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ABSTRACT In this article, we consider the Generalized Damped Forced Korteweg-de Vries (GDFKdV)
equation. The forcing term considered is of the form F(U) = U(U − v1)(U − v2), where v1 and v2 are
free parameters. We investigate the behaviour of fixed points evaluated for the corresponding dynamical
system of our model problem. With respect to these fixed points, we investigate the effects of a few significant
parameters involved in the model, namely, the free parameters v1 and v2, the nonlinear, dispersion and
damping coefficients using the tools from bifurcation analysis. We also obtain the wave plots for the critical
values of the nonlinear and dispersion coefficients for which the system becomes unstable and exhibit chaotic
behaviour. We confirm the chaos in our dynamical system under various conditions with the help of Lyapunov
exponents.
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INTRODUCTION

In dispersive media, weakly non-linear long wave propagation is de-
scribed by the universal mathematical model KdV. It is also used as a
model to examine several quantum mechanics-related phenomena in the-
oretical physics. In many real-world applications, it is recognized that
higher-order non-linearity should be included in the KdV equation in
order to explain the physical phenomenon, which leads to a more gen-
eralised KdV equation. This equation accounts for the wide range of
applicability; Shallow-water gravity waves, ion-acoustic waves in colli-
sionless plasma, internal waves in the atmosphere and ocean, and waves
in bubbly fluids are only a few examples of the physical uses of the gener-
alized KdV equation (Stuhlmeier 2009; Khater 2022; Vasavi et al. 2021;
Crighton 1995).

In this article, we study the Generalized Korteweg-de Vries (GKdV)
equation with damping and external force of the following form

Ut + PUnUx + QUxxx + SU = γF(U, x, t, vi), (1)

where U denotes the excitation, t, x denote time, and space coordinates,
respectively. P, Q, and S denote coefficients of nonlinearity, dispersion,
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damping, respectively; n is the exponent which controls the non-linearity.
The coefficients P and Q, which can either be constants or functions
of x and t, are determined by the characteristics of the medium. The
Generalized KdV equation describes the combined effect of the basic long
wave dispersion (Uxxx) and, (UnUx, n > 0) which has the same form
as that in the KdV or 1-dimensional Navier-Stokes equations, stabilizes
by transferring energy between large and small scales (Alshenawy et al.
2020; Zhang 2014; El 2007). In equation 1, the function F denotes an
additional forcing term. The parameter γ is the force coefficient. The
range of γ governs the strength of the force field. For instance, for γ > 1,
γ ≈ 1, and γ ≪ 1 the force field can be considered strong, weak or very
weak.

In this study, we consider F(U, x, t, vi) ≡ F(U) = U(U − v1)(U −
v2). The roots of the polynomial F(U) = 0 are U = 0, v1 and v2.
The parameters v1 and v2 are referred to as forcing parameters. Under
certain conditions imposed on these parameters, the forcing term in its
present form may act as an attenuator or amplifier for the solitary waves
(Engelbrecht and Peipman 1992). Such forcing terms have been used to
study the wave propagation in different media within the framework of a
perturbed KdV equation (see for example (Engelbrecht and Khamidullin
1988; Engelbrecht and Peipman 1992; Engelbrecht 1991). See also (Peter-
son and Salupere 1997; Peterson 1997) for the numerical treatment of the
KdV equation with forcing term in cubic polynomial form with periodic
boundary conditions and the harmonic initial condition. It is important to
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note that due to the presence of the forcing term in the model equation 1
does not satisfy the conservation laws.

