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ABSTRACT Medical imaging, the process of visual representation of different organs and tissues of the human body, is

employed for monitoring the normal as well as abnormal anatomy and physiology of the body. Imaging which can provide

healthcare solutions ensuring a regular measurement of various complex diseases plays a critical role in the diagnosis

and management of many complex diseases and medical conditions, and the quality of a medical image, which is not a

single factor but a composite of contrast, artifacts, distortion, noise, blur, and so forth, depends on several factors such

as the characteristics of the equipment, the imaging method in question as well as the imaging variables chosen by the

operator. The medical images (ultrasound image, X-rays, CT scans, MRIs, etc.) may lose significant features and become

degraded due to the emergence of noise as a result of which the process of improvement pertaining to medical images

has become a thought-provoking area of inquiry with challenges related to detecting the speckle noise in the images

and finding the applicable solution in a timely manner. The partial differential equations (PDEs), in this sense, can be

used extensively in different aspects with regard to image processing ranging from filtering to restoration, segmentation to

edge enhancement and detection, denoising in particular, among the other ones. In this research paper, we present a

conformable fractional derivative-based anisotropic diffusion model for removing speckle noise in ultrasound images. The

proposed model providing to be efficient in reducing noise by preserving the essential image features like edges, corners

and other sharp structures for ultrasound images in comparison to the classical anisotropic diffusion model. Furthermore,

we aim at proving the viscosity solution of the fractional diffusion model. The finite difference method is used to discretize

the fractional diffusion model and classical diffusion models. The peak signal-to-noise ratio (PSNR) is used for the quality

of the smooth images. The comparative experimental results corroborate that the proposed, developed and extended

mathematical model is capable of denoising and preserving the significant features in ultrasound towards better accuracy,

precision and examination within the framework of biomedical imaging and other related medical, clinical, and image-signal

related applied as well as computational processes.

KEYWORDS

Anisotropic diffu-
sion model
Nonlinear mathe-
matical diffusion
model
Fractional diffusion
model
Fractional order
derivatives
Biomedical imag-
ing
Image processing
Denoising
Chaotic signals
and noise
Image smoothing
Viscosity solution
Explicit scheme
Multiplicative noise
Conformable frac-
tional derivative
Partial differential
equations (PDEs)

INTRODUCTION

Nonlinear anisotropic diffusion equations ensure the enhancement
of the image quality through the removal of noise while retaining
the subtle details and edges (Gilboa et al. 2006). Image denoising is
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observed to be of utmost importance in image processing as well
as in computer vision in order that images can be prepared with
better resolutions. Given this, partial differential equations (PDEs)
can extensively be employed in different aspects related to image
processing rangining from filtering to restoration, segmentation to
edge enhancement and detection, denoising in particular, amongst
the other ones (Mazloum and Siahkal-Mahalle 2022). Chaos, as
a ubiquitous phenomenon in nature, reveals that the observed
chaotic and noisy signals are often disrupted by external interfer-
ences. Edge, as one of the most remarkable features for images,
requires denoising via nonlinear means and wavelet transform to
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attain optimal outcomes. When it comes to the image quality, if the
additive degrades the quality of the images, it could be possible to
end up with diagnostic failures. Ultrasonography, as a biomedical
technique, produces the internal structure of the body and gives a
great amount of information for clinical diagnosis and treatment.
Considering these, detecting the additive noise in the images and
finding the solution to such matters becomes a formidable chal-
lenge for researchers, clinicians, pharmaceutical authorities and
related practitioners.

Speckle noise is the multiplicative noise, and the distorted
image is the product of the original image and speckle noise. The
Speckle noise can be expressed as:

u0(i, j) = u(i, j)× Sn(i, j),

where u0(i, j) denotes the noisy image, and let u(i, j) denote the
corresponding noiseless image and Sn(i, j) represent the speckle
noise.

