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Abstract 

Metrics are used to measure the distance, similarity, or dissimilarity between two points in a metric 

space. Metric learning algorithms perform the finding task of data points that are closest or furthest to 

a query point in m-dimensional metric space. Some metrics take into account the assumption that the 

whole dimensions are of equal importance, and vice versa. However, this assumption does not 

incorporate a number of real-world problems that classification algorithms tackle. In this research, the 

existing information gain, the information gain ratio, and some well-known conventional metrics have 

been compared by each other. The 1-Nearest Neighbor algorithm taking these metrics as its meta-

parameter has been applied to forty-nine benchmark datasets. Only the accuracy rate criterion has 

been employed in order to quantify the performance of the metrics. The experimental results show 

that each metric is successful on datasets corresponding to its own domain. In other words, each metric 

is favorable on datasets overlapping its own assumption. In addition, there also exists incompleteness 

in classification tasks for metrics just like there is for learning algorithms. 

 

Uzaklık Metriklerinin Performansı Üzerine Ampirik Bir Çalışma 

Anahtar kelimeler 

Makine öğrenmesi; 

Metrik öğrenme; Bilgi 

kazancı; No free lunch 

teoremleri; K-en yakın 

komşular 

Öz 

Metrik, bir metrik uzayda iki nokta arasındaki mesafeyi, benzerliği veya farklılığı ölçmek için kullanılır. 

Metrik öğrenme algoritmaları, m boyutlu metrik uzayda bir sorgulama noktasına en yakın veya en uzak 

olan veri noktalarını bulma görevini gerçekleştirir. Bazı metrikler, tüm boyutların eşit öneme sahip 

olduğu varsayımını dikkate alır ve bunun tersi de geçerlidir. Ancak bu varsayım, sınıflandırma 

algoritmalarının üstesinden geldiği bazı gerçek dünya problemleriyle örtüşmez. Bu araştırmada; mevcut 

bilgi kazanımı, bilgi kazanım oranı ve bazı iyi bilinen konvansiyonel metrikler birbirleri ile 

karşılaştırılmıştır. Bu metrikleri meta parametresi olarak alan 1-En Yakın Komşular algoritması 49 veri 

kümesine uygulanmıştır. Metriklerin performansını ölçmek için sadece doğruluk oranı ölçütü 

kullanılmıştır. Deneysel sonuçlar, her metriğin kendi domainine karşılık gelen veri setlerinde başarılı 

olduğunu göstermektedir. Başka bir deyişle; her metrik, kendi varsayımıyla örtüşen veri kümelerinin 

lehinedir. Ayrıca öğrenme algoritmalarında olduğu gibi metrikler için de sınıflandırma görevlerinde 

eksiklikler mevcuttur. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Metric learning is a topic of research dealing with 

distance, similarity, or other criterion (e.g., any 

optimal metric regardless of the location) between 

data points. It is the key to the success of many 

machine learning algorithms, e.g., the k-nearest 

neighbor algorithm (k-NN) in classification, the k-

means algorithm in clustering, and the principal 

component analysis technique in dimensionality 

reduction. 

The metric learning algorithms can have high 

performance on some real-world troubles, and 

every algorithm has some intrinsic characteristics:, 

the form of metric, learning paradigm, optimality 

of the solution, scalability, dimensionality 

reduction and so (Bellet et al. 2013). In terms of 

learning paradigms, there are three paradigms: 

fully supervised, unsupervised, and semi-

supervised. Fully supervised is a learning paradigm 

in which learning algorithms have labeled 

examples. Unsupervised is a learning paradigm in 
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which learning algorithms do not have the labels of 

individual training examples. Semi-supervised is a 

learning paradigm in which only a subset of training 

examples is given with labels (Parmar et al. 2021). 

The type of learned metric is a crucial choice. One 

can define two leading metric families: local or 

global linear metrics and local or global nonlinear 

metrics (Bellet et al. 2015). The expressive power 

of linear metrics (e.g., Mahalanobis distance) is 

restricted, but they are simpler to optimize and less 

prone to overfitting. That is, they mostly cause 

convex formulations and thereby, non-local 

optimality of the solution. Nonlinear metrics (e.g., 

the χ2 distance) generally lead to non-convex 

formulations (subject to locality) and overfitting, 

but they are able to also acquire non-linearity in 

the data. Local metrics are a type of metric where 

linear and nonlinear local metrics are learned 

together to overcome complex problems, i.e., 

heterogeneous data. They are more inclined to 

overfit as opposed to non-local methods because 

the number of parameters they learn can be very 

large. The optimality of the solution denotes the 

generalization capability of the algorithm to 

discover the parameters of the metric that 

adequately fulfill the desirable criterion. The 

solution is guaranteed to be the global optimum 

for convex problems. Otherwise, the solution may 

exclusively be stuck in a local optimum for non-

convex problems. Scalability with dimensionality 

refers to that metric learning algorithms should 

also deal appropriately with the dimensionality of 

the data (Bellet et al. 2013, 2015, Peng et al. 2018). 

In the machine learning area, there are many 

learning approaches applied to classification and 

clustering problems, and lazy learning is one of 

them. Lazy learning makes up local models, as 

opposed to other learning approaches. The forming 

of local models is a severe deficiency of lazy 

learning. Despite that deficiency, however, lazy 

learning is relatively successful over real-world 

problems. The k-NN algorithm is a well-known lazy 

learning algorithm. The k-NN algorithm relies on 

the finding of k-data points that are closest to a 

query point in m-dimensional metric space (Beyer 

et al. 1999) and has low bias and high variance 

(Manning and Raghavan 2009). First of all, a 

distance metric is necessary to measure 

“closeness” between two points in a metric space 

(Han and Kamber 2006). In this respect, there are 

many distance metrics: Euclidean distance, the City 

Block distance, Chebyshev distance, Minkowski 

distance, and so on. As well as finding the optimum 

value of k, selecting a proper metric is vital to the 

classification with high accuracy (Hechenbichler 

and Schliep 2004). 