For n = 1, 2, the well-developed techniques are available to obtain
the analytical solutions of KdV equation and its variants without forcing
term in the right hand side, refer to (Wazwaz 2004; Zuo and Zhang
2011) and references therein. However, for n ≥ 3, the generalized
KdV equation becomes non-integrable. According to (Merle 2001; Bona
et al. 1987; Hereman and Takaoka 1990; Zabusky 1967), the solutions
of GKdV are stable for n ≤ 4, unstable for n ≥ 6 and conditionally
stable for n = 5. Even for the numerical treatment of generalized
KdV equation for n ≥ 5, one has to take a very small mesh width in
space or time step in order to obtain an acceptable computed solution.
The problem becomes more challenging when P >> Q (Alvarado and
Omel’yanov 2012). This poses serious limitations on the conventional
analytical and numerical methods. To analyse such intricate non-linear
systems, it is desirable to employ tools available in the bifurcation analysis
(Guckenheimer and Holmes 2013). Bifurcation analysis is a mathematical
framework to study qualitative changes to investigate the unexpected
appearance, disappearance, or change in the stability of equilibrium points
with respect to certain parameters or perturbations. Bifurcation analysis
has long been used to investigate dynamical systems emerging from
varied real world problems, refer to (Hilborn et al. 2000) and references
therein.

Many authors have studied the KdV equation and its variants using
bifurcation analysis. Zao Li et.el. (Li et al. 2021) studied the fractional
generalized Hirota–Satsuma coupled KdV equations with the help of
bifurcation theory. Yiren Chen and Shaoyong Li (Chen and Li 2021)
investigated the generalized KdV-mKdV-like equation with the help of
bifurcation analysis; see also (Saha and Chatterjee 2014; Tamang and
Saha 2020) for similar studies. To the best of our knowledge in most of
these studies, the authors have considered fixed values of the parameters
involved in the equations. The novelty of this work presented here is that
we have not put any restriction on the range of any of these parameters
and investigated the nature of the dynamical system corresponding to
the generalized damped forced KdV equation given by equation 1 with
respect to all the equilibrium points. In view of the facts mentioned above,
we analyse our model problem for n ≥ 3, P >> Q and various values of
S using bifurcation tools. The authors (Chadha et al. 2023; Tomar et al.
2023; Chen and Li 2021) used bifurcation analysis to study the behaviour
of the dynamical system for the equilibrium points and found chaotic
behaviours in the Damped Forced KdV and Generalized KdV equations
under certain conditions on the parameters involved. The interested reader
may also refer to (Haidong et al. 2023; Sami et al. 2022; Xu et al. 2022)
for some recent work on fractional order dynamical systems and their
applications where the authors have used phase portraits, time series
plots, the Lyapunov spectrum and other related tools from the bifurcation
analysis to study the chaotic behaviour of the systems.

The organization of this study is as follows: First, we evaluate three
different equilibrium points obtained from a three-dimensional dynamical
system corresponding to the generalized DFKdV equation. We study
the behaviour of these equilibrium points and wave propagation in the
dynamical system using the bifurcation analysis. For the first equilibrium
point, we investigate the system with respect to the free parameters v1, v2,
and S. It is important to mention that the other two equilibrium points
have locational dependence on v1, v2, and S, which further complicates
the problem. For these equilibrium points, we investigate the system for
n = 5 and P and Q ratio up to 104. The system exhibits chaotic behaviour.
These theoretical findings are confirmed by the wave propagation plots
and the Lyapunov exponents. We conclude with our major findings in
this study.

BIFURCATION ANALYSIS OF GDFKDV EQUATION

In this section, we investigate the dynamical behaviour of the generalized
damped forced KdV equation 1 with forcing term F(U) = U(U −
v1)(U − v2) and γ = 1 with respect to the different equilibrium points.

The Generalized DFKdV equation is

Ut + PUnUx + QUxxx + SU = F(U). (2)

Consider a wave transformation,

U(x, t) = U(z), z = (x − ct). (3)

Using the wave transformation in equation 2, we get the ordinary differ-
ential equation:

−cUz + PUnUz + QUzzz + SU = F(U). (4)

Equation 4 can be rewritten as follows

U′ = V,

V′ = W,

W ′ =
1
Q
(cV − PUnV − SU + U(U − v1)(U − v2)). (5)

By solving this system of equation, we obtain the equi-
librium points (0, 0, 0), (h, 0, 0) and (k, 0, 0), here h, k =
1
2 (v1 + v2 ∓ ((v1 − v2)

2 + 4S)1/2).

