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Abstract. In this study, we investigate the matrices over the new extension

of the real numbers in four dimensional space E4
2 called the hybrid numbers.

Since the hybrid multiplication is noncommutative, this leads to finding a
linear transformation on the complex field. Thus we characterize the hybrid

matrices and examine their algebraic properties with respect to their complex

adjoint matrices. Moreover, we define the co-determinant of hybrid matrices
which plays an important role to construct the Lie groups.

1. Introduction

The extension of the real number system raises by investigating the solutions of
the quadratic equations given as follows:

(1.1) x2 + 1 = 0, x2 − 1 = 0 and x2 = 0.

As a result, the new units called the imaginary i2 = −1, the unipotent h2 = 1
(h 6= ∓1) and the nilpotent ε2 = 0 (ε 6= 0) enter in the history of mathematics and
yield the new number systems named by complex numbers, hyperbolic numbers
and dual numbers, respectively [21, 23, 24]. All three number systems are two-
dimensional vector spaces over the real numbers, this implies that the points of R2

can be identified by them with respect to their metric systems. These correspond-
ing metrics yield two-dimensional Euclidean geometry, Lorentzian geometry and
Galilean geometry, respectively. Then the identification of a point A = (x, y) can
be seen in the following planes with respect to the systems:

Date: Received: 2023-07-24; Accepted: 2023-10-08.

2000 Mathematics Subject Classification. 15A33, 53A35; 15A57, 53Z05.
Key words and phrases. Complex numbers, Dual numbers, Hyberbolic numbers, Hybrid num-

bers, Hypercomplex numbers, Complex matrices, Hybrid matrices.

1
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(a) Euclidean plane (b) Lorentzian plane (c) Galilean plane

Figure 1. Coordinate planes of metric systems in two-
dimensional space

Moreover, Clifford algebras can be studied on the vector spaces of complex num-
bers, dual numbers and hyperbolic numbers via elliptic, parabolic and hyperbolic
bilinear forms, respectively. It is also known as EPH-classification of these number
systems. The EPH-classification is closely linked with the elliptic, hyperbolic and
parabolic analytic function theories [4, 6, 16].

The historical evolution of the ideas on how to manage the extension of numbers
gives us the quaternions introduced by Hamilton [12] as the most-known general-
ization of complex numbers. The set of quaternions is generally represented in the
form:

(1.2) H = {q = q0 + q1i+ q2j + q3k : qs ∈ R , 0 ≤ s ≤ 3}

where i, j, k are quaternionic units and hold i2 = j2 = k2 = ijk = −1. Since the
set H is a non-commutative associative algebra over the real numbers, the matrices
of quaternions becomes one of the interesting topics in the matrix theory. A brief
survey on the quaternionic matrices given by Zhang [26] presents some methods for
some basic functions for matrices such as determinant, computing the eigenvalue.
The method is based on finding the complex adjoint matrix of any quaternionic
matrix. After that, various studies are born about the matrices of quaternions and
their applications [5, 8, 10,14,25].

Another well-known member of non-commutative algebras is the set of split
quaternions introduced by Cockle [7] as follows:

(1.3) Ĥ= {q̂ = q̂0 + q̂1i+ q̂2j + q̂3k : q̂t ∈ R , 0 ≤ t ≤ 3}

where i2 = −1 and j2 = k2 = ijk = 1. The difference between Ĥ and H is

the existence of zero divisors, nilpotent elements and nontrivial idempotents in Ĥ.
After work of Zhang, the quaternionic matrices and their properties are studied

over Ĥ by the compatible methods [1, 11,15,19,20].
In the system R4, we meet the new phenomenon named as hybrid numbers and

given in the following form:

(1.4) K = {X = x0 + x1i+ x2ε+ x3h : xj ∈ R , 0 ≤ j ≤ 3}

where i, ε and h are the complex, dual and hyperbolic units, respectively [17]. There
are considerable differences between K and the two sets previously describe, out
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of the noncommutativity. Under this view, hybrid numbers firstly give the blood
relativity of two different classes of vectors:

Characters EPH-classification︷ ︸︸ ︷ Timelike
Spacelike
Lightlike

 ←−−−−−−−−−−−→
Hybrid Numbers

︷ ︸︸ ︷ Elliptic
Parabolic
Hyperbolic


Secondly, there is the isomorphism between 2×2 real matrices and hybrid numbers
and thus a classification of 2×2 real matrices and an algebraic method to find their
roots are obtained by the hybrid numbers [18]. The short history of the hybrid
numbers reveals us their advantages on real matrix algebra and the sequences of
special numbers [9, 22].