The main contributions and findings of this study 

are as follows: 

 There is at least one dataset where each metric 

delivers the highest result. 

 Considering all the possible datasets, the 

average performance of the metrics 

approaches each other. 

 As for the real-world datasets, the average 

performance of the metrics changes depending 

on the strength of their assumptions. 

This paper is structured as follows: Section 2 

thoroughly explains how metric learning algorithms 

advance state-of-the-art. In Section 3, the 

preliminaries required for the essence of the paper 

are presented. The subsections such as the metric 

axioms and no free lunch theorems have been 

subsumed by Section 4. In Section 5, the 

experimental procedure is expressed in detail. The 

comparative results with some distance metrics 

and empirical results are presented in Section 6. 

Finally, Section 7 terminates with the conclusions. 

 

2. Works on Metric Learning 

The first work regarding metric learning begins 

with Fix and Hodges’ paper entitled “Discriminatory 

Analysis - Nonparametric Discrimination: 

Consistency Properties” (Fix and Hodges 1951). 

They tried to discover a rule hinged on the nearest 

neighbors' idea. Nilsson proposed the use of the 

nearest neighbor rule in pattern recognition 

problems (Nilsson 1965). Cover and Hart used a 

metric to detect the nearest neighbors and showed 

that the convergence of the nearest neighbor to 

any point is independent of the metric in Euclidean 

n-space (Cover and Hart 1967). Fukunaga and 

Hostetler showed that the performance of a k-NN 
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classifier is dependent on the choice of metric 

(Fukunaga and Hostetler 1973). Brown and 

Koplowitz unveiled that a proper choice of metric is 

significant. Furthermore, they showed that the 

performance of a classifier could be increased 

through the weighting of distance measurements 

(Brown and Koplowitz 1979). Short and Fukunaga 

deal with the trouble regarding the selecting of the 

best distance measurement by decreasing the 

difference between the nearest neighbor 

classification and the asymptotic nearest neighbor 

errors (Short and Fukunaga 1981). 

Jia et al. suggested a novel distance metric for 

nominal data hinged on the properties of nominal 

values. Their method relies on the fact that the 

distance between two values belonging to a 

feature is decided by both the frequency 

probabilities of these two values and those of other 

features (Jia et al. 2016). Gu et al. proposed a novel 

distance metric that consists of the standard 

Euclidean distance and a directional divergence 

derived from the cosine similarity, in order to cope 

with high-dimensional problems (Gu et al. 2017). 

Siyu et al. developed a new algorithm named 

Multi-Instance Transfer Metric Learning, which 

tries to build a bridge between the distributions of 

diverse domains by employing the bag weighting 

strategy. Thus, they tried to overcome the 

inconsistency between a source domain and a 

target domain drawn from dissimilar distributions 

(Jiang et al. 2018). Utkin and Ryabinin presented a 

metric learning algorithm hinged on the Deep 

Forest offered by Zhou and Feng (Zhou and Feng 

2019). The major idea of the algorithm is to 

appoint the weights to decision trees in the 

Random Forest so as to decrease openness 

between examples from the similar class and to 

augment them between examples from distinct 

classes (Utkin and Ryabinin 2019). Zabihzadeh et al. 

proposed a new strategy for metrics in latent 

space. Their algorithm tries to find out an optimal 

pairing from the feature space to a latent space 

that decreases the gap between the same 

examples and also augments the distance between 

distinct ones (Zabihzadeh et al. 2019). Zhang et al. 

proposed a novel parameterization technique for 

comprising the squared Mahalanobis distance into 

the Gaussian RBF kernel so as to form a new 

measure for common learning distance metric and 

kernel classifier (Zhang et al. 2019). 

Additional to the abovementioned works, there 

exist some studies done by weighting dimensions 

(or features) according to their importance levels, 

for instance, the information gain (Hall 1999, 

Taneja et al. 2014, Duneja and Puyalnithi 2017), the 

relevance of features in similarity computations 

(Aha 1998), Pearson correlation coefficient ranking 

(Guyon and Elisseeff 2003, Grabczewski and 

Jankowski 2006), Fisher coefficient (Grabczewski 

and Jankowski 2005), Chi-squared coefficient 

(Vivencio et al. 2007) and numerous studies based 

on decision trees and probability distribution 

distance (Jankowski and Usowicz 2011). 

The abovementioned metrics take into account the 

assumption that the whole dimensions are of the 

same importance. However, this circumstance does 

not approximate the intrinsic structure of a set of 

real-world troubles that algorithms like the k-NN 

algorithm tackle (Taneja et al. 2014, Duneja and 

Puyalnithi 2017). Hence, every dimension should 

be handled with unequal importance by a specific 

function (Aydın 2022). 

 

3. Preliminaries 

In this section, we recapture some essentials in 

preparation for something fuller. 

 

3.1 Metric axioms 

A metric space is a set defined by a global space 

notion between its elements. A metric space has to 

fulfill the essential properties as follows (Rudin 

1976, Munkres 2017): (P1)  (   )   , (P2) 

 (   )        , (P3)  (   )   (   ), and 

(P4)  (   )   (   )   (   ), where the metric 

d on a set M is a function         such that 

for           . The principles in (P1), (P2), (P3), 

and (P4) are so-called non-negativity, identity of 

indiscernibles, symmetry of distances, and the 

triangle inequality, respectively for a metric space. 

For instance, the City Block metric           
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on    is defined by  (   )  ∑ |     |
 
   .  