For the dynamical system equation 5, the Jacobian matrix is

J =


0 1 0

0 0 1

−nPUn−1V−S+3U2−2(v1+v2)U+v1v2

Qw2
0

c−PUn

Qw2
0

0


Corresponding characteristic equation is

−1
Q

(QE3 + (PUn − c)E+

(S + 2U(v1 + v2)− 3U2 − v1v2 + PUn−1Vn) = 0. (6)

The eigenvalues for this system are

E1 = T +
Uc − PUUn

3QUT
,

E2,3 = −
(

T
2
+

Uc − PUUn

6QUT

)
±

√
3i

2

(
T − Uc − PUUn

3QUT

)
. (7)

Here,

T =

((
A

4Q2U2 − (Uc − PUUn)3

27Q3U3

)1/2

− A
2Q2U2

)1/3

,

A = (SU + 2U2v1 + 2U2v2 + 3U3 − Uv1v2 + PUnVn)2.

To study the behaviour of the dynamical system equation 5, it is im-
portant to investigate the nature of the eigenvalues for all the equilibrium
points.

For a three dimensional system: (E1, E2, E3) = (−,−,−) corre-
sponds to fixed point, (E1, E2, E3) = (0, 0,−) corresponds to limit
cycle, (E1, E2, E3) = (0, 0,−) corresponds to two dimensional an-
nulus, (E1, E2, E3) = (+,+,−) correspond to unstable limit cycle,
(E1, E2, E3) = (+, 0,−) correspond to strange attractor, (E1, E2, E3) =
(+, 0, 0) corresponds to strange attractor, (Layek et al. 2015).

For study of these equilibrium points, this investigation is divided into
two sections: at first equilibrium point (0, 0, 0) and second equilibrium
point (h, 0, 0) and third equilibrium point (k, 0, 0).
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At equilibrium point (0, 0, 0):

The first equilibrium point (0, 0, 0) is independent of the parameters. In
this case, we are investigating the effect of the damping parameter S and
the forcing parameters v1, and v2. Exactly at the equilibrium point, we
could not find any interesting feature worth reporting. So, we take a point
(1e − 5, 1e − 5, 1e − 5) which is in the close vicinity of the equilibrium
point.

In Figure 1, we have generated the phase portraits which show the
quasi-periodic movement in trajectories for the constant value of the
parameters c = 0.7; P = 2; Q = 0.2; v1 = 0.2; v2 = 0.5; n = 3, and
S = 0.15 in the time interval 0 : π/1000 : 6π. The projections in
U − V, V − W, and U − W planes are shown in Figure 1 (a), (b), (c),
respectively.

(a) (b)

(c)

Figure 1 Phase portraits of the dynamical system equation 5 with
respect to first equilibrium point (1e − 5, 1e − 5, 1e − 5). Parameters are
c = 0.7; P = 2; Q = 0.2; v1 = 0.2; v2 = 0.5; n = 3, and S = 0.15.
Time interval is 0 : π/1000 : 6π.

Figure 2 (a), (b), and (c) exhibit the quasi-periodic behaviour of
two trajectories for the range of parameter v1 ∈ [0.1, 0.97); v1 = 1.1
is the break point for the system. These figures are generated for the
four representing values from this range, v1 = [0.1, 0.8, 0.95, 0.97] to
show the complete behaviour for the defined range. The value of other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and S =
0.15; time interval considered is 0 : π/1000 : 6π. This behaviour
of the dynamical system can be justified by the eigenvalues for this
equilibrium point, which are given in Table 1. We observe that we have
two negative and one positive eigenvalues. Since one of the eigenvalue
is always possible for this range of v1, the equilibrium point will be
unstable and system will be weak chaotic. In this forcing term, we have
one more parameter v2 for which we found almost identical behaviour
corresponding to v1. Thus, plots for v2 are not presented here.