In this study, we will examine the hybrid matrices by improving the Zhang’s
method over K. In the second section, we give some basic notions and properties
of hybrid numbers, and more importantly, we change the spelling of the hybrid
numbers. They are rewritten in the form named as the C−type which will be used
to built a linear transformation between K and the set of 2× 2 complex matrices.
This correspondence yields the second relationship between eigenvalues and types
of hybrid numbers as follows:

Eigenvalues EPH-classification︷ ︸︸ ︷ λ1,2 ∈ C
λ1 = λ2

λ1,2 ∈ R

 ←−−−−−−−−−−−→
Hybrid Numbers

︷ ︸︸ ︷ Elliptic
Parabolic
Hyperbolic


In the third section, the matrices of hybrid numbers are introduced and their prop-
erties are obtained. After that, in the fourth section, to prevent the disadvantages
of the noncommutativity of hybrid numbers we define the complex adjoint of hybrid
matrices. Hence the determinant of hybrid matrices could be characterized, and so
they are analyzed in the theory of Lie groups.

2. Basic Concepts of Hybrid Numbers

In this section, we initially introduce hybrid numbers with fundamental features.
Then we establish a new form called C−type and give the properties of hybrid
numbers in the new form.

A hybrid number occurs in the combination form of the three types of number
systems, complex, dual and hyperbolic numbers, as the following:

(2.1) X = x0 + x1i+ x2ε+ x3h

where xj ∈ R , 0 ≤ j ≤ 3 and the basis elements {1, i, ε, h} are satisfying the
multiplication rules given in the following table.

(2.2)

· 1 i ε h
1 1 i ε h
i i −1 1− h i+ ε
ε ε 1 + h 0 −ε
h h −i− ε ε 1

By the compotentwise addition and scalar multiplication, the set of hybrid num-
bers denoted by K becomes a 4-dimensional vector space over the real numbers.
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Furthermore, the hybrid number algebra is an associative, noncommutative ring
with respect to the addition and multiplication operations.

The hybrid number X is composed of the scalar part S(X) = x0 and the vector
part V (X) = x1i + x2ε + x3h. The conjugate of X is the hybrid number defined
by X = S(X) − V (X). If x2 = x3 = 0, then the conjugate of hybrid number
means the conjugate of complex number, and vice versa. Moreover, there are two
kinds of vectorial representation of X given by V(X) = (x0, x1 − x2, x2, x3) and
Vh(X) = (x1 − x2, x2, x3) which is specifically called the hybrid vector of X. Thus,
there exist the following functions:

C(X) = x2
0 + (x1 − x2)2 − x2

2 − x2
3(2.3)

Ch(X) = −(x1 − x2)2 + x2
2 + x2

3

where C(X) = −〈V(X),V(X)〉 and Ch(X) = 〈Vh(X),Vh(X)〉 are equipped with
the signature (−,−,+,+) of E4

2 the four dimensional Minkowski space and the
subspace E3

1, respectively. These functions yield the following classifications of the
hybrid number X with respect to the corresponding Minkowski metrics:

A hybrid number X ∈ K is

• Spacelike if C(X) < 0 or X = 0,
• Timelike if C(X) > 0,
• Lightlike (null) if C(X) = 0 and X 6= 0,

which are called the characters of the hybrid number X.
The types of the hybrid number X are given by

• If Ch(X) < 0, X is elliptic,
• If Ch(X) > 0, X is hyperbolic,
• If Ch(X) = 0, X is parabolic.

Consequently, the following table is set to show the relation between the two
characterizations of hybrid numbers.

