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ABSTRACT In the last decade, there has been a notable increase in research focus on fractional calculus
and its applications. Fractional-order analysis shows promise in enriching the dynamic behavior of chaotic
systems. This paper focuses on the dynamic analysis of the Chen system with low fractional-order values and
its fractional-order electronic circuit. Notably, there is a lack of studies about chaotic electronic circuits in the
literature with a fractional-order parameter value equal to 0.8, which makes this study pioneering in this regard.
Moreover, necessary numerical analyses are presented to investigate the system’s dynamic characteristics
and complexity, such as chaotic phase planes, Lyapunov spectra, and bifurcation diagrams. As expected,
oscilloscope views of the electronic circuit realization align with the numerical analysis and PSpice simulation
results.
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INTRODUCTION

Fractional calculus offers greater dynamic richness for chaotic
systems. Even a small change in the fractional order of a chaotic
system can lead to entirely new bifurcation diagrams. Therefore, in
recent years, researchers have studied numerous implementations
of chaotic systems in both digital and analog domains, considering
different fractional-order values (Yang and Wang 2021; Wang et al.
2021; Li et al. 2020; Gokyildirim et al. 2023; Liu et al. 2021; Chen
et al. 2013; Pham et al. 2017). Gokyildirim presented an electronic
circuit for the Sprott K system using discrete circuit elements with
a fractional-order value of 0.8 (Gokyildirim 2023).

Altun presented research that involved studying numerical
computations of fractional-order Rössler and Sprott H systems, as
well as their hardware implementations using field-programmable
analog array (FPAA) technology (Altun 2021a). In reference (Silva-
Juárez et al. 2020), FPAA-based applications of fractional-order
chaotic systems were realized with active filters, particularly for
a fractional-order parameter q value equal to 0.9. Moreover, the
fractional-order Sprott H system was utilized to generate a multi-
scroll attractor exhibiting hyperchaotic behavior, and its implemen-
tation utilizing FPAA was illustrated in (Altun 2022). In another
study (Altun 2021b), a field-programmable gate array (FPGA) is
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used for the implementation of a fractional-order system. The
works of Dang focused on studying the fractional-order designs of
E (Dang 2014b) and N (Dang 2014a) systems presented by Julien
Sprott in 1994 (Sprott 1994). Digital designs of chaotic systems
present various benefits in terms of high performance and cost-
effectiveness. However, when integrating fractional-order chaotic
systems, the limited memory capacity of microcontrollers can po-
tentially impact their overall performance. This limitation arises
because the parameter of fractional-order serves as an indicator of
memory (Du et al. 2013).

Some researchers have focused their studies on the fractional-
order analysis of the Chen system and its engineering applications
(Li and Peng 2004; Lu and Chen 2006). In their research, Nuñez-
Perez et al. introduced the use of different optimization algorithms
to amplify the chaotic behavior of the fractional-order chaotic
Chen system (FOCHEN) (Nuñez-Perez et al. 2021). The outcomes
demonstrate that the optimized FOCHEN systems exhibit higher
maximum Lyapunov exponents compared to the non-optimized
system. Ozkaynak et al. designed a new since substitution box
(S-box) using the Fractional-order Chen system with a predictor-
corrector scheme (Özkaynak et al. 2017). The study indicates that
utilizing the FOCHEN system can enhance the performance of
the S-box. Zouad et al. designed a secure communication elec-
tronic circuit using the delayed FOCHEN system with the Multisim
simulation program (Zouad et al. 2019). Wang et al. present the
development of a nonstandard finite discretization scheme for the
FOCHEN system’s numerical solutions (Wang et al. 2020). All the
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studies mentioned above have successfully achieved analog or
digital implementations of chaotic systems with fractional orders.
However, a common characteristic observed in analog implemen-
tation studies is their focus on fractional-order parameters that
are greater than 0.8. The primary contribution of this paper is the
construction of the FOCHEN system’s electronic circuit for using
standard components. Notably, this study focuses on achieving
the lowest feasible value (q = 0.8) of fractional-order, which has
only had a few examples in the literature. For this purpose, the
fractional-order values of the FOCHEN system that exhibit chaotic
behavior are decided through bifurcation analyses.