 

3.2 No free lunch theorems 

No Free Lunch (NFL) theorems state that there is 

no universal method that has the best performance 

overall the possible problems (Wolpert 1996, 

Wolpert and Macready 1997). Hence, there are 

datasets on which every algorithm is both 

successful and unsuccessful since there is no best 

algorithm. In other words, NFL theorems specifies 

that: the average performances of each method 

over all the real-world troubles are the same 

(Wolpert and Macready 2005). Wolpert and 

Macready present two main NFL theorems: the 

first one, which is about invariant objective 

functions while the search is in progress, and the 

latter is about objective functions that may alter. 

More formally, let an optimization problem   be 

represented as a mapping in the set   

*     +, where the search space   is finite, and 

the space of possible cost values   is finite. 

Besides, let the performances of any two 

algorithms    and    iterated m times on a cost 

function be conditional probabilities measured 

with  (  
 
|      ) and  (  

 
|      ), 

respectively. Then,  (  
 
|     ) is independent 

of a when averaged over all cost functions, as 

shown in Equation (1). A primary corollary of this 

result is that the precise way to match the sample 

to a performance measure is insignificant, and this 

is Wolpert and Macready’s first theorem. 

∑   (  
 
|      )  ∑   (  

 
|      )  (1) 

where   
 

 denotes the ordered set of size m of cost 

values     corresponding to    . This theorem 

clearly shows that what a method boosts in 

performance for a problem class and is unavoidably 

balanced through its performance on the rest 

issues; this is the only way for all algorithms to 

have the same average performance (Wolpert and 

Macready 1997). We do not address Wolpert and 

Macready’s second theorem because the second 

theorem is connected to time-varying objective 

functions. NFL theorems have serious implications 

for learning algorithms. In particular, Wolpert and 

Macready’s first theorem within these theorems is 

direct regarding this paper. In the context of 

distance metrics and metric learning, there is no 

strategy that outperforms others in all problems. 

To put it more explicitly, universal distance metrics 

or metric learning algorithms are impossible. Then, 

we can remark on each distance metric is only 

successful over its own domain set. Moreover, all 

discussions to do are to revolve around this 

remarkable conclusion. 

 

4. Experimental Process 

We have used 49 datasets to measure empirically 

the competitiveness and performance of the 

distance metrics. The descriptive information 

regarding the datasets is shown in Table 1. We 

tested all the metrics on 49 datasets from The UCI 

Machine Learning Repository (Int. Ref. 1), mlbench 

(Int. Ref. 2), and MATLAB Sample Data Sets (Int. 

Ref. 3). 

The experiments done have been delimited by the 

classification problems. The k-Nearest Neighbors 

(k-NN) algorithm has been employed as a classifier. 

The distance metrics used in the experiments are: 

the baseline metric, the IG (   ) (Aydın 2022), the 

IGR (    ), the City Block (the Manhattan distance), 

the Chebyshev, the correlation (Székely et al. 2007), 

the cosine (Korenius et al. 2007), the Euclidean, the 

Hamming (Norouzi et al. 2012), the Jaccard 

(Hancock 2004), the Mahalanobis (De Maesschalck 

et al. 2000), and the Spearman (Monjardet 1998). A 

10-fold cross-validation technique has been run to 

assess the k-NN algorithm on the datasets. In the 

experiments, the parameter k of the k-NN 

algorithm has been chosen as 1. Thus, to compare 

the performances of the metrics independently 

from the other parameters of the k-NN algorithm; 

we set the values of the remaining parameters 

likewise. The k-NN algorithm has been operated on 

each dataset five times. Thereby, more accurate 

results have been tried to obtain by testing the 

distance metrics on five different cross-validated 

training sets derived from each dataset. The 

average rank values of the metrics are quantified 

by Spearman's rank correlation coefficient 

(Spearman 1904). 
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Table 1. The benchmark datasets used in the experiments (The imbalance ratio specifies the ratio of the number of 

samples in the majority and minority classes). 

 
# Dataset Sample size  #Feature #Class Imbalance ratio 

1 Arrhythmia 452 280 13 122.50 
2 Auditrisk 776 27 2 1.54 
3 Avila 20867 11 12 857.20 
4 BanknoteAuthentication 1372 5 2 1.27 
5 BloodTransfusion 748 5 2 3.20 
6 BostonHousing2 506 19 92 30.00 
7 BreastCancer 699 10 2 1.90 
8 BreastTissue 106 10 6 1.57 
9 Cardiotocography3 2126 22 3 9.40 

10 Cardiotocography10 2126 22 10 10.92 
11 ClimateModel 540 19 2 10.73 
12 ConnectionistBench 208 61 2 1.14 
13 DiabeticRetinopathy 1151 20 2 1.13 
14 DNA 3186 181 3 2.16 
15 Ecoli 336 8 8 71.50 
16 FisherIris 150 5 3 1.00 
17 FrogsMFCCs_Families 7195 23 4 65.00 
18 FrogsMFCCs_Genus 7195 23 8 61.03 
19 FrogsMFCCs_RecordID 7195 23 60 458.00 
20 FrogsMFCCs_Species 7195 23 10 51.15 
21 Glass 214 10 6 8.44 
22 Haberman 306 4 2 2.78 
23 HTRU2 17898 9 2 9.92 
24 Ionosphere 351 35 2 1.78 
25 Leaf 340 15 30 2.00 
26 LetterRecognition 20000 17 26 1.10 
27 LibrasMovement 360 91 15 1.00 
28 LSVTvoiceRehabilitation 126 311 2 2.00 
29 Madelon 2000 501 2 1.00 
30 MAGICGammaTelescope 19020 11 2 1.84 
31 MEU_MobileKSD 2856 72 56 1.00 
32 OpticalRecognition 3823 65 10 1.03 
33 Ovariancancer 216 4001 2 1.27 
34 PageBlocks 5473 11 5 175.46 
35 ParkinsonSpeech 1040 27 2 1.00 
36 QSARBiodegradation 1055 42 2 1.96 
37 Satellite 6435 37 6 2.44 
38 Seeds 210 8 3 1.00 
39 Sonar 208 61 2 1.14 
40 Vehicle 846 19 4 1.10 
41 VertebralColumn 310 7 2 2.10 
42 Vowel 990 11 11 1.00 
43 WallFollowingRobotNavigation2 5456 3 4 6.72 
44 WallFollowingRobotNavigation4 5456 5 4 6.72 
45 WallFollowingRobotNavigation24 5456 25 4 6.72 
46 Winequalityred 1599 12 6 68.10 
47 Winequalitywhite 4898 12 7 439.60 
48 Yeast 1484 9 10 92.60 
49 Zoo 101 17 7 10.25 