(2.4)

Classification by Types Classification by Characters
Elliptic Timelike
Hyperbolic Spacelike, Timelike, Lightlike
Parabolic Timelike, Lightlike

Until now, we summarize briefly the basic algebraic properties of the noncom-
mutative ring K for more details the reader is referred to [17].

Our first aim in the present paper is to find a linear transformation between
hybrid numbers and express them via the matrix of the transformation thus we
could explore the properties of hybrid numbers in another convenient way. For this
inherent reason, the multiplication rule of the unit ε in (2.2) allows us to observe
the hybrid numbers in terms of the basis {i, h}. Thus we can explain the hybrid
number X = x0 + x1i+ x2ε+ x3h as follows:

(2.5) X = z1 + z2h, z1, z2 ∈ C

where z1 = x0 + (x1 − x2) i, z2 = x3 + x2i. Since this appears, at first sight, to be
a complex hyperbolic number, we call (2.5) as the C−type of hybrid number X in
order to avoid the confusion. Then we can obviously conclude the following.

Theorem 2.1. Every hybrid number can be uniquely expressed in the form of
C−type.
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Corollary 2.2. The C−type of a hybrid number become equivalent to its open form
if and only if the hybrid number is a complex number.

The fundamental functions on the set of hybrid numbers of the C−type are given
as follows:
i) Addition:

X + Y = (z1 + w1) + (z2 + w2h),

ii) Multiplication:

XY = z1w1 + z2w2 + (z1w2 + z2w1)h,

iii) The hybrid conjugate:

X = z1 − z2h,

iv) Functions of characteristics:

C(X) = |z1|2 − |z2|2 and Ch(X) = −V (z1)2 + |z2|2 ,

v) The inverse of a hybrid number:

X−1 =
z1

C(X)
− z2

C(X)
h

vi) The two kind norms of a hybrid number:

‖ X ‖=
√
|C(X)| and ‖ X ‖h=

√
|Ch(X)|

where X = z1 + z2h, Y = w1 + w2h ∈ K and V (z1) is the imaginary part of z1.
The next theorem summarizes the properties of the hybrid conjugate.

Theorem 2.3. For the hybrid numbers X = z1 + z2h and Y = w1 + w2h, the
properties listed below are true.

i. X =
(
X
)
,

ii. XX = XX = z1z1 − z2z2,
iii. X + Y = X + Y ,
iv. XY = Y X,
v. C(X) = C(X) and Ch(X) = Ch(X),

vi. (X−1) =
(
X
)−1

,

vii. X = X if and only if X is a real number,
viii. hz = zh or hzh = z for any complex number z.

Proof. In general, the properties can be proved easily. Let’s at least have confidence
in the accuracy of (iv) and (vi).
The proof for (iv);

XY = z1w1 + z2w2 − (z1w2 + z2w1)h

= w1 z1 + w2z2 − (w1z2 + w2z1)h

= Y X.
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The proof for (vi); (
X
)−1

=
(z1)

C(X)
− (−z2)

C(X)
h

=
z1

C(X)
+

z2

C(X)
h

= (X−1).

�

Now let us define the following bijective map,

(2.6)
ψX : K → K

Y →ψ(Y ) = Y X

where as a consequence of the ring structure of hybrid numbers we could see that
ψX is a linear map. It is well known that every linear map can be represented by
a matrix, so we get

ψX(1) = z1 + z2h,

ψX(h) = z2 + z1h,

and then the matrix of the transformation ψ with respect to the standard bases is
given as follows:

[ψX ] =

[
z1 z2

z2 z1

]
.

where X = z1 + z2h.
Consequently, the following theorem is stated.

Theorem 2.4. Every hybrid number can be represented by a 2×2 complex matrices.

Notice that the subset of the matrix ring M2(C) given such as

(2.7) K =

{
A =

[
z1 z2

z2 z1

]
: z1, z2 ∈ C

}
actually represents the set of hybrid numbers K. Since the transformation between
K and K is bijective and linear, then the operations are preserved. Moreover, let

the corresponding matrix of X = z1 + z2h be A =

[
z1 z2

z2 z1

]
, we have

(2.8) detA = C(X), trA = 2 funcRe(z1) and λ1,2 =
trA

2
∓
√
Ch(X)

where λ1 and λ2 are the eigenvalues of A.