The organization of this study is as follows: Section 2 presents
the dynamical equations of the FOCHEN system and provides
a concise introduction to fractional calculus. In Section 3, some
dynamics of the fractional-order system are presented, such as
phase planes, Lyapunov spectra, and bifurcation diagrams. Sec-
tion 4 presents the construction of an electronic circuit for the
fractional-order system on a breadboard, along with a comparison
between oscilloscope outputs and PSpice simulation results. The
final section contains the conclusion.

CHEN CHAOTIC SYSTEM WITH LINEAR SCALING AND
FRACTIONAL CALCULUS

In 1999, Chen and Ueta presented a chaotic attractor that is a
special case of the Lorenz system (Chen and Ueta 1999). The
system has seven terms and three constant parameters, as shown
in the following equation:

ẋ = a(y − x)
ẏ = (c − a)x − xz + cy
ż = xy − bz

(1)

To enable the implementation of an electronic circuit, linear
scaling is required in the original Chen system, as the output values
of state variables x, y, and z exceed the necessary limitations. If
the system is linearly scaled to maintain the output voltages of the
electronic circuit between -5V and +5V, the differential equations
of the system (1) are rewritten as follows:

ẋ = a(y − x)
ẏ = (c − a)x − 10xz + cy
ż = 10xy − bz

(2)

In this form, the variables are rescaled as x = 10vx/V, y =
10vy/V, and z = 10vz/V. The system (2) produces chaotic sig-
nals when a, b and c are 35, 3 and, 28, respectively, with initial
conditions x(0) = 0, y(0) = 1, and z(0) = 0.

In fractional calculus, the concept of non-integer differentia-
tion and integration is introduced, allowing us to analyse and
model complex phenomena with non-integer dynamics. The
fractional-order derivatives and integrals are represented using
The fractional-order elementary operator aDq

t , where t and a are
the limits of the operation, and q is a real number representing
the fractional-order. Depending on the value of q, these operators
can act as fractional-order differentiators (fractional derivatives)
or fractional-order integrators (fractional integrals). Fractional
calculus provides a powerful mathematical tool to describe com-
plex processes that cannot be fully captured by classical integer-
order calculus. The continuous-time fractional-order operator is
expressed as follows:

aDq
t =


dq

dtq ; Re(q) > 0,

1; Re(q) = 0,∫ t
a (dτ)−q; Re(q) < 0.

(3)

Equivalent definitions for the fractional operator aDq
t are vari-

ous mathematical representations used to describe the behavior of
fractional calculus. Some of these definitions include Grünwald-
Letnikov, Riemann-Liouville, Caputo, Grünwald-Letnikov Matrix,
Marchaud, and Weyl definitions. Among these, the initial condi-
tions of the Caputo fractional definition resemble those of differen-
tial equations with integer order. As a result, Caputo’s definition
is selected for the fractional derivative calculations of bifurcation
diagrams and phase portraits in this study. The Caputo method is
defined as follows:

aDq
t f (t) =

{
1

Γ(n − q)

(
d
dt

)n ∫ t

a
(t − τ)n−q−1 f n(τ)dτ (4)

where n − 1 < q < 1. The Laplace transform of the Caputo
definition is represented as follows:

H(s) = L
{

dq f (t)
dtq

}
= sqL{ f (t)} (5)

Under the assumption of zero initial conditions, the transfer
function H(s) is established as a linear fractional-order integrator
with H(s) = 1/sq. Moreover, eq. (6) provides fractional deriva-
tives’ generalized Laplace transform with order q > 0.