 

5. Results and Discussion 

In the machine learning field, any reasonable 

classifier is supposed to be a higher performance 

than a random predictor on any dataset. Thus, it 

can be said that the predictions of the classifiers 

are acceptable. In that case, a random predictor 

can be used as a baseline to measure the 

performance of classifiers. In this respect, we can 

measure the performances of the metrics likewise. 

First, we need to define a random distance metric. 

The random distance metric measures the distance 

between two points as follows:  (   )  

∑ |     |
    

    where Xi ∼ U([0, 1]). Namely, a 

vector X consists of random variables uniformly 

distributed on [0, 1]. Now, let us analyze the 
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average performance of the metrics used in the 

experiments using the random distance metric. We 

have compared 12 distance metrics on 49 

benchmark datasets. The task was posed as a 

classification problem. Besides, all the detailed 

experimental results are shown in Table 2. 

The average classification accuracy rates of the 

Baseline, the IG, the City Block, cosine, Euclidean, 

and the Mahalanobis metrics have been found to 

be 79.6705%, 81.9371%, 82.3231%, 80.1956%, 

81.3542%, and 79.9944%, respectively. The City 

Block, the IG, and the Euclidean distance metrics 

have the first three highest average classification 

accuracy rates on the benchmark datasets in turn.  

 

Table 2. The average classification accuracy rates with their standard deviations of the k-NN algorithm in terms of the 
metrics. 

# Baseline IG IGR City Block Chebyshev correlation cosine Euclidean Hamming Jaccard Mahalanobis Spearman 

1 56.90±0.7 57.08±0.1 54.20±0.0 56.86±0.3 56.33±0.2 57.21±0.2 57.26±0.2 57.43±0.4 54.51±0.2 55.58±0.1 — 57.52±0.3 
2 97.50±0.1 94.41±0.3 60.70±0.0 97.47±0.2 96.34±0.2 96.91±0.2 96.60±0.2 97.04±0.1 93.09±0.2 93.25±0.1 — 96.24±0.3 
3 85.09±0.1 99.83±0.0 99.87±0.0 87.39±0.0 73.17±0.1 74.33±0.1 78.15±0.2 79.54±0.1 99.89±0.0 99.89±0.0 76.04±0.1 65.65±0.1 
4 99.71±0.1 97.94±0.2 86.34±0.4 99.93±0.0 100±0.0 93.43±0.3 99.93±0.0 99.93±0.0 53.88±0.5 53.88±0.5 100±0.0 59.56±0.1 
5 72.03±0.9 71.90±0.9 71.82±0.9 72.27±0.4 73.48±0.6 73.31±0.3 73.85±0.7 72.21±0.5 75.77±0.4 75.77±0.4 — 76.20±0.0 
6 81.14±0.9 96.08±0.1 96.08±0.1 95.17±0.1 93.75±0.2 87.35±0.1 87.98±0.2 94.94±0.1 84.38±0.3 84.38±0.3 82.05±0.6 52.05±0.4 
7 95.67±0.4 96.36±0.2 96.48±0.3 96.02±0.2 92.64±0.4 90.38±0.6 90.70±0.4 95.36±0.2 94.02±0.2 94.02±0.2 94.13±0.6 89.27±0.4 
8 60.37±1.3 64.71±1.3 69.81±1.3 60.00±2.0 55.28±2.4 56.03±1.0 56.60±0.8 56.60±2.0 31.69±0.8 31.69±0.8 63.01±1.5 32.64±0.8 
9 89.02±0.5 91.36±0.2 90.92±0.2 90.83±0.3 89.89±0.1 88.46±0.1 88.47±0.2 90.23±0.3 90.79±0.1 90.37±0.2 — 87.25±0.2 