Manifesting itself in the digital image in a randomly uncorre-
lated way, noise makes it unavoidable to degrade the visual quality
of the images which restricts the accuracy and precision related
to interpretation and examination processes. Imaging techniques
ensure the generation of novel accurate imaging tools which have
sensitivity, specificity and resolution at improving levels. Accord-
ingly, image denoising employs advanced algorithms to remove
noise from graphics, which makes an impact on the quality of
the images. The impact of the environment, channels related to
transmission as well as related factors cause contamination by
noise, which brings about loss of image information and distortion.
The recovery of the meaningful information from noisy images to
obtain high quality in images is challenging, as noted above. In
view of a perspective based on mathematical foundation, image
denoising is stated to be an inverse problem whose solution is not
unique (Fan et al. 2019). Image noise reduction and feature preserv-
ing stand to be other challenges as image noise removal shows a
relevant matter in different image analyses and computer vision-
related matters where retaining the essential image features like
the edges, corners and other sharp structures during smoothing
and other related processes (Barbu 2014).

Fractional calculus is capable of attaining a satisfactory denois-
ing effect, and the application of its theory provides important
inputs in image denoising. Thus, fractional calculus can weaken
high-frequency signal and preserving low-frequency signal in a
nonlinear way, which means high-frequency noise can be removed
while the information of low-frequency image itself can be re-
tained (Wang et al. 2020). Concerning fractional calculus, in im-
age denoising and image restoration, fractional derivatives have
been employed in different studies (Bai and Feng 2007; Chen et al.
2013; Hilfer 2000; Herrmann 2011). (Abirami et al. 2021) consid-
ered the classical anisotropic diffusion model under the Caputo
fractional derivative with a variable order of derivative function
and achieved better performance for biomedical images like ultra-
sound, CT scans, x-rays and so forth. (Fang et al. 2020) presented
a time-fractional model under the Caputo fractional derivative
to remove additive noise and applied binary block partition to
discretize their model. Another work (Janev et al. 2011) introduced
a new fractional anisotropic diffusion equation for the aim of noise
removal which contained spatial and time fractional derivatives.
To construct a numerical scheme, the proposed partial differential
equation (PDE) was used to preserve the edges (Janev et al. 2011).

One other paper introduces a new class of fractional-order
anisotropic diffusion equations to remove noise. The authors em-
ploy the discrete Fourier transform for the implementation of the

numerical algorithm. Besides outlining the various numerical re-
sults regarding the denoising of real images, the experiments of
the study demonstrate the proposed fractional-order anisotropic
diffusion equations capacity to yield good visual effects and bet-
ter signal-to-noise ratio (Bai and Feng 2007). A novel class of
fractional-order nonlinear anisotropic diffusion equations based
image restoration model is established employing the p-Laplace
norm of fractional-order gradient of an image intensity function
is introduced in another paper where fractional-order gradient
helps to better accommodate the images texture details. Thus, the
proposed method removed noise and kept high-frequency edge
of images in an efficient way nonlinearly (Yin et al. 2015). An-
other research provides a novel fast fractional order anisotropic
diffusion algorithm to remove noise removal. The authors im-
prove the algorithms efficiency by implementing the fast explicit
format iteration algorithm with periodic change of time step size.
Showing numerical results on denoising tasks and presenting of
the experimental results corroborate that the algorithm can obtain
satisfactory denoising results more quickly (Zhang et al. 2021).

Regarding multiplicative noise removal, a paper uses a maxi-
mum a posteriori (MAP) estimator and the authors derive a func-
tional with a minimizer corresponding to the denoised image de-
sired to be recovered (Aubert and Aujol 2008). Concerning image
segmentation, hybrid methods are said to provide benefits com-
pared to conventional means in inhomogeneous image segmenta-
tion. Accordingly, (Chen et al. 2019) presents a new hybrid method
to integrate image gradient, local environment and global infor-
mation into a specific framework. Image segmentation method
based on PDE reveals strong vitality terms of image processing
and computer vision. A new simple well-behaved definition of
the fractional derivative which is named conformable fractional
derivative is handled in (Othman and Shaw 2021), where a geomet-
rical approach of fractional derivatives was introduced. For the
purpose of obtaining the solution of fractional order differential
equation (FDE) with the integer-order initial condition, certain new
criteria regarding fractional derivatives are proposed in the study.
Finally, reducing denoise in images multiplicatively (DIM) is mod-
ified in (Ibrahim 2020) with the aim of presenting a new technique
based on a new fractional calculus to solve the problem termed as
conformable fractional calculus (CFC) which provides benefits due
it its formula involving a controller to be implemented for com-
plex problems like DIM. Another study (Karaca and Baleanu 2022)
aims to construct a robust and accurate model, which is based
on fractional-order calculus (FOC) and Artificial Neural Network
(ANN) integration, concerned with differentiability prediction and
diagnosis of stroke and breast cancer, which pose complex prob-
lems considering the diseases highly complex neurological and
biological properties.