L
{

0Dq
t f (t)

}
= sqF(s) (6)

Thus, the differential equations of the FOCHEN system are
written as follows:

Dq1
t x = a(y − x)

Dq2
t y = (c − a)x − 10xz + cy

Dq3

t z = 10xy − bz

(7)

THE FOCHEN SYSTEM’S DYNAMICAL ANALYSES

In this Section, the required dynamical analyses of the FOCHEN
system, including Lyapunov spectra, bifurcation diagrams, and
phase planes, are thoroughly investigated. In this manner, the
chaotic behavior and dynamic properties of the system (7) can
be observed. However, solving a nonlinear fractional-order sys-
tem analytically presents challenges. As a consequence, various
methods have emerged to address these systems, including the
utilization of MATLAB-based tools such as FOMCON (Tepljakov
and Tepljakov 2017), fde12 (Garrappa 2018), and ninteger (Valerio
and Da Costa 2004). In this section, the fde12 toolbox is used to
perform all dynamical analyses and simulations, excluding the
Lyapunov spectra analysis.

Bifurcation diagrams are used to understand and analyze the
behaviors of complex systems. Especially in chaotic systems, bi-
furcation diagrams are essential tools to explore and analyze the
system’s different behaviors. On the other hand, Lyapunov expo-
nents are valuable analysis tools used to understand and predict
the nature of chaotic systems and the transitions between order
and disorder. Figures 1, 2, and 3 illustrate the Lyapunov Exponents
and corresponding bifurcation diagrams for both the fractional-
order and integer-order versions of Chen system for b = 3 and
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c = 28. In the figures, initial conditions are x(0) = 0, y(0) = 1,
and z(0) = 0. Additionally, Figure 4 displays the phase planes
of the Chen system (2) and the FOCHEN system (7) based on
the bifurcation diagrams. In contrast to other numerical analyses
in this study, the Lyapunov exponents are calculated using the
Grünwald-Letnikow method (Li et al. 2023; Hosny et al. 2022).

    

Figure 1 Integer-order Chen system’s Bifurcation diagram and Lya-
punov spectra.

    

Figure 2 Bifurcation diagram and Lyapunov spectra of FOCHEN
system for q = 0.9.

    

Figure 3 Bifurcation diagram and Lyapunov spectra of FOCHEN
system for q = 0.8.

ELECTRONIC CIRCUIT IMPLEMENTATION OF THE
FOCHEN SYSTEM

The implementation of fractional-order chaotic systems in elec-
tronic circuits is important for analyzing system behaviors and
controlling complex dynamics. The electronic circuits of fractional-
order chaotic systems refer to the electronic implementations of
systems with complex dynamics represented by differential equa-
tions with fractional degrees (q). These systems offer more versatil-
ity and diversity compared to traditional integer-order differential
equations. The realization of electronic circuits for fractional-order
chaotic systems provides significant advantages in various engi-
neering applications. These systems exhibit nonlinear and random
behaviors, making them suitable for randomization and security-
based applications. Additionally, fractional-order chaotic systems

 
    (a) 

 
    (b) 

Figure 4 Phase planes of integer-order and fractional-order chaotic
systems for t(s) ∈ [0.1, 20]: (a) q = 1, a=35, b = 3, c = 28, and t(s)
∈ [0.6, 20], (b) q = 0.8, a = 30, b = 3, c = 28, and t(s) ∈ [0.1, 20].

can be used as functions that randomly mix signals and increase
entropy.

In electronic circuits, the basic elements of fractional-order
chaotic systems are fractional-order circuit components. These
components have different mathematical properties compared to
traditional resistors, capacitors, and inductors and are expressed by
the fractional degree (q). Fractional-order circuit elements are used
for the electronic implementations of fractional-order differential
equations.