Corollary 2.5. The inverse of a hybrid number exists if and only if the determinant
of the corresponding complex matrix of the hybrid number is different from zero.

Definition 2.6. The characters of A ∈ K can be defined as
i. A is spacelike, if detA < 0,
ii. A is timelike, if detA > 0,
iii. A is lightlike, if detA = 0.
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Definition 2.7. The types of A ∈ K can be given in terms of its eigenvalues λ1,2

as follows:
i. A is elliptic, if λ1,2 ∈ C,
ii. A is hyperbolic, if λ1,2 ∈ R,
iii. A is parabolic, if λ1 = λ2.

Corollary 2.8. If A ∈ K is a Hermitian matrix, then its corresponding hybrid
number must be hyperbolic or parabolic.

Now, we observe the matrices of hybrid numbers according to the three differ-
ent concepts of complex matrix theory which are unitary, Hermitian and skew-
Hermitian matrices. Let A ∈ K be the corresponding complex matrix of the hybrid
number X = z1 + z2h, we can give the following statements.

• If A is the unitary matrix, then AA
T

= I2 which yields

(2.9) z1z1 + z2z2 = 1 and z1z2 = 0.

For the case z1 = 0, we have z2z2 = 1 means that z2 = cos θ + sin θi. Then
the C−type of X is

(2.10) X = eiθh

where X is a spacelike hyperbolic hybrid number. On the other hand, if
z2 = 0, the C−type forms of X meets the open form of it means that X is
a complex number such that

(2.11) X = eiθ.

• If A is the Hermitian matrix, then we obtain z1 = z1 and Ch(X) = z2z2.
From Corollary 4, we can distinguish two cases:
i. If X is parabolic hybrid number, then z2 = 0 and X ∈ R\{0},
ii. If X is hyperbolic hybrid number, X could have the three kinds of
characters. In addition to, the null case will be appeared as the Pythagorean
condition and therefore the components can be expressed as follows:

(2.12) z1 = w(u2 + v2) and z2 = w
[
2uv +

(
u2 − v2

)
i
]

where w is constant, u and v are relatively prime.
• A is the skew-Hermitian matrix if and only if X is a pure complex number,

namely X = xi, x ∈ R.

3. Introduction to Hybrid Matrices

In this section, our first results concern the matrices of hybrid numbers. After
that we explain them in terms of the complex matrices by using the C−type form of
hybrid numbers. Hence we could analyze the properties of hybrid number matrices
by using the algorithms of the complex matrix theory.

Let us introduce the set of m × n type matrices with the hybrid number com-
ponents, denoted by Mm,n(K). If m = n, then we briefly use the notation Mn(K).
With the ordinary matrix addition and multiplication the set Mn(K) is going to
become a noncommutative ring where the unit is In. If the equation AB = BA = In
exists for B ∈Mn(K), we call A is invertible and denote B = A−1.

Moreover, the propositions of left vector space endowed by [26] can be satisfied
by the following scalar multiplication:

(3.1) XA = [Xaαβ ]
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where X ∈ K and A = [aαβ ] ∈ Mm,n(K). Hence we know that Mm,n(K) is a left
vector space over K. Similarly, the definition of scalar multiplication AX = [aαβX]
yields the right vector space over K.

If we use the C−types of the components of the hybrid matrix A = [aαβ ] ∈
Mm,n(K), then the components are written as aαβ = a1

αβ + a2
αβh ∈ K and we get

(3.2) A = A1 +A2h

where A1 = [a1
αβ ], A2 = [a2

αβ ] ∈ Mm,n(C). The transpose of A is AT = [aβα] =

AT1 +AT2 h and the conjugate of A is A = [aαβ ] = A1 −A2h.

Definition 3.1. The conjugate transpose of a hybrid matrix A, denoted by A∗, is

A∗ = A
T

where the entries of A are the hybrid conjugates of the corresponding entries of A.