Furthermore, (Khalil et al. 2014) propose a definition of a con-
formable fractional derivative and provide some properties of a
fractional derivative. The conformable fractional- order deriva-
tive is an extended version of the classical fractional derivative,
and it is very efficient in terms of obtaining the solution of the
fractional-order PDEs. Consequently, the conformable fractional
derivative encompasses diverse applications in science, engineer-
ing, and so forth. (Zhao and kang Luo 2017) proposed the physical
interpretation and application of the general conformable frac-
tional derivative. Many applications of fractional derivatives and
fractional integrals are discussed by (Butera and Paola 2014; Contr-
eras et al. 2018; Cresson 2010; Zhao and kang Luo 2017; Zhou et al.
2018), and the analytic solution of the time-fractional heat equation
is also pointed out, which may be further resorted to in (Hammad
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and Khalil 2014a,b).
Considering these ends, the model presented by (Catté et al.

1992), concerned with edge detection and image selective smooth-
ing by nonliear diffusion, has been extended and developed to
remove the additive noise for the ultrasound image. The im-
proved model in the scheme of our study as proposed includes the
time-fractional derivative with smoothness diffusivity, and subse-
quently, the viscosity solution of the fractional diffusion model is
proven through the scheme in question as compared to other rele-
vant and parallel stuies existing in the literature, the first approach
to remove noise and preserve edges by partial differential equa-
tions based anisotropic diffusion model is proposed by (Perona
and Malik 1990). The improved (Perona and Malik 1990) model
for image restoration and edge detection is introduced by (Catté
et al. 1992). They have used the smoothing diffusivity i.e. Gσ ∗ u,
Gσ is the Gaussian smoothing kernel. The diffusion tensor based
anisotropic diffusion model is proposed by (Weickert 1997). The
additive Gaussian white noise based anisotropic diffusion model
for image denoising and deblurring is given by (Welk et al. 2005)
They have proposed the forward-backward diffusivity to discretize
diffusion model.

The weighted and well balanced based anisotropic diffusion
model is given by (Prasath and Vorotnikov 2014). The smooth
Gaussian kernel based diffusion model for image restoration is
proposed by (Kumar and Ahmad 2014; Kumar et al. 2016). Accord-
ingly, a fractional derivative-based nonlinear anisotropic diffusion
model for biomedical imaging has been presented to reduce ad-
ditive Gaussian white noise in this study. The fractional order a
appears in the time derivative and finds the results with differ-
ent fractional order α. The performance of the ultrasound images
is measured by the PSNR values. The experimental results of
the fractional and classical diffusion models are computed by the
finite-difference explicit scheme. The results demonstrate that the
proposed model (5) has larger PSNR values corresponding to (3) at
the different iteration numbers. This study has been conducted to
attain better results for ultrasound images based on the novel and
extended scheme based on the motivational aspect that reducing
noise in images is an essential task in image processing.

The rest of the paper is structured in the following manner: Sec-
tion 2 introduces the definition of Conformable Fractional Deriva-
tives. Denoising Based Time Fractional Diffusion Algorithm is
given in Section 3 and Theoretical Considerations for the Diffusion
Model are introduced in Section 4. In Section 5, Discretized Scheme
for the Anisotropic Diffusion and Fractional Anisotropic Diffusion
Model is provided and depicted. Section 6 addresses Experimental
Results of the Diffusion Model and Fractional Diffusion Model.
Finally, Section 6 provides Conclusion, Discussions and Future
Directions.