10 70.28±0.5 74.02±0.4 75.16±0.3 74.51±0.3 71.39±0.3 71.89±0.6 71.59±0.5 73.80±0.4 70.89±0.4 71.16±0.5 — 67.69±0.4 
11 88.51±0.7 91.40±0.4 90.70±0.8 88.59±0.1 88.18±0.4 87.33±0.4 86.92±0.5 88.37±0.2 16.81±0.1 16.81±0.1 88.81±0.2 86.07±0.4 
12 84.51±1.5 83.46±1.3 77.50±1.0 83.94±0.8 78.84±0.8 85.09±0.6 82.88±0.4 82.11±0.7 49.23±2.1 49.23±2.1 78.46±1.6 85.76±0.9 
13 62.29±0.9 62.13±0.5 61.85±0.7 61.66±0.5 65.03±0.3 66.34±0.5 65.80±0.5 62.17±0.2 61.59±0.3 61.77±0.4 63.47±0.7 61.30±0.4 
14 73.72±0.3 73.75±0.2 73.75±0.2 73.45±0.3 28.88±0.1 73.72±0.3 73.53±0.3 73.45±0.3 73.45±0.3 73.49±0.4 52.48±0.3 73.70±0.3 
15 76.13±1.3 81.78±0.9 71.42±1.0 80.83±0.6 80.41±0.5 80.59±0.3 79.64±0.4 81.42±0.6 56.13±0.4 56.13±0.4 — 76.48±0.6 
16 94.26±1.2 94.40±0.8 90.93±0.3 95.46±0.3 96.80±0.3 93.60±0.3 96.13±0.3 96.00±0.0 80.00±1.4 80.00±1.4 90.66±0.9 66.66±0.0 
17 98.55±0.1 98.93±0.0 98.52±0.0 98.88±0.0 98.68±0.0 99.04±0.0 99.03±0.0 98.97±0.0 57.67±0.0 57.67±0.0 97.87±0.0 98.03±0.0 
18 98.00±0.1 98.56±0.0 98.19±0.0 98.93±0.0 98.65±0.0 99.04±0.0 99.02±0.0 98.94±0.0 57.67±0.0 57.67±0.0 97.87±0.0 98.01±0.0 
19 74.52±0.4 85.28±0.2 84.42±0.2 86.86±0.0 85.41±0.0 88.14±0.1 87.62±0.1 87.24±0.0 0.82±0.0 0.82±0.0 78.32±0.1 77.96±0.0 
20 97.79±0.1 98.61±0.0 98.12±0.0 98.74±0.0 98.42±0.0 98.87±0.0 98.86±0.0 98.77±0.0 9.77±0.0 9.77±0.0 97.46±0.0 97.92±0.0 
21 69.34±2.7 74.48±0.8 73.17±1.2 73.64±2.1 72.05±1.7 71.02±1.3 72.52±1.2 74.11±1.4 47.66±1.0 49.25±0.8 66.63±0.8 51.02±0.5 
22 65.22±1.1 66.53±1.3 65.94±0.6 64.90±0.5 65.68±0.5 65.88±0.4 66.92±0.1 67.84±0.8 64.90±0.4 63.92±0.7 63.98±0.8 67.18±0.4 
23 96.29±0.1 96.75±0.0 96.82±0.0 96.38±0.0 96.07±0.1 96.08±0.1 96.12±0.1 96.24±0.0 91.44±0.0 91.44±0.0 97.23±0.0 93.99±0.0 
24 89.17±0.8 92.36±0.4 64.10±0.0 90.54±0.5 88.60±0.4 88.20±0.3 88.60±0.7 86.55±0.2 42.27±0.2 43.76±0.2 — 87.40±0.1 
25 61.47±1.1 60.41±0.7 68.35±1.0 65.23±0.3 54.29±0.5 61.52±0.3 61.88±0.4 59.70±0.7 6.23±0.5 6.23±0.5 78.94±0.4 44.58±0.9 
26 94.96±0.1 95.06±0.1 92.32±0.0 95.35±0.1 80.37±0.1 95.08±0.1 95.76±0.1 95.87±0.1 87.70±0.1 87.67±0.1 94.52±0.0 90.72±0.1 
27 84.05±1.7 85.22±0.8 82.50±0.6 85.72±0.5 84.33±0.5 86.61±0.8 84.88±0.8 86.22±0.6 42.66±0.8 42.66±0.8 47.05±1.7 79.94±0.8 
28 56.50±2.2 69.20±2.5 65.39±3.9 57.61±3.1 56.03±1.9 63.17±1.6 62.53±1.7 52.69±1.9 36.03±0.6 36.03±0.6 — 70.00±2.2 
29 55.52±1.1 52.59±0.4 52.48±0.4 65.98±0.6 58.17±0.2 66.10±0.5 64.44±0.5 64.34±0.3 50.87±0.4 50.87±0.4 51.42±0.4 59.10±0.4 
30 75.62±0.3 78.15±0.1 71.27±0.1 78.61±0.1 77.72±0.1 74.77±0.1 74.72±0.1 78.38±0.1 65.63±0.0 65.62±0.0 81.83±0.1 67.53±0.0 
31 35.96±0.9 44.88±0.5 66.66±0.2 55.88±1.8 34.74±2.7 41.12±2.4 41.04±2.4 45.49±2.1 23.24±3.0 23.24±3.0 — 45.79±2.4 
32 94.83±0.2 97.58±0.1 10.15±0.0 98.21±0.0 97.89±0.0 98.62±0.0 98.58±0.0 98.56±0.0 88.56±0.1 84.19±0.1 — 98.03±0.1 
33 91.38±1.2 93.70±0.7 93.70±0.4 92.12±0.6 81.29±1.0 92.77±0.4 92.87±0.4 91.20±0.8 57.87±0.0 57.87±0.0 — 89.62±0.9 
34 94.86±0.1 95.40±0.1 95.26±0.0 95.73±0.1 95.70±0.1 96.68±0.1 96.64±0.1 95.71±0.1 92.79±0.1 92.79±0.1 96.37±0.1 93.64±0.1 
35 59.44±1.5 56.73±0.4 56.01±0.3 65.13±0.9 58.80±0.4 57.21±0.4 56.76±0.2 63.07±0.7 51.36±0.7 51.17±0.8 64.21±0.9 57.00±0.9 
36 80.58±0.5 80.09±0.7 79.62±0.6 80.62±0.3 74.63±0.5 81.27±0.5 81.25±0.3 79.39±0.5 75.58±0.6 76.72±0.4 84.37±0.3 81.08±0.4 
37 88.71±0.3 90.66±0.2 88.80±0.1 90.77±0.1 86.80±0.1 78.63±0.1 79.88±0.2 90.66±0.1 84.75±0.1 84.75±0.1 67.26±0.2 71.39±0.2 
38 89.71±1.2 92.19±0.8 89.61±0.4 90.66±0.5 89.61±0.8 93.52±0.5 92.38±0.8 90.47±0.9 56.95±1.1 56.95±1.1 91.90±0.6 50.00±0.0 
39 84.13±1.1 84.23±1.2 77.40±1.5 84.23±0.6 78.94±1.1 85.28±1.2 83.55±0.4 82.59±0.5 49.80±1.7 49.80±1.7 79.71±2.0 86.05±0.8 
40 62.81±1.0 66.76±0.9 68.20±0.4 67.96±0.4 60.14±0.7 68.46±0.5 67.21±0.5 65.36±0.5 63.14±0.2 63.21±0.2 77.25±0.4 53.97±0.6 
41 75.87±2.3 77.03±0.8 73.03±1.1 82.64±1.0 82.83±1.0 76.12±1.0 79.54±1.2 83.35±1.1 65.35±0.5 65.35±0.5 — 68.12±0.1 
42 98.20±0.2 98.06±0.2 95.65±0.4 98.82±0.1 98.66±0.2 98.04±0.4 98.42±0.4 98.84±0.2 13.11±0.4 13.21±0.4 98.32±0.4 68.98±0.4 
43 96.19±0.2 98.10±0.0 98.39±0.1 98.80±0.0 98.76±0.0 26.03±0.2 65.36±0.2 98.82±0.1 66.96±0.2 66.96±0.2 98.97±0.0 23.60±0.0 
44 93.04±0.3 94.78±0.1 93.71±0.1 97.29±0.1 97.17±0.0 84.52±0.2 95.80±0.1 97.30±0.1 65.17±0.3 65.17±0.3 97.51±0.0 41.92±0.1 
45 90.74±0.2 95.00±0.1 94.53±0.1 92.71±0.1 82.19±0.2 88.38±0.1 88.73±0.1 88.59±0.1 80.75±0.1 80.75±0.1 87.18±0.1 91.69±0.2 
46 59.33±0.9 62.52±0.2 61.70±0.1 60.46±0.4 58.88±0.2 61.76±0.6 61.76±0.6 60.08±0.5 57.73±0.3 57.99±0.4 64.05±0.4 17.08±0.2 
47 60.44±0.4 61.82±0.2 61.53±0.3 60.21±0.3 58.68±0.3 59.72±0.3 60.09±0.3 59.68±0.4 56.59±0.3 56.57±0.3 65.13±0.4 4.74±0.1 
48 45.86±0.8 44.44±0.5 41.42±0.4 53.59±0.4 52.16±0.2 53.45±0.4 53.57±0.5 52.53±0.4 34.74±0.3 34.60±0.3 52.50±0.4 43.20±0.5 
49 97.42±0.5 98.01±0.0 96.03±0.0 96.03±0.0 79.00±1.0 96.03±0.0 97.02±0.0 98.01±0.0 96.03±0.0 96.03±0.0 92.67±1.3 95.04±0.0 