An electronic circuit of the FOCHEN for (q)=0.8 is implemented
with standard components, in this section. According to circuit the-
ory (Podlubny 1999), an electronic circuit that exhibits dynamics of
non-integer order is referred to as a "fractance". To realize a chaotic
system’s electronic circuit implementation, resistor-capacitor (RC)
circuits obtained from the approximate transfer function are uti-
lized. Researchers commonly use three approaches, namely chain
fractance, domino ladder, and binary tree in their studies. In this
research, the chain fractance approach is employed for fractional-
order circuits. In this approach, there are N serial RC pairs, where
N denotes the number of layers. The transfer function of the chain
fractance in the Laplace domain is expressed as following equation,
based on the two-port network theory (Yao et al. 2020; Ahmad and
Sprott 2003):

HRC(s) =
1

C1s + 1
R1

+
1

C2s + 1
R2

+ . . . +
1

CNs + 1
RN

(8)

By utilizing eq. (5), the transfer function of the chain fractance
for q = 0.8 is written as follows:

1
s0.8 ≈ 5.3088(s + 0.1333)(s + 2.371)(s + 42.17)(s + 750)

(s + 0.01333)(s + 0.2371)(s + 4.217)(s + 75)(s + 1333)
(9)

Considering eq. (9), Table 1 depicts the values of passive circuit
elements for the fractional-order module with q = 0.8
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■ Table 1 The values of passive circuit elements required for
the fractional-order module of the FOCHEN system

Component Value

Ra 17.9 kΩ

Rb 17.075 kΩ

Rc 170.6 kΩ

Rd 1.756 MΩ

Re 37.865 MΩ

Ca 418.83 pF

Cb 780.955 pF

Cc 1.39 nF

Cd 2.4 nF

Ce 1.98 nF

Taking into account Table 1, the fractional-order module’s elec-
tronic circuit is constructed as shown in Figure 5.

Ce

1.98n

Ra

17.9k

Rb

17.075k

Cc

1.39n

Rc

170.6k

Ca

418.83p

Cb

780.955p

OUTIN

Cd

2.4n

Rd

1756k

Re

37865k

 

Figure 5 The electronic circuit of integrator for q = 0.8.

The circuit schematic of the integer-order Chen system for a =
35 is illustrated in Figure 6, with initial conditions x(0) = 0, y(0) =
1, and z(0) = 0.

Referring to Figure 6, the dimensionless equations of the system
(2) can be expressed as follows:

RC1
dvx

dt
=

Rvy

10R2
− Rvx

R1
,

RC2
dvy

dt
=

Rvx

R4
− Rvxvz

10R5
+

Rvy

R3
,

RC3
dvz

dt
=

Rvxvy

10R6
− Rvz

R7
,

(10)

where the component values are C1,2,3 = 2.5nF, R1,2 = 11.4kΩ,
R3 = 14.286kΩ, R4 = 51.14kΩ, R5,6 = 4kΩ, R7 = 133kΩ, and R8,9
= 10kΩ. RC is the time scale factor and is set to 1ms. DC voltage
sources are also VP = −VN = 15V. The plot in Figure 7 displays
the voltage values on the X, Y, and Z terminals in relation to one
another.

As shown in Figure 8, the electronic circuit realization of the
integer-order Chen system is constructed on a breadboard. When
considered together with Figure 7, the oscilloscope outputs of the
PSpice simulation and electronic circuit realization of the integer-
order Chen system are similar.
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Figure 6 The circuit of the original Chen system (2) with linear scal-
ing in PSpice program.
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Figure 7 Phase portraits of integer-order Chen chaotic system in
PSpice simulation.

 

                      (a)                                          (b)                                          (c) 

Figure 8 Integer-order Chen chaotic system’s oscilloscope
views: (a)vx(0.5V/div)-vy(1V/div), (b) vx(0.5V/div)-vz(0.5V/div),(c)
vy(0.5V/div)-vz(1V/div).
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The primary challenge in implementing an electronic circuit lies
in modeling a fractional-order system using standard components.
Considering Figure 3, it is observed that the suitable parameter
values for q = 0.8 are a = 30, b = 3, and c = 28. The electronic
circuit implementation of the FOCHEN system employing the
chain fractances for q = 0.8 is shown in Figure 9.