CONFORMABLE FRACTIONAL DERIVATIVES

The conformable fractional derivative which contains many appli-
cations and the conformable fractional derivative is implemented
to anomalous diffusion by (Zhao and kang Luo 2017; Zhou et al.
2018). The fractional derivative function with the order α is as
h : (0, ∞) → R and it is defined in the following way:

Fα(h)(t) = Fαh(t) = lim
ϵ→0

h(t + ϵ t1−α)− h(t)
ϵ

,

provided the limit exists for all values t > 0 and α ∈ (0, 1).
The function h represented α- differentiable in (0, a) for some

a > 0 and also can be written as:

hα(0) = lim
t→0+

hα(t). (1)

If h is α- differentiable in the conformable sense at t > 0, then it
must be differentiable in the classical sense at t and

Fαh(t) = t1−αh′(t). (2)

DENOISING BASED TIME FRACTIONAL DIFFUSION ALGO-
RITHM

The nonlinear anisotropic diffusion models obtained remarkable
success in the reduction of Gaussian noise, multiplicative noise etc.,
and this scheme depends on the parabolic partial differential equa-
tion introduced by (Perona and Malik 1990). By this scheme, edges
can be preserved during the noise reduction and diffusion acts in
an inhomogeneous way; it is maximum over the flat areas and has
the lowest value over the edges. (Catté et al. 1992) introduced the
Perona and Malik model improved for image restoration model
and it can be denoted as below:

∂u
∂t

= ∇ · (ζ(|∇Gσ ∗ u|)∇u), (3)

with homogeneous Neumann boundary conditions ∂u
∂⃗n = 0 on the

boundary of ∂Ω and Ω is a bounded domain of Rn, n⃗ the unit outer
normal to Ω.

where Gσ is the Gaussian kernel and it is depends on scale
parameter (Bai and Feng 2007), ∗ represents the notation for con-
volution i.e. Gσ ∗ u. The solution of heat equation is equivalent to
the convolution of the signal with Gaussian discussed by (Witkin
1983). Therefore, Gσ can be consider to be any smoothing kernel
or low pass filter (Álvarez et al. 1992; Catté et al. 1992).

As indicated, the classical diffusion model is intended to be con-
verted into (3) to the time-fractional diffusion model for biomedical
imaging, which can be denoted as:

∂αu
∂tα

= ∇ · (ζ(|∇Gσ ∗ u|)∇u). (4)

After applying the definition of the conformable fractional deriva-
tive as provided in section 2., equation (4) can be written as:

t1−α ∂u
∂t

= ∇ · (ζ(|∇Gσ ∗ u|)∇u). (5)

This is a PDE-based time-fractional diffusion model and α is the
fractional order derivative and the diffusivity ζ, the diffusion
threshold parameter K, s is the gradient of the image, and ζ(s)
is a nonnegative function. The parameter K is used to the control-
ling the even enhancement of edges preserved. The Charbonnier
diffusivity ζ(s) = 1√

1+(|s|2/K2)
, related to the convex regularizer

ψ(s2) =
√

K4 + K2s2 − K2, can be resorted to in (Charbonnier
et al. 1994; Weickert 1997) as used in the numerical experiments
conducted in this study.

(Barbu et al. 2009) and (Strong 1997) have introduced the class
of functions for the diffusion model and which can be defined as:

ζ(x, |∇u|) = δζg(|∇u|). (6)

The function ζg relies upon the magnitude of the gradient u
and it can be similar to ζ(s) and δ is the adaptive parameter. We
choose the values of δ(x) = 1, ζg = ζ(s), Gσ ∗ u as u. Then the
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fractional diffusion model (4) it can be presented in another form
as follows:

∂αu
∂tα

= ∇ · (ζ(x, |∇u|)∇u). (7)

Motivated by (Álvarez et al. 1992; Prasath and Vorotnikov 2014)
and (Giga et al. 2022), we want to show the theoretical considera-
tions and viscosity solution of the fractional diffusion model in the
next section.