Avg. 79.67±16 81.93±16 77.97±18 82.32±15 77.99±18 78.92±17 80.19±15 81.35±16 59.75±25 59.76±25 79.99±16 69.35±22 

 

The average rank values of the metrics are shown 

in Figure 1(b). In light of the result, the IG, the IGR, 

the City Block, the correlation, the cosine, the 

Euclidean, and the Mahalanobis metrics have 

obtained higher average rank values than the 

Baseline distance metric on the benchmark 

datasets. The average rank value of the Baseline 

distance metric has been found to be 6.2857. The 

average rank values of the abovementioned 

metrics have been found to be 8.3878, 6.6531, 

8.7347, 7.6837, 7.8878, 8.1531, and 7.0946, 

respectively. The City Block, the IG, and the 

Euclidean distance metrics have the first three 
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highest rank values on the benchmark datasets in 

turn.  

Concerning the number of datasets on which the 

metrics have the highest classification accuracy 

rates, the experimental results are shown in Figure 

1(c). As seen clearly from those results; the first 

three metrics are the IG, the correlation, and the 

Mahalanobis.  

Regarding the number of datasets on which the 

metrics have higher classification accuracy rates 

than the Baseline, the experimental results are 

shown in Figure 1(d). In light of the results, the City 

Block, the IG, and the Euclidean distance metrics 

have the greatest number of datasets in turn.  

As a consequence, we can state that the IG 

distance metric is a measurement system that 

yields acceptable and successful results on a 

considerable number of datasets. Moreover, the 

performance of the IG is better compared to other 

metrics used in the experiments, on average. 

In the machine learning area, one of the important 

theorems is the “No Free Lunch” theorem, as well.  

 
Figure 1. (a) the average classification accuracy rates of 
the metrics (b) the average rank values of the metrics (c) 
the number of the datasets on which the metrics have 
the highest classification accuracy rates (d) the number 
of the datasets on which the metrics have higher 
classification accuracy rates than the Baseline metric. 

The NFL theorems deal with classification 

algorithms, search algorithms, and optimization 

algorithms. According to the consequences of 

these theorems, there is no universal approach 

that has the best performance on all possible 

datasets since the domains are partially different, 

in which each algorithm is successful. Furthermore, 

the average performances of the algorithms 

converge with each other as the number of 

benchmark datasets increases. In some works done 

concerning metric learning, the process of defining 

the different metrics is regarded as an optimization 

problem. 

Therefore, the NFL theorem defined for 

optimization problems involves metric learning 

problems. Depending on the increment in the 

number of datasets, the change in the average 

classification accuracy rates of the metrics is shown 

in Figure 2. According to those results, the final 

average classification accuracy rates of the 

Hamming and the Jaccard metrics are quite 

different from the others, excluding the Spearman 

metric. The final average classification accuracy 

rates of the Hamming and the Jaccard metrics have 

been found to be 59.7573% and 59.7610%, 

respectively. The final average classification 

accuracy rate of the Spearman metric has been 

found to be 69.3592%. The reason for so much 

deviation of the average classification accuracy 

rates of the Hamming and the Jaccard metrics from 

the others is that the domains of most of the 

benchmark datasets are very different from those 

of the Hamming and the Jaccard metrics. 

Accordingly, as the number of datasets 

corresponding to the domains of the Hamming and 

the Jaccard metrics increases, the average 

classification accuracy rates of all the metrics 

approach each other. 

