enhances your understanding of algorithmic
efficiency and scalability based on the input size.

• Validation and Verification: Comparing the solutions
helps validate the correctness of the algorithm design
technique. By verifying that the results obtained from both
approaches are equivalent, you can gain confidence in the
correctness of the optimized solution. This verification
process is crucial to ensure that the algorithm design
technique produces accurate and reliable results and
provides the expected efficiency.

• Insight into Optimization: Analyzing the differences
between the brute force solution and the optimized
solution offers insights into the optimization strategies
employed by the algorithm design technique. You can
identify the key optimizations or algorithmic
improvements that lead to enhanced performance.
Understanding these optimizations helps you grasp the
underlying principles and techniques used to refine
algorithms and improve efficiency.

• Trade-offs and Constraints: Comparing the two solutions
allows you to explore trade-offs between various factors,
such as time complexity, space complexity, accuracy, or
implementation complexity. The brute force solution
might provide a baseline that guarantees correctness but
might not be feasible for larger problem instances due to
its inefficiency. The optimized solution achieved through
the algorithm design technique can offer a balance by
addressing these constraints and providing a more
practical solution.

• Learning Opportunity: The comparison between the brute
force solution and the optimized solution can serve as a
valuable learning experience. It helps you understand the
importance of algorithmic efficiency, explore different
algorithm design techniques, and appreciate the impact of
optimizations on solving complex problems. By analyzing
the differences and studying the optimized solution, you
can enhance your algorithmic thinking and problem-
solving skills.

6. CONCLUSION

In conclusion, the use of Jupyter Notebooks as a platform for
teaching algorithm design is a valuable tool for enhancing
understanding and promoting effective learning experiences.
By combining code execution, visualizations, and explanations
in a single document, Jupyter Notebooks offer an interactive
and versatile environment for exploring algorithms and
analyzing their asymptotic complexity.

We demonstrated how Jupyter Notebooks can be utilized to
teach algorithm design approaches effectively. By categorizing
the approaches into distinct categories and providing examples
of Jupyter Notebook pages, learners are guided through the
process of understanding and implementing different
algorithmic techniques. The structure of the Jupyter Notebook
pages, including problem description, brute force solutions,

algorithm design techniques, application areas, and references,
ensures a comprehensive learning experience.

The experiments conducted with computer science students
further validate the efficacy of using Jupyter Notebooks for
algorithm design education. The students' engagement in
creating and presenting their own algorithmic solutions using
Jupyter Notebooks showcases the benefits of interactive
exploration, visualization, step-by-step execution, and
collaboration. The integration of theoretical and practical
outputs of asymptotic complexity analysis within the
notebooks enhances learners' understanding of algorithmic
concepts.

We also emphasize the importance of comparing brute-
force solutions with algorithm design techniques. Such
comparisons provide insights into performance improvements,
complexity analysis, optimization strategies, and trade-offs.
Learners gain a deeper understanding of algorithmic efficiency,
scalability, and problem-solving techniques through this
comparative analysis.

Overall, this article advocates for the broader adoption of

Jupyter Notebooks in teaching algorithm design approaches.

The interactive and collaborative nature of Jupyter Notebooks,

along with their ability to integrate code, visualizations,

explanations, and documentation, significantly enhance the

comprehension and application of algorithmic concepts. By

embracing Jupyter Notebooks as a pedagogical tool, educators

can create a more engaging and effective learning environment,

enabling learners to actively participate, explore, and master

algorithm design approaches.

ACKNOWLEDGEMENT

We would like to thank Taylor Preston and Joshua Murphy for
their help in editing selected Jupyter Notebooks and also thank
Florida Polytechnic University Computer Science students
who let their Jupyter Notebooks be utilized on this study’s
website.

REFERENCES

[1] Neapolitan, R., & Naimipour, K. (2010). Foundations of algorithms.

Jones & Bartlett Publishers.

[2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022).
Introduction to algorithms. MIT press.

[3] Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding
computer science education in schools: understanding teacher

experiences and challenges. Computer science education, 26(4), 235-

254.
[4] Project Jupyter, https://jupyter.org/ (accessed Jun. 17, 2023).

[5] Forišek, M., Steinová, M. (2013). Explaining Algorithms Using

Metaphors. Springer Briefs in Computer Science. Springer, London.
https://doi.org/10.1007/978-1-4471-5019-0_1.

[6] Forišek, M., & Steinová, M. (2012, February). Metaphors and analogies

for teaching algorithms. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (pp. 15-20).

[7] Castelo-Branco, R., Caetano, I., Pereira, I., & Leitão, A. (2020,

November). The collaborative algorithmic design notebook. In Int.
Conf. of the Architectural Science Association (pp. 1056-1065).

[8] Ketcheson, D. I. (2014). Teaching numerical methods with IPython

notebooks and inquiry-based learning. Proceedings of the 13th Python
in Science Conference. Retrieved from

http://hdl.handle.net/10754/346689.

[9] Reades, J. (2020). Teaching on jupyter. Region, The Journal of Ersa,
7(1), 21-34.

[10] Johnson, J. W. (2020, October). Benefits and pitfalls of jupyter

notebooks in the classroom. In Proceedings of the 21st Annual
Conference on Information Technology Education (pp. 32-37).

5

https://doi.org/10.1007/978-1-4471-5019-0_1

EUROPEAN JOURNAL OF TECHNIQUE, Vol.13, No.1, 2023

Copyright © European Journal of Technique (EJT) ISSN 2536-5010 | e-ISSN 2536-5134 https://dergipark.org.tr/en/pub/ejt

[11] Cardoso, A., Leitão, J., & Teixeira, C. (2019). Using the Jupyter

notebook as a tool to support the teaching and learning processes in
engineering courses. In The Challenges of the Digital Transformation in

Education: Proceedings of the 21st International Conference on

Interactive Collaborative Learning (ICL2018)-Volume 2 (pp. 227-236).
Springer International Publishing.

[12] V. Liubchenko and H. Parkhomenko, "The Involvement of Jupyter

Notebooks as an Educational Tools: A Case Study," 2021 IEEE 16th
International Conference on Computer Sciences and Information

Technologies (CSIT), LVIV, Ukraine, 2021, pp. 147-150, doi:

10.1109/CSIT52700.2021.9648674.
[13] Glick, B., & Mache, J. (2018). Using Jupyter notebooks to learn high-

performance computing. Journal of Computing Sciences in Colleges,

34(1), 180-188.
[14] Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., & Shaffer,

C. A. (2018). RecurTutor: An interactive tutorial for learning recursion.

ACM Transactions on Computing Education (TOCE), 19(1), 1-25.
[15] Birster, C. A. (2017). Engagement in Foundational Computer Science

Courses Through Supplementary Content for Algorithms. arXiv preprint

arXiv:1801.06047.
[16] Applications of Algorithm Design Approaches to Computer Science

Problems Presented via Interactive Jupyter Notebook Pages,

https://sites.google.com/view/algorithm-design-approaches/ (accessed
June 17, 2023)

BIOGRAPHY

Oguzhan Topsakal received his B.S. in Computer Engineering in 1996 from
Istanbul Technical University, Turkey. He received his M.S. and Ph.D. in
Computer Science from the University of Florida in 2003 and 2007. After
gaining extensive experience in the software industry, Dr. Topsakal is currently
an assistant professor in the Computer Science department at the Florida
Polytechnic University since 2018. He teaches courses related to Machine
Learning, Algorithm Design, Databases, and Mobile Development. Dr.
Topsakal's research interests include algorithm design and applications of
machine learning and deep learning.

6

https://sites.google.com/view/algorithm-design-approaches/