THEORETICAL CONSIDERATIONS FOR THE FRACTIONAL
DIFFUSION MODEL

This section provides the viscosity solution and some theoretical
considerations for the diffusion model (7):

∂αu
∂tα

= ∇ · (ζ(x, |∇u|)∇u), (8)

Let x and q be two auxiliary functions that are defined from Rn.
A vector χ, symmetric matrix c then, the following equations are
to be noted

cij(x, q) = ζ(x, |q|)δij + ζy(x, |q|)
qiqj

|q| , (9)

χi(x, q) =
∂ζ(x, |q|)

∂xi
. (10)

In this part, δij is the Kronecker’s delta and ζy is the partial deriva-
tive w.r.to y of the function ζ(x, y). (Alvarez and Esclarin 1997)
have proposed the spatially periodic boundary conditions; thus
may we assume that the orthogonal basis bi in Rn is defined as

u(., x + bi) = u(., x), x ∈ Rn, i = 1, 2, ....n. (11)

The functions c and χ are bounded continuously differentiable
in x, periodic and x-derivatives are uniformly bounded w.r.t. q.
The function u0 Lipschitz and satisfy equation (11). ζ and (c and χ)
satisfy periodicity restriction w.r.to x but not to y or q.

cij(x, q)ξiξ j ≥ K
[

mod
(

∂c(x, q)
∂xk

)]
ij

ξiξ j, k = 1, .......n, ξ, x, q ∈ Rn.

(12)
The generic positive constant number K for different values in
different lines.

The viscosity subsolution and super solution is known as the
viscosity solution for equation (8), if Ψ ∈ K2([0, T]× Rn) is any
function and (x0, t0) ∈ (0, T]× Rn is any point then u − ϕ attains
local maximum/minimum (Evans and Spruck 1991) and the equiv-
alence of the viscosity solution (Giga et al. 2022) as follows:

∂Ψα(x0, t0)

∂tα
−∇ · (ζ(x0, |∇Ψ(x0, t0)|)∇Ψ(x0, t0)) ≤ 0/ ≥ 0 (13)

Lemma. The quadratic matrices of order n × n are P and Q.
Let Q is symmetric matrix then a constant number N ≥ 0 can be
defined as

NPijξiξ j ≥ mod (Q)ijξiξ j, ∀ ξ ∈ Rn. (14)

For every matrix U is not necessarily symmetric of order n × n has

Tr2(QU⊤) ≤ N||Q||Tr(UPU⊤). (15)

Here the norm operator of a matrix is denoted by ||.|| and Q is the
matrix whose pixel values are positive.

Proof. From equations (14) and (15) are invariant w.r.to to
orthogonal changes of bases. We can therefore assume that Q has

already been diagonalized by an axial transform without losing
generality. Then

Tr2(QU⊤) = (QiiUii)
2 ≤ ||Q|||QiiU2

ii

= ||Q||(mod(Q)iiU2
ii ≤ ||Q||(mod(Q)iiUkiUkj

= ||Q||(mod(Q)ijUkiUkj ≤ N||Q||PijUkiUkj = N||Q||Tr(UPU⊤).

Theorem. A function u ∈ K([0, T]× Rn) ∩ L∞(0, T, W1,∞(Rn))
is a viscosity solution (8) for any T ∈ [0, ∞), if v ∈ K(Rn × [0, T))
is a viscosity solution of (8) then a periodic function u0 is Lipschitz
continuous on Rn is replaced by Lipschitz continuous function v0
for any T ∈ [0, ∞), then there exist a positive number K, which
depends on T, u0 and v0 as below:

sup
0≤t≤T

||u(x, t)− v(x, t)||L∞(Rn) ≤ K||u0 − v0||L∞(Rn). (16)

Furthermore, inf
Rn

u0 ≤ u(x, t) ≤ sup
Rn

u0.

The diffusion model (8) which contains the viscosity sub/super
solution. i.e. a unique viscosity solution u.