For the damping parameter S, we have investigated the nature of
the trajectories for the four representing values from the range of
S ∈ [0.1, 0.48]. From Figure 3 (a), (b), and (c), it is evident that the
movement of trajectories is quasi-periodic and S = 0.48 is the break-
point which can be seen in Figure 3 (d). The corresponding behaviour of

■ Table 1 Eigenvalues of the Jacobian matrix with respect to equi-
librium points (1e − 5, 1e − 5, 1e − 5) for v1 ∈ [0.1, 0.97]. Other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and
S = 0.15.

v1 E1 E2 E3

0.1 1.7948 0.1437 −1.9385

0.8 2.0288 −0.3718 −1.6570

0.95 2.0700 −0.5000 −1.5701

0.97 2.0753 −0.5183 −1.5570

(a) (b)

(c) (c)

Figure 2 Three dimensional phase portraits of the dynamical sys-
tem equation 5 with respect to the range value of parameter v1 =
[0.1, 0.8, 0.95, 0.97] are shown for first equilibrium point (1e − 5, 1e −
5, 1e − 5). Parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3,
and S = 0.15. Time interval is 0 : π/1000 : 6π.
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the dynamical system is strongly chaotic, which can be justified by the
nature of the eigenvalues shown in Table 2.

■ Table 2 Eigenvalues of the Jacobian matrix with respect to equi-
librium points (1e − 5, 1e − 5, 1e − 5) for S ∈ [0.1, 0.48]. Other
parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3, and
v1 = 0.2.

S E1 E2 E3

0.1 1.7948 0.1437 −1.9385

0.3 1.6009 0.4556 −2.0565

0.45 1.3573 0.7768 −2.1341

0.48 1.2674 0.8813 −2.1487

(a) (b)

(c) (c)

Figure 3 Three dimensional phase portraits of the dynamical sys-
tem equation 5 with respect to the range value of parameter S =
[0.1, 0.3, 0.45, 0.48] are shown for first equilibrium point (1e − 5, 1e −
5, 1e − 5). Parameters are c = 0.7; P = 2; Q = 0.2; v2 = 0.5; n = 3,
and S = 0.15. Time interval is 0 : π/1000 : 6π.

Study of the second equilibrium point (h, 0, 0) and third equi-
librium point (k, 0, 0) here, (h, k) ≡ ( 1

2 (v1 + v2 ∓ ((v1 − v2)
2 +

4S)1/2):
In this case, we investigate the behaviour of the dynamical system equa-
tion 5 with respect to the second (h, 0, 0), and third equilibrium points
(k, 0, 0). These equilibrium points involve other three parameters v1, v2,
and S. The location of these equilibrium points may vary depending on
the range of these parameters.

Figure 4 Behaviour of the second equilibrium point of the dynamical
system equation 5 for the range the parameters v1, and v2. Here
v1 ∈ (0.1, 0.8), v2 ∈ (0.1, 0.8), and S = 0.5.

In Figure 4, the coloured portion depicts the nature of the second
equilibrium point. Here the boundary of the shaded region shows the
conversion of the nature of the equilibrium point from negative to positive.
Below the boundary, the value of the equilibrium point is negative and it
is positive in the shaded region. From this figure, we get three different
ranges for the parameters v1, and v2 for which the nature of the second
equilibrium point changes from negative to positive and tends to zero at
the boundary.

To see the behaviour of the dynamical system for these equilibrium
points, we have generated the phase portraits. The Figure 5(a), (b),
and (c) show the movement of the trajectories in U − V, V − W, and
U − W planes, respectively for the equilibrium point (h, 0, 0). The
values of the parameters involved are as follows: c = 0.7; P = 2; Q =
0.2; v1 = 0.01; v2 = 0.5; n = 3, and S = 2 and taken time interval is
0 : π/1000 : 6π.

For the comparison purpose, while studying the nature of the third
equilibrium point (k, 0, 0), we have considered the same parameter values
as for the second equilibrium point (h, 0, 0) and generated few phase
portraits. For these same value of the parameters, the behaviour of both
the equilibrium points is the same but the location of both the equilibrium
points is different. On this basis, the movement in the trajectories is
totally different. They are depicted by the phase portraits shown in Figure
6(a), (b), and (c).