 

 

 
Figure 2. The change of the average classification 
accuracy rates of the metrics as the number of the 
datasets increases. 
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We used the Kruskal-Wallis test to measure the 

significance level between the average 

classification accuracy rates of the metrics. Thus, 

we can show that all the metrics exclusive of the 

Hamming and the Jaccard metrics come from the 

same population.  

The Kruskal-Wallis test is a nonparametric test, i.e., 

a distribution-free test, and contrasts the medians 

of the groups of data to detect whether the 

samples come from the same population (or 

distribution). The Kruskal-Wallis test uses the ranks 

of the data to calculate the test statistics. 

Additionally, the Kruskal-Wallis test uses a chi-

square statistic, and the p-value measures the 

significance level of the chi-square statistic. 

Regarding the medians of the groups of the data 

and the ranks of the data, the statistics are shown 

in Figure 3. According to the experimental results, 

the value of p was measured as 2.46558e-10, and 

the p-value points out that the Kruskal-Wallis test 

refuses the null hypothesis that the whole data 

come from the similar distribution at the 1% 

significance level. 

 

 
Figure 3. (a) the medians and other statistics of the 
groups of the data regarding the classification accuracy 
rates on the benchmark datasets, according to the 
metrics (b) according to the classification accuracy rates 
on the benchmark datasets of the metrics, and the 
statistics of their ranks. The central mark points to the 
median and the bottom and top edges of the box point 
to the first quartile and third quartile, respectively. The 
whiskers lengthen to the farthest data points regardless 
of outliers, and the outliers are marked separately by 
the ‘+’ symbol. 

 

Additionally, we conducted a follow-up test known 

as the Multiple Comparison Procedures to detect 

which data comes from a different distribution. In 

other words, we carried out a multiple comparison 

test to identify information about which data 

averages are crucially different or not. The Multiple 

Comparison Procedures are devised to ensure an 

upper limit on the possibility that any comparison 

will be mistakenly found significant. 

 

The related test results are shown in Figure 4. In 

light of these results, the Hamming and the Jaccard 

metrics have mean ranks significantly different 

from all the metrics excluding the Spearman 

metric. Besides, no metrics have mean ranks 

significantly different from the Spearman metrics. 

As a result, we can state that the average 

performances of all the metrics used in the 

experiments are the same. Notice that most of the 

benchmark datasets are quite different from types 

of datasets on which the Hamming and the Jaccard 

metrics outperform. 

Finally, we would like to underline that there exist 

datasets on which each metric is successful as well 

as unsuccessful. 

 

 
Figure 4. The estimated values of the means and 
comparison intervals, according to a multiple 
comparison test. The mean of the Baseline distance 
metric is highlighted, and the comparison interval is in 
blue. Because the comparison intervals for those of the 
Hamming and the Jaccard metrics do not intersect with 
the intervals for that of the Baseline distance metric, 
they are highlighted in red. 

Now, let us compare the IG distance metric with 

the second-best performance metric on some 

datasets. According to the first two features with 

the highest-information gain of the ClimateModel 

dataset, the results of the two nearest neighbor 
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searches of the IG and the Mahalanobis metrics at 

ten random query points are shown in Figure 5. 

The values of the first two features with the 

highest-information gain of the ClimateModel 

dataset have been found to be 0.0867 and 0.0859, 

respectively. Additionally, the value of the feature 

with the lowest information gain was found to be 

0.0008. The average classification accuracy rates of 

the IG and the Mahalanobis metrics on the 

ClimateModel dataset have been found to be 

91.4074% and 88.8148%, respectively. In other 

words, the IG distance metric has the highest 

average classification accuracy rate in comparison 

to the other metrics on the ClimateModel dataset. 

The Mahalanobis metric, except the other metrics 

based on the information gain (ratio), has the 

second-highest average classification accuracy rate 

on the ClimateModel dataset. 

According to the results in Figure 5, at least half of 
the two nearest neighbor searches of the IG and 
the Mahalanobis metrics at ten random query 
points are the same. For the rest of them, the 
nearest neighbor searches of the IG metric to the 
query points are more distant in comparison to 
those of the Mahalanobis metric.  
 

 
Figure 5. The results of the two nearest neighbor 
searches of the IG and the Mahalanobis metrics at 10 
query points, according to the first two features with the 
highest-information gain of the ClimateModel dataset 

According to the first two features with the highest 

information gain of the ClimateModel dataset, the 

decision boundaries of two k-NN classifiers 

applying to the IG and the Mahalanobis metrics are 

shown in Figure 6. Decision boundaries are defined 

as lines in which a data point is equally likely to 

exist in any class. Smoothing decision boundaries is 

the key to avoiding overfitting. According to the 

results in Figure 6, we can remark that the IG and 

the Mahalanobis metrics form smooth decision 

boundaries. However, the decision boundary of a 

k-NN classifier with the IG distance metric 

resembles the decision boundary of a decision tree. 

The reason is that the decision boundary of such a 

model is decided by the overlap of the orthogonal 

half-planes, representing the results of each 

decision. Moreover, the IG distance metric builds a 

more scattered and straight decision border 

compared to that of the Mahalanobis metric on 

the ClimateModel dataset. The decision border of a 

k-NN classifier with the Mahalanobis distance 

metric resembles the decision boundary of the 

Support Vector Machine classifier with the kernel. 

The reason is that its decision border is smoother 

compared to one with the IG distance metric. To 

put it short, the decision boundary of the k-NN 

classifier with the Mahalanobis metric is smoother 

in comparison with the IG distance metric. 