Proof. The viscosity solution u of (8) on Rn × R+ satisfy the
inequality:

inf
Rn

u0 ≤ u(x, t) ≤ sup
Rn

u0, on Rn × R+. (17)

Let Ψ(x, t) = δt at the point (x0, t0), t0 > 0, of the global
maximum of u(x, t)− δt, the equation (13) gives δ + λ(u(t0, x0)−
u0(x0)) ≤ 0, when u(x0, t0) < u0(x0), it is contradiction because
u(x0, t0)− δt0 ≥ u0(x0), then u(x, t)− δt achieves a global maxi-
mum at t = 0, and let δ → 0+ and (x0, t0) is the global maximum
point thus we get (17).

The formal a priori estimate for sup
Rn

|∇u| is established. It

should be noted that (8) is identical to such that:

∂αu
∂tα

= [cij(x,∇u)uxi xj + χi(x,∇u)uxi ]. (18)

The equation (18) differentiate in relation to each xk, k = 1, ..., n,
and through the multiplication by 2uxk and taking a summation
with respect to k, we obtain

β(|∇u|2) :=
∂α|∇u|2

∂tα
− cij(x,∇u)

∂2

∂xi∂xj
|∇u|2−

∂cij(x,∇u)
∂pl

uxi xj

∂

∂xl
|∇u|2 − χi(x,∇u)

∂

∂i
|∇u|2−

∂χi(x,∇u)
∂pl

uxi

∂

∂xl
|∇u|2

= −2cij(x,∇u)uxk xi uxk xj + 2
∂cij(x,∇u)

∂xk
uxi xj uxk

+ 2
∂χij(x,∇u)

∂xk
uxi uxk .

(19)
The option to eliminate the second term’s undesirable influence

from the right side of (19) and using Cauchy’s inequality for the
second term and Lemma 3.1, we obtain

∣∣∣∣∣2 ∂cij(x,∇u)
∂xk

uxi xj uxk

∣∣∣∣∣ ≤ K|uxk |
√

cij(x,∇u)uxk xi uxk xj

≤ cij(x,∇)uxk xi uxk xj + K|∇u|2.

(20)
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From the equation (19), the sum of the terms does not exceed
K(1 + |∇u|2). Hence,

β(|∇u|2) ≤ K(1 + |∇u|2), (21)

β(e−Kt(1 + |∇u|2)) ≤ 0. (22)

Using the definition of the weak maximum principle, the oper-
ator β can be yield

|∇u|2 ≤ K. (23)

The uniform Hölder estimate by equation (17) and (23) (Alvarez
and Esclarin 1997). we can denote the following:

|u(x, t)− u(x, r)|2 ≤ K|t − r|. (24)

The solution of these equations (17), (23) and (24) are uniformly
bounded and equicontinuous on Rn × [0, T] and also satisfy the
stability results (Crandall et al. 1992). The uniqueness solutions
exist by the stability estimate of the equation (16) and proof of a
similar bound and the matrix τ, the following work can be referred
to (Shi and Chang 2006) by replaced by

τ =

 M1
√

M1
√

M2

√
M1

√
M2 M2

 , (25)

where

M1 = d
(

x0,
|x0 − y0|2(x0 − y0)

δ

)
, M2 = d

(
y0,

|x0 − y0|2(x0 − y0)

δ

)
.

DISCRETIZED SCHEME FOR THE ANISOTROPIC DIF-
FUSION AND FRACTIONAL ANISOTROPIC DIFFUSION
MODEL

The discretized scheme for both anisotropic diffusion and frac-
tional anisotropic diffusion model is discussed herein. Let xi =
i∆x, yj = j∆x, i, j=1,2,3.......N, N∆x = 1, (∆x is spatial step size)
and tn = n∆t, n ≥ 1 (∆t is the time step size).