The initial conditions are chosen as x(0) = 0, y(0) = 1, and
z(0) = 0. Note that the fractional integral operator is transformed
into a chain fractance with N=5. The circuits depicted in Figures
6 and 9 consist of passive and active circuit elements, including
TL081 (operational amplifiers) and AD633 (multipliers), which are
readily available in the market. Component values of the fractional-
order electronic circuit are as follows: C1,6,11 = 418.83pF, C2,7,12 =
780, 955pF, C3,8,13 = 1.39nF, C4,9,14 = 2.4nF, C5,10,15 = 1.98nF,
R1 = 13.3kΩ, R2 = 13.3kΩ, R3 = 14.286kΩ R5,6 = 4kΩ, R7 =
133kΩ, R8,9 = 10kΩ, R10,15,20 = 17.9kΩ, R11,16,21 = 17.075kΩ,
R12,17,22 = 170.6kΩ, R13,18,23 = 1.756MΩ, R14,19,24 = 37.865MΩ.
The DC voltage sources are VP = −VN = 15V. The oscilloscope
views of the voltages on the terminals (X, Y, and Z) of the FOCHEN
system’s electronic circuit, plotted against each other, are shown in
Figure 10.
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Figure 9 Circuit schematic of FOCHEN system for q = 0.8.
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Figure 10 Phase planes of FOCHEN system in PSpice simulation
for q = 0.8.

As presented in Figure 11, the electronic circuit realization of
the FOCHEN system is constructed on a breadboard. When con-
sidered together with Figure 10, the oscilloscope views of PSpice

simulation and electronic circuit realization of the fractional-order
system are very similar.

 

                     (a)                                           (b)                                          (c) 

Figure 11 The FOCHEN system’s oscilloscope views: (a)
vx(0.5V/div)-vy(0.5V/div), (b) vx(0.5V/div)-vz(0.5V/div),(c)
vy(0.5V/div)-vz(0.5V/div).

Finally, it is observed that the results of PSpice simulations
and electronic circuit implementations are consistent with the nu-
merical analysis results conducted in the previous section. This
confirms the applicability and consistency of the fractional-order
modules. The electronic circuit of the FOCHEN system, along
with the fractional-order modules, constructed on a breadboard, is
shown in Figure 12.

 

Figure 12 The electronic circuit of the FOCHEN system with the
fractional-order modules.

CONCLUSION

Fractional-order analysis offers a means to enhance the diversity
of dynamics in chaotic systems. This study presents an electronic
circuit realization for the Chen system, incorporating a low-value
fractional order and utilizing standard electronic components. The
dynamic characteristics of the FOCHEN system are examined by
conducting various analyses, such as phase portraits, Lyapunov
spectra, and calculations of bifurcation diagrams. Additionally, the
system’s chaotic behavior for different fractional-order values is
revealed through bifurcation diagrams and Lyapunov exponents
analyses. Based on the numerical analyses and PSpice simulations,
the minimum applicable fractional-order value (q) for the elec-
tronic circuit implementation of the FOCHEN system is found to
be 0.8. The electronic circuit of the fractional-order system is con-
structed on a breadboard using discrete circuit elements, which are
easily available in the market. The electronic circuit realization’s
voltage outputs, as observed in oscilloscope images, align with
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numerical analyses and PSpice simulation program results. As a
result, through fractional-order calculus, the dynamic diversity of
the Chen system is enhanced. Thus, the FOCHEN system is a po-
tentially chaotic system for use in data security applications where
applicability and complexity are crucial. As expected, oscilloscope
views of the electronic circuit realization align with the numerical
analysis and PSpice simulation results.
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