Ideally, we shall consider specific square hybrid matrices in terms of the conjugate
transpose as follows:

• A = A∗, A is Hermitian,
• A = −A∗, A is skew-Hermitian,
• A−1 = A∗, A is unitary,
• AA∗ = A∗A, A is normal.

Definition 3.2. Let λ ∈ K and A ∈Mn(K). If λ satisfies the following equation

(3.3) Ax = λx,

then λ is called the left eigenvalue of A for some non-zero x ∈Mn,1(K). The set of
the left eigenvalues of A is called the left spectrum of A.

Note that we can similarly define the right eigenvalue (Ax = xλ, λ ∈ K) and the
right spectrum of A because of the noncommutativity.

Example 3.3. (i) For the hybrid matrix A ∈M2(K),

A =

[
0 ε
ε 0

]
{0, ε,−ε} is the subset of the intersection of the left and the right spectrums of A.

(ii) For the hybrid matrix B ∈M2(K),

B =

[
0 h
−h 0

]
some of the left eigenvalues of B are {∓(i+ ε)} but none of them is the element of
the right spectrum of B. Similarly, some of right eigenvalues of B are {∓i} but not
the left eigenvalues of B.

The theorems below list several properties of hybrid matrices. The first theorem
show the properties which are generally correct, therefore, we construct an example
for an explicit proof. On the other hand, the direct proof method can be used for
the consecutive theorem.

Theorem 3.4. If A ∈Mm,n(K) and B ∈Mn,s(K), then the properties listed below
are true in general.

i.
(
A
)−1 6= (A−1),

ii.
(
AT
)−1 6=

(
A−1

)T
,
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iii. AB 6= BA,
iv. AB 6= B A,

v. (AB)
T 6= BTAT .

Example 3.5. Let the two hybrid matrices be A =

[
i ε
0 h

]
and B =

[
ε 0
0 0

]
.

We obtain the following:

i.
(
A
)−1

=

[
i 1− h
0 −h

]
6=
[
i −1− h
0 −h

]
= (A−1),

ii.
(
AT
)−1

=

[
−i 0

1 + h h

]
6=
[

−i 0
−1 + h h

]
=
(
A−1

)T
,

iii. AB =

[
1− h 0

0 0

]
6=
[

1 + h 0
0 0

]
= BA

iv. AB =

[
1 + h 0

0 0

]
6=
[

1− h 0
0 0

]
= B A,

v. (AB)
T

=

[
1− h 0

0 0

]
6=
[

1 + h 0
0 0

]
= BTAT .

Remark 3.6. The sufficient condition for the existence of the third case of theorem
4 occur with the invertible matrices. Moreover, if AB = I for any A = A1 + A2h,
B = B1 +B2h ∈Mn(K), this provides BA = I. From the hypothesis we get

(3.4) A1B1 +A2B2 +
(
A1B2 +A2B1

)
h = In

and (3.3) is equal to the following matrix product

(3.5)

[
A1 A2

A2 A1

] [
B1 B2

B2 B1

]
=

[
In 0
0 In

]
which yields BA = I since the left hand side of (3.4) is the product of 2n × 2n
complex matrices and the hypothesis is true for the complex matrices.

Theorem 3.7. If A ∈ Mm,n(K), B ∈ Mn,s(K) and X ∈ K, then the properties
listed below are true.
i.
(
A
)T

= (AT ),

ii. (A) =
(
AT
)T

= (A∗)
∗

= A,

iii. (XA)
∗

= A∗X,
iv. (A+B)

∗
= A∗ +B∗,

v. (AB)
∗

= B∗A∗,
vi. (AB)−1 = B−1A−1 if A and B are invertible,

vii. (A∗)
−1

=
(
A−1

)∗
if A invertible.