It is possible to denote the explicit scheme of (5) as follows:

ut
ij = tα−1 1

2∆x
[(ζn

i+1,j + ζn
i,j)(u

n
i+1,j −ui,j)− (ζn

i,j + ζn
i−1,j)(u

n
i,j −un

i−1,j)]

+tα−1 1
2∆x

[(ζn
i,j+1 + ζn

i,j)(u
n
i,j+1 −ui,j)− (ζn

i,j + ζn
i,j−1)(u

n
i,j −un

i,j−1)]).

It is similar to the discrete scheme for the diffusion model (3) if
α = 1.

The diffusivity ζ(|∇u|2) is discretized by,

ζn
ij = ψ

′

(un
i+1,j − un

i−1,j

∆x

)2

+

(
un

i,j+1 − un
i,j−1

∆x

)2
 ,

The explicit method is stable and convergent for ∆t/∆x2 < 0.5,
see (Lapidus and Pinder 1983). The numerical explicit scheme (5)
is stable and consistent with the diffusion based fractional model.
It is then used in our numerical experiments which are given in
the next section.

EXPERIMENTAL RESULTS OF THE DIFFUSION MODEL
AND FRACTIONAL DIFFUSION MODEL

In this section, we want to give experimental results of the diffu-
sion model and proposed fractional diffusion model for original
ultrasound images are taken (Al-Dhabyani et al. 2020). The original
images size 256 × 256 contain the pixel value [0, 255]. To perform
the experiments, we reduce the pixel value of all images in be-
tween [0, 1]. Speckle noise can be added by the function imnoise(u,
’speckle’, σ) in Matlab [MATLAB, 2022 version 9.12.0 (R2022a). The
Math-Works Inc., Natick, Massachusetts]. In our all experiment,
we have taken the parameters ∆t/∆x2 = 0.45, diffusivity param-
eter K = 5, time parameter t = 0.02 and λ = 0.85, see reference
(Hammad and Khalil 2014b; Chan et al. 1999; Chang and Chern
2003).

The experimental results for different fractional orders signifi-
cantly reduce the iteration step and better PSNR value provided
herein. The fractional-order α proves to be very important in the
experiment. This is because a small fractional-order α will get
more clarity denoising the image at a smaller number of iterations.
We check the clarity of the denoising image by the PSNR value.
The larger PSNR value of the images has a satisfactory level of re-
sult, while the fractional model provides fast process images when
image denoising and edge-preserving are conducted together. To
check the quality of the denoised image, the following denotation
is to be referred to:

PSNR = 10log10

(
S2

1
MN ∑n

i,j(u1(i, j)− u(i, j))2

)
. (26)

Here u1(i, j) and u(i, j) are the restored and original image respec-
tively, S is the maximum pixel value of the image and MN is the
order of the matrix.

Ultrasound image and breast cancer benign ultrasound images
are provided in Figure 1 (a) and (b). In addition, Figure 2 provides
the speckle noisy image (σ = 0.1) and related denoised images,
whereas Figure 3 presents the speckle noisy image (σ = 0.3) and
related denoised images. Figure 4 shows the speckle noisy image
(σ = 0.5) and related denoised images, while Figure 5 depicts the
speckle noisy image (σ= 0.06) and related denoised images. Figure
6 provides the speckle noisy image (σ = 0.08) and related denoised
images, whereas Figure 7 presents the speckle noisy image (σ=
0.10) and related denoised images.

Figure 1 (a) Ultrasound image and (b) breast cancer benign ultra-
sound image.

The experimental results provided in terms of PSNR values
with different levels of speckle noise (σ = 0.1, 0.3, 0.5) by using
models (3) and (5) can be seen in Table 1.

The experimental results provided in terms of PSNR values
with different levels of speckle noise (σ = 0.06, 0.08, 0.10) by using
models (3) and (5) can be seen in Table 2.
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■ Table 1 The experimental results in terms of PSNR values with different levels of speckle noise (σ = 0.1, 0.3, 0.5) by using models
(3) and (5).