This generalized DFKdV equation is having two more important pa-
rameters: one is the non-linear parameter P and the other one is the
dispersion parameter Q. The ratio of these two parameters may signifi-
cantly affect the nature of the wave propagation for this dynamical system.
To see the effect of the ratio of these parameters, we present some wave
propagation plots shown in Figure 7 and Figure 8. For the second equilib-
rium point, the nature of the wave is quasi-periodic for P

Q = 102, refer to

Figure 7(a). But when we increase the ratio P
Q = 104, the oscillations are

significantly increased in the waves, and the system becomes chaotic; this
is clearly visible in Figure 7(c). The value of the parameters considered to
generate these plots are as follows: c = 0.7, v1 = 0.2; v2 = 0.5; n = 5,
and S = 0.5. Time interval is 0 : π/100 : 2π.

For the third equilibrium point, for the same value of the parameters
considered for the second equilibrium point, the wave propagation is
quasi-periodic; refer to Figure 8(a). For a higher ratio of P, and Q, the
oscillations become more complex, shown in Figure 8(b), and (c). This
suggests that the system may be a chaotic system. To confirm this, we
use the Lyapunov exponents (Hilborn et al. 2000). From Figure 7(d), (e),
and ( f ) and Figure 8(d), (e), and ( f ), it is clearly visible that one of the
Lyapunov exponent is always positive. This confirms that the system is
chaotic.
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(a) (b) (c)

Figure 5 Phase portraits of the dynamical system equation 5 with respect second equilibrium point (h, 0, 0). Parameters are c = 0.7; P = 2; Q =
0.2; v1 = 0.01; v2 = 0.5; n = 3, and S = 2. Time interval is 0 : π/1000 : 6π.

(a) (b) (c)

Figure 6 Phase portraits of the dynamical system equation 5 with the third equilibrium point (k, 0, 0). Corresponding parameters are same as in
Figure 5.

(a) (b) (c)

(d) (e) (f)

Figure 7 Wave propagation and the Lyapunov exponent plots of the dynamical system equation 5 with respect to second equilibrium point (h, 1e −
5, 1e − 5) for the ratio between non-linear and dispersion parameters. Parameters are c = 0.7; P = 2; Q = 2 ∗ [1e − 2, 1e − 3, 1e − 4]; v1 = 0.2; v2 =
0.5; n = 5, and S = 0.5. Time interval is 0 : π/1000 : 2π.
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(a) (b) (c)

(d) (e) (f)

Figure 8 Wave propagation and the Lyapunov exponent plots of the dynamical system equation 5 with respect to third equilibrium point (k, 1e − 5, 1e −
5) for the ratio between non-linear and dispersion parameters. Parameters are c = 0.7; P = 2; Q = 2 ∗ [1e − 2, 1e − 3, 1e − 4]; v1 = 0.2; v2 = 0.5; n =
5, and S = 0.5. Time interval is 0 : π/1000 : 2π.

CONCLUSION

In this study, we studied a higher-order non-linear generalized damped
forced KdV equation by employing the tools available in the bifurcation
analysis such as phase portraits, time-series plots, Lyapunov exponents
etc. The model equation was converted into a three dimensional dy-
namical system which was investigated for certain parameters involved,
namely, P, Q, S which denote the coefficients of non-linearity, disper-
sion, and damping respectively. Furthermore, the dynamical system was
investigated for two forcing parameters v1, and v2 which appear in the
forcing term appearing in the right hand side of our model problem.

For the first equilibrium point, we can conclude that the dynamical
system exhibits the unstable limit cyclic behaviour with respect to the
damping parameter S and the forcing parameter v1. The location of
the second and third equilibrium points further depend on the parame-
ters. Thus, the dynamical system exhibited different behaviour at these
points. One noteworthy point here is that the behaviour of the system is
significantly affected by the ratio of P, and Q. With the help of phase por-
traits, wave propagation plots and Lyapunov exponents, we showed that
the system changes its behaviour from being quasi-periodic to become
chaotic for an increased ratio. It is well known that for a highly non-linear
Generalized KdV equation with a forcing term in the right hand side such
as our model problem considered here, the conventional analytical and
numerical methods may not produce acceptable results. In particular a
higher ratio of P, and Q may pose a serious challenge for conventional
numerical methods. In view of the results presented here regarding the
range of the parameters and their corresponding effect on the dynamical
system, the investigation may be helpful to devise advance analytical and
numerical methods.
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