Proof. The proof of the first four properties and (vi) can be easily shown with using
the properties of complex matrix theory and Theorem 2 in the previous section.
Let us prove (v) with A = A1 +A2h and B = B1 +B2h, where A1, A2, B1 and B2

are process-compatible complex matrices, then we have

(AB)
∗

=
[
A1B1 +A2B2 +

(
A1B2 +A2B1

)
h
]∗

=
[
A1B1 +A2B2

]∗ − [A1B2 +A2B1

]T
h

= (A1B1)
∗

+
(
A2B2

)∗ − (A1B2)
T
h−

(
A2B1

)T
h

= B∗
1A

∗
1 +

(
B2

)∗
A∗

2 −BT2 A1h−
(
B1

)T
AT2 h

= B∗A∗.
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As a consequence of the fifth property, we can obtain the case (vii). �

4. Complex Matrix Equivalence For Hybrid Matrices

The linear map ψX : K→ K defined in the second section gives us the oppor-
tunity to examine the properties of hybrid numbers over 2 × 2 complex matrices.
Since the hybrid multiplication is noncommutative, there are also limitations in
questioning the linear algebra over hybrid matrices. In this section, our aim is to
turn a hybrid matrix into a complex matrix to use the several properties of linear
algebra over the complex field.

In this way, we define a map, Ψn, that is between Mn(K) and M2n(C) , such as

Ψn(A) =

[
A1 A2

A2 A1

]
where A = A1 +A2h ∈ Mn(K) and A1, A2 ∈Mn(C).

Notice that Ψn is a continuous, injective ring homomorphism and described with
respect to the linear map ψX . For n = 1, we can have the corresponding complex
matrix of a hybrid number. We call that Ψn(A) is the adjoint matrix of A ∈Mn(K),

and denote by Ã ∈M2n(C).

Example 4.1. Let A =

[
1 + ε i+ ε+ h
1 + h 1

]
be a hybrid matrix. Then we can

rewrite it by using the C−types of the components as in following form:

(4.1) A =

[
1− i 0

1 1

]
+

[
i 1 + i
1 0

]
h.

Thus the conjugate matrix of A is

(4.2) Ã =


1− i 0 i 1 + i

1 1 1 0
−i 1− i 1 + i 0
1 0 1 1

 .
The following theorem summarizes the properties of adjoint matrices.

Theorem 4.2. Let A = A1 + A2h, B = B1 + B2h ∈ Mn(K) and their adjoint

matrices be Ã, B̃ ∈Mn(C), then the followings are true.

i. If A = In, then Ã = I2n,

ii. Ã+B = Ã+ B̃,

iii.Ã B = Ã B̃,

iv. Ã−1 =
(
Ã
)−1

if A−1 exists,

v.
(
Ã
)T

= (̃AT ) if A2 ∈Mn(R),

vi.
(̃
A
)

=
(
Ã
)

if A2 is a pure complex matrix,

vii. (̃A∗) =
(
Ã
)∗

if A ∈Mn(C).

Proof. Truth of (i) and (ii) are clear. Let us prove (iii). The adjoint matrices of A
and B are

(4.3) Ã =

[
A1 A2

A2 A1

]
and B̃ =

[
B1 B2

B2 B1

]
.
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Multiplying the adjoints, we obtain the complex matrix

(4.4) Ã B̃ =

 A1B1 +A2B2 A1B2 +A2B1

A1 B2 +A2B1 A1 B1 +A2B2

 .
Since the hybrid matrix form of (4.4) is

A1B1 +A2B2 +
(
A1B2 +A2B1

)
h(4.5)

or (A1 +A2h) (B1 +B2h)

then we have Ã B = Ã B̃.
Applying the third property for the matrices A and A−1 then we get (iv), fur-

thermore, the properties given by Theorem 5 yields the rest. �

The fourth property of the previous theorem sets out that the image under Ψn

of an invertible hybrid matrix is an invertible complex matrix. Hence we can talk
about the determinant of a hybrid matrix by the combination of det and Ψn, then
we can conclude the following.

Definition 4.3. Let A ∈Mn(K) and Ã ∈M2n(C) be the adjoint matrix of A. The

co-determinant of A is the complex determinant of Ã, denoted by |A|c.

Theorem 4.4. Let A ∈Mn(K). The following are equivalent:
i. A is invertible,
ii. Ax = 0 has a unique solution, x = 0,
iii. The left (or right) eigenvalues of A do not vanish,

iv. Ã is invertible.