Images PSNR for the noisy im-
ages

PSNR for the denoised
images by model (3)

PSNR for the denoised images by model (5)

α = 0.7 α = 0.5 α = 0.3 α = 0.1

Figure 2(a-f) 22.19 22.76 23.12 24.22 25.25 25.66

Figure 3(a-f) 17.69 18.20 18.57 19.36 21.03 22.94

Figure 4(a-f) 15.87 16.33 16.64 17.47 19.02 21.17

No. of iterations 100 50 50 50 50

■ Table 2 The experimental results in terms of PSNR values with different levels of speckle noise (σ = 0.06, 0.08, 0.10) by using
models (3) and (5).

Images PSNR for the noisy im-
ages

PSNR for the denoised
images by model (3)

PSNR for the denoised images by model (5)

α = 0.7 α = 0.5 α = 0.3 α = 0.1

Figure 5(a-f) 21.80 22.07 22.26 22.43 23.32 24.10

Figure 6(a-f) 20.62 21.18 21.35 21.50 22.75 23.88

Figure 7(a-f) 19.66 20.29 20.66 20.85 22.24 23.52

No. of iterations 300 100 50 50 50

Figure 2 (a) Speckle noisy image with (σ = 0.1); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

Figure 3 (a) Speckle noisy image with (σ = 0.3); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

CHAOS Theory and Applications 203



Figure 4 (a) Speckle noisy image with (σ = 0.5); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1 in the related order.

Figure 5 (a) Speckle noisy image with (σ = 0.06); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

CONCLUSION, DISCUSSIONS AND FUTURE DIRECTIONS

Reducing noise in images is a critical task for accuracy and preci-
sion in image processing, and it is possible that noises can emerge
with images through achievement pertaining to diffusion. Ac-
cordingly, a fractional order derivative-based diffusion model for
biomedical imaging has been presented to reduce additive speckle
noise. The medical images (ultrasound image, X-rays, CT scans,
MRIs, etc.) may lose significant features and become degraded
due to the emergence of noise. Detecting the additive noise in the
images and finding the applicable solution in a timely manner be-
comes particularly essential, which is a detecting the additive noise
in the images and finding the solution to such matters becomes a
challenge to be tacked effectively for researchers, clinicians, phar-
maceutical authorities and related practitioners.

The aim of this study has been to prove the viscosity solution
of the diffusion model with the proposed model providing to be
efficient in reducing noise by preserving the essential image fea-
tures like edges, corners and other sharp structures for ultrasound
images in comparison to the classical anisotropic diffusion model.
Consequently, this paper has presented a conformable fractional

Figure 6 (a) Speckle noisy image with (σ = 0.08); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

Figure 7 (a) Speckle noisy image with (σ = 0.10); (b) Denoised
image by (3); (c-f) Denoised images by (5) at α = 0.7, 0.5, 0.3 and
0.1, respectively.

derivative-based anisotropic diffusion model for removing speckle
noise in ultrasound images to attain the optimal outcomes. The
finite difference method has been used to discretize the fractional
diffusion model and classical diffusion models. The peak signal-
to-noise ratio (PSNR) has also been used for the quality of the
smooth images. The proposed mathematical model in this study
is a generalization of the classical diffusion model. The fractional
order α appears in the time derivative and finds the results with
different fractional order a. The performance of the ultrasound
images is measured by the PSNR values.

The comparative experimental results of the fractional and clas-
sical diffusion models as presented herein are computed by the
finite difference explicit scheme. Thus, the results demonstrate
that the proposed mathematical model (5) has larger PSNR val-
ues corresponding to (3) at the different iteration number. We
may, therefore, draw the conclusion that the proposed model ob-
tained yield better results for ultrasound images based on the novel
and extended scheme. Another relevant novel contribution has
been that the improved mathematical model in the scheme of our
study based on the experimental results, as has been proposed,
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includes the time-fractional derivative with smoothness diffusivity,
and subsequently, the viscosity solution of the fractional diffusion
model has been proven through the scheme under consideration.
In future endeavors, the applicability of various fractional deriva-
tives on these mathematical diffusion-related and other equivalent
schemes can be compared and put forth to serve biomedical imag-
ing like X-rays, CT scans, MRIs, etc., bioengineering and other
related medical, clinical and image-signal related applied as well
as computational processes.
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