However, the generalization performance of the k-

NN classifier with the IG distance metric is better in 

comparison to one with the Mahalanobis metric, 

for just the ClimateModel dataset. We want to 

indicate that it is not possible to comprehend the 

idea of how the IG and the Mahalanobis metrics 

work on the ClimateModel dataset through just 

two features. However, we can generally remark 

that the Mahalanobis metric measures the 

distance between a distribution and a point and 

focuses on how many standard deviations a point 

deviates from the mean of a distribution. As a point 

approaches the mean of the distribution, the 

Mahalanobis distance converges to zero; 

otherwise, it goes away from zero. The IG distance 

metric measures the distance between two points 

according to the sum of the powers of the absolute 

differences between the axes of two points, and 

the information gain method is used in the 

calculation of the powers. Accordingly, we can say 

that a dimension with high-information changes 

the IG distance more in comparison to ones with 

less information. Furthermore, the locations of the 

points around a query point are critical, as well. 

The reason is that the other dimensions can 

become crucial if the values of two points on a 
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dimension with the highest information are equal 

to each other. Moreover, a k-NN classifier with the 

IG distance metric carries out searches along all the 

axes of a query point, but not around it. 

According to the first two features (i.e., Feature 69 

and Feature 16) with the highest information gain 

ratio of the MEU_MobileKSD dataset, the decision 

boundaries of two k-NN classifiers applying to the 

IGR and the City Block metrics are shown in Figure 

7. Accordingly, we can remark that the IGR and the 

City Block metrics form smooth decision 

boundaries. The values of the first two features 

with the highest-information gain ratio of the 

MEU_MobileKSD dataset have been found to be 

0.5345 and 0.5193, respectively. 

 
Figure 6. The decision boundaries of two different k-NN 
classifiers applied to the IG and the Mahalanobis 
metrics, according to the first two features with the 
highest-information gain of the ClimateModel dataset. 

 

 
Figure 7. The decision boundaries of two k-NN classifiers 
applying to the IGR and the City Block metrics, according 
to the first two features with the highest-information 
gain ratio of the MEU_MobileKSD dataset (the values of 
the feature 16 are restricted to values between 118 and 
1210). 

 

Additionally, the value of the feature with the 

lowest-information gain ratio has been found to be 

0.1525. The average classification accuracy rates of 

the IGR and the City Block metrics on the 

MEU_MobileKSD dataset have been found to be 

66.6667% and 55.8894%, respectively. In other 

words, the IGR distance metric has the highest 

average classification accuracy rate on the 

MEU_MobileKSD dataset. The City Block distance 

metric except the other metrics based on the 

information gain (ratio) has the second-highest 

average classification accuracy rate on the 

MEU_MobileKSD dataset. 

The pairwise distances between 50 instances 

selected randomly on the BostonHousing2 dataset 

are shown in Figure 8. Four distance metrics such 

as the IG, the IGR, the City Block, and the Euclidean 

were used in the comparison. According to the 

results, the other three distance metrics except for 

the IG distance metric resemble each other. These 

four-distance metrics are the metrics giving the 

highest classification accuracy rates, respectively. 

The classification accuracy rates of these four-

distance metrics are 96.0870%, 960870%, 

95.1779%, and 94.9407%, respectively. 

 

 
Figure 8. The pairwise distances between 50 instances 
that are selected randomly on the BostonHousing2 
dataset, according to the IG, the IGR, the Euclidean, and 
the City Block distance metrics. 

Putting the IG and the IGR distance metrics on both 

mathematical and intuitional bases, let us explain 

how they work. First, the information gain value of 

a feature tells us how far the classes diverge from 

each other. If so, we can say that as the 

information gain values of the features are large, 

the classes are separated so much from each other. 

Given the dimension with the highest information 

gain for a query point, the IG and IGR distance 

metrics move a query point much closer to the 
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class which is the least of the difference between 

the query point and the other points. However, as 

the number of features rises, it is required to 

consider the state of each feature together. For 

instance, in computing the distance between two 

points, the effect of a dimension having the lowest 

information gain can be much greater. The reason 

is that the difference between the related values of 

two points in a dimension having the highest 

information gain is less than the difference in a 

dimension having the lowest information gain. This 

situation can be a disadvantage for some datasets. 

Briefly, on all the benchmark datasets, the IG 

distance metric ranks second in terms of the 

average classification accuracy rate. The IGR 

distance metric ranks eighth in terms of the 

average classification accuracy rate. Additionally, 

the IG and the IGR distance metrics rank second 

and seventh, respectively, in terms of the average 

rank values. Furthermore, the IG distance metric is 

a distance function to have the highest 

classification accuracy rate on ten datasets. The 

IGR distance metric has the highest classification 

accuracy rate on seven datasets. Thus, the IG and 

the IGR distance metrics rank first and second, 

respectively, in terms of the number of datasets 

where the metrics have the highest classification 

accuracy rate. Finally, the IG and the IGR distance 

metrics rank second and sixth, respectively, in 

terms of the number of datasets on which the 

metrics have higher classification accuracy rates 

than the Baseline metric. 

 
6. Conclusions 

In this empirical study, we have compared the 

performance of the distance metrics on 49 real-

world datasets for the task of classification. 

Each metric makes an assumption while 
quantifying the distance between any two points, 
and the measurement without the assumption is a 
measurement at random. Besides, there is a 
drawback coming along with every assumption. 
Therefore, we can remark that each metric is 
successful on datasets corresponding to its own 
domain. In other words, each metric is 
advantageous on datasets overlapping its own 
assumption. The experimental results verify this 
situation, as well. Accordingly, we can indicate that 

there exists incompleteness in classification tasks 
for metrics, too, just like there is for learning 
algorithms. 
 
The information gain value of a feature gives 

information about how far the classes are 

separated from each other, and the classes split in 

so much that from each other as the information 

gain values of the features are large. Given a 

feature with the highest information gain for a 

query point, the IG and IGR distance metrics move 

a query point closer to the class which is the least 

of the difference between the query point and 

other points. However, as the number of features 

rises, it is necessary to consider each feature 

altogether. This approach to the aforementioned 

distance metrics can induce poor performance on 

some datasets. This naturally shows the 

incompleteness of these two metrics, as well.  
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