Proof. (i⇒ ii) This is a trivial outcome.
(ii⇐⇒ iii) Assume that A has zero eigenvalue. Then the equation (3.3) satisfies,

such as Ax = 0, for some non-zero values which is a contradiction.
(iii⇒ iv) Consider the second case instead of (iii), if Ax = 0 for x = x1 +x2h ∈

Mn,1(K) then we have

A1x1 +A2x2 + (A1x2 +A2x1)h = 0 or

A1x1 +A2x2 = 0 and A2x1 +A1x2 = 0.

This means that the determinant of

[
A1 A2

A2 A1

]
is different from zero due to the

unique solution.
(iv⇒ i) If Ã is invertible, then there exist a complex matrix such that[

Z1 Z2

Z3 Z4

] [
A1 A2

A2 A1

]
= I2n.

It follows that

Z1A1 + Z2A2 = I and Z1A2 + Z2A1 = 0

which yields
(
Z1A1 + Z2A2

)
+
(
Z1A2 + Z2A1

)
h = I, then the hybrid matrix Z =

Z1 + Z2h is the inverse of A from Remark 2 . �

Note that the last case of the previous equivalence theorem implies that a hybrid
matrix is invertible if and only if its co-determinant must be different from zero.
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Thus we can state the concept of general linear, special linear, and symplectic
groups to the hybrid numbers, respectively, as follows:

GLn(K) = {A ∈Mn(K) | |A|c 6= 0} ,
SLn(K) = {A ∈Mn(K) | |A|c = 1} ,(4.6)

SPn(K) =
{
A ∈ GLn(K) | A−1 = A∗} .

Furthermore, since any closed subgroup of GLn(C) is a Lie group, these groups are
Lie groups. Then we can obtain the Lie algebras along with the bracket operation
over matrices such as [A,B] = AB − BA, A,B ∈ Mn(K). For example, the Lie
algebra of GLn(K) is the set of all n× n matrices with entries in K, that is

(4.7) gln(K) = Mn(K)

and the Lie algebra of SPn(K) is the set

(4.8) spn(K) = {A ∈Mn(K) | A+A∗ = 0}
and finally the Lie algebra of SLn(K) is the set

(4.9) sln(K) =
{
A ∈Mn(K) | tr

(
Ã
)

= 0
}

where it can be easily seen that tr
(
Ã
)

= 0 if and only if scalar part of tr(A) is
zero.

Theorem 4.5. Let A,B ∈Mn(K), the co-determinants satisfy the following prop-
erties,
i. |A B|c = |A|c |B|c ,
ii.
∣∣A−1

∣∣
c

= |A|−1
c , if A ∈ GLn(K),

iii. |P A Q|c = |A|c , for P,Q ∈ SLn(K),
iv. Cayley-Hamilton Theorem for hybrid matrices: Let A be a square hybrid ma-

trix and the characteristic polynomial of A be PA(λ) =
∣∣∣λI2n − Ã∣∣∣ , λ ∈ C, then

PA(A) = 0.

Proof. (i) . From the third property of theorem 6, we get |A B|c =
∣∣∣Ã B

∣∣∣ = |Ã
B̃| = |A|c |B|c ,
(ii). From the fourth property of theorem 6, if A ∈ GLn(K) then we have

∣∣A−1
∣∣
c

=∣∣∣Ã−1
∣∣∣ =

∣∣∣∣(Ã)−1
∣∣∣∣ = |A|−1

c ,

(iii). If the hybrid P,Q ∈ SLn(K) which means they are elementary matrices and
|P |c = |Q|c = 1, this completes the proof.

(iv) . The coefficients of the polynomial PA(λ) are real [26]. Then we have p̃(A) =

PA(Ã) for any real coefficient polynomial p. On the other hand, Cayley-Hamilton

theorem for the complex matrices proves that PA(Ã) = 0 for Ã ∈ M2n(C). This

implies that p̃(A) = 0, namely PA(A) = 0. �

5. Conclusion

In number theory, different studies are available in which the complex, dual and
hyperbolic numbers systems are expressed in the one sentence [3,13]. One of them
has arisen recently and called the hybrid number. When the interdisciplinary ap-
plications of the constituent number systems are observed, we obviously see that
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the most effective results are obtained by their matrices. From a technique point of
view, matrices can be taken into account as functional tools to organize the accumu-
lated knowledge, accelerate the calculations and finally formulate the conclusions
in various developed mathematical frameworks. The result of these motivations,
the satisfactory concept of this study rises as the necessity of hybrid matrices.

The present paper is concerned with the linear algebra over hybrid matrices.
However, we have to face the limitations on algebraic properties of the hybrid
matrices by the fact that the hybrid multiplication is noncommutative. In this
way, we firstly use an alternative form for hybrid numbers called the C−type and
obtain the subset of 2× 2 complex matrices, K which represents the matrices cor-
responding to hybrid numbers by the transformation ψX . After describing and
investigating the basic properties of hybrid matrices, we are aware of the need to
rearrange them. Therefore, we define a continuous, injective ring homomorphism
Ψn between Mn(K) and M2n(C) by taking advantage of the effect of the transfor-
mation ψX on the hybrid numbers. Thus the adjoint matrices of hybrid matrices
are obtained over complex numbers, this gives us the right to implement the prop-
erties of linear algebra over the complex field for hybrid matrices. Since Ψn turns
an invertible hybrid matrix to an invertible complex matrix, we could have the one
of the important result that is the calculation of determinant of hybrid matrices.
This leads to describe general linear, special linear, and symplectic groups of the
hybrid numbers and their corresponding Lie algebras, respectively. Finally, we state
Cayley-Hamilton theorem for hybrid matrices.
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[11] M. Erdoğdu, M. Özdemir, On eigenvalues of split quaternion matrices, Adv. Appl. Clifford

Algebras, Vol.23, No.3, pp.615-623 (2013).
[12] W. R. Hamilton, Elements of quaternions, Longmans, Green, & Company, (1866).

[13] A.A. Harkin, J.B. Harkin, Geometry of generalized complex numbers, Math. Mag., Vol.77,

No.2, pp.118-29 (2004).
[14] L. Huang, W. So, On left eigenvalues of a quaternionic matrix, Linear algebra and its appli-

cations, Vol.323, No.1-3, pp.105-116 (2001).

[15] T. Jiang, Z. Zhang, Z. Jiang, Algebraic techniques for eigenvalues and eigenvectors of a split
quaternion matrix in split quaternionic mechanics, Computer Physics Communications,Vol.229,

pp.1-7 (2018).
[16] V.V. Kisil, Erlangen program at large-1: geometry of invariants, SIGMA Symmetry Integr.

Geom. Methods Appl., Vol.6, No.076, pp.45 (2010).

[17] M. Ozdemir, Introduction to hybrid numbers. Adv. Appl. Clifford Algebras, Vol.28, pp.1-32
(2018).

[18] M. Ozdemir, Finding n-th roots of a 2×2 real matrix using De Moivre’s formula, Adv. Appl.

Clifford Algebras, Vol.29, No.1, pp. 2 (2019).
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Boston, (2013).

[22] A. Szynal-Liana, The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl., Vol.38,

pp.91-98 (2018).
[23] I.M. Yaglom, Complex Numbers in Geometry, Academic Press, New York, (1968).

[24] I.M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Heidelberg Science

Library, Springer, New York, (1979).
[25] Y. Yazlik, S. Kome, C. Kome, Bicomplex generalized k−Horadam quaternions, Miskolc Math-

ematical Notes, Vol.20, No.2, pp.1315-1330 (2019).

[26] F. Zhang, Quaternions and matrices of quaternions. Linear Algebra Appl., Vol.251, pp.21-57
(1997).



MATRICES OF HYBRID NUMBERS 15
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(Yasin YAZLIK) Nevşehir Hacı Bektaş Veli University, Faculty of Science and Arts,

Department of Mathematics, 50300, Nevşehir, Turkey
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