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Abstract. In this paper, we employ group rings and some known results on
group codes to study reversible group DNA codes. We define and study re-

versible cyclic DNA codes from a group ring point of view and we also introduce

the notion for self-reciprocal group ring elements. Moreover, we search for re-
versible group DNA codes with the use of a virus optimisation algorithm. We

obtain many good DNA codes that satisfy the Hamming distance, the reverse,

the reverse-complement and the fixed GC-content constraints.

The interest in studying and designing DNA codes has been started with Adle-
man when he solved a computationally difficult mathematical problem by intro-
ducing an algorithm using DNA strands and molecular biology tools [1] and it is
still an ongoing research area. Some known methods for designing DNA codes that
satisfy certain conditions include the study of reversible codes [15], reversible self-
dual codes over GF (4) [9], the study of cyclic and extended cyclic constructions or
the study of linear constructions [7].

Recently in [4], linear codes derived from group ring elements are considered
to construct reversible DNA codes that satisfy the Hamming distance constraint.
This suggests that the study of group rings is an interesting research direction that
may have some useful applications to DNA coding. In this work, we employ group
rings and a matrix construction given in [4] to study reversible cyclic DNA codes.
We also use group rings to define a self-reciprocal group ring element. Moreover,
we construct reversible group codes of different lengths over the finite commutative
Frobenius ring R, that satisfy the Hamming distance, the reverse, the reverse-
complement and the fixed GC-content constraints.

The paper is organised as follows. In Section 2, we give the basic definitions
and results on linear codes, DNA codes, group rings, group codes and reversible
group codes. In Section 3, we define and study reversible cyclic DNA codes from a
group ring point of view. In this section, we also define a self-reciprocal group ring
element. In Section 4, we present two generator matrices for reversible group codes
which we then use to search for DNA codes that satisfy the Hamming distance,
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the reverse, the reverse-complement and the fixed GC-content constraints. In our
search scheme, we employ a virus optimisation algorithm which allows us to obtain
numerical results in a reasonable quick time. We finish with concluding remarks
and directions for possible future research.

1. Preliminaries

1.1. Linear Codes and DNA Codes. In this section, we recall basic definitions
on linear codes, DNA codes and DNA constraints.

A linear code of length n over F4 is a subspace of Fn4 , and we also call an element
of a linear code a codeword. The Hamming distance d(x,y) between two codewords
is the number of coordinates in which x and y are distinct. The minimum Hamming
distance dH of a linear code C is defined as

min{dH(x,y) | x 6= y, ∀ x,y ∈ C}.

Let SD4
= {A,C,G, T} represents the four nucleotides in DNA, which are ade-

nine (A), cytosine (C), guanine (G) and thymine (T) and let x = (x1, x2, . . . , xn),
where xi ∈ SD4

. A DNA code D of length n is defined as a set of codewords
(x1, x2, . . . , xn) where xi ∈ SD4 = {A, T,C,G}. We use a hat to denote the

Watson-Crick complement of a nucleotide, Â = T, T̂ = A, Ĉ = G and Ĝ = C. Let
x = (x1, x2, . . . , xn) ∈ SD4

, then xr = (xn, xn−1, . . . , x2, x1) xc = (xc1, x
c
2, . . . , x

c
n)

and xrc = (xcn, x
c
n−1, . . . , x

c
2, x

c
1) denote the reverse of a DNA codeword, the com-

plement of a DNA codeword and the reverse complement of a DNA codeword
respectively. In this paper, the fixed GC-content is simply half the length of the
DNA code D.

A good DNA code D of length n is defined as a set of codewords (x1, x2, . . . , xn)
where xi ∈ SD4

= {A, T,C,G}, such that D satisfies some or all of the following
constraints [2]:

(i) The Hamming distance constraint (HD):

min{dH(x,y) : ∀ x,y ∈ D and x 6= y}

(ii) The reverse constraint (RV):

min{dH(xr,y) : ∀ x,y ∈ D and xr 6= y }

(iii) The reverse-complement constraint (RC):

min{dH(xrc,y) : ∀ x,y ∈ D and xrc 6= y}

(iv) The fixed GC-content constraint (GC): The set of codewords with length
n, distance d and GC weight w, where w is the total number of Gs and Cs
present in the DNA strand:

wxDNA
= |{xi : xDNA = (xi), xi ∈ {C,G}}|.

A DNA code can be identified with a code over F4 = {0, 1, ω, ω2} by employing
the standard bijective correspondence between F4 and the DNA alphabet SD4 =
{A, T,C,G} given by

η : F4 → SD4
,

with η(0) = A, η(1) = T, η(ω) = C and η(ω2) = G. The same correspondence
has already been used in the literature, for example, please see [9]. We extend the
bijection η so that η(C) is regarded as a DNA code for some code C over F4.
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We denote the complete weight enumerator of a code C over F4 by

CWEC(a, b, c, d) =
∑
c∈C

an0(c)bn1(c)cnω(c)dnω2 (c),

where ns(c) denotes the number of occurrences of s in a codeword c. We identify
the complete weight enumerator of a DNA code D with that of a code C over F4,
where D = η(C). The GC-weight of a codeword c ∈ C is the sum of nω(c) and
nω2(c). Therefore, if we let

GCWC(a, b) = CWEC(a, a, b, b),

then GCWC(a, b) is the GC-weight enumerator of a code C, where the coefficient of
bi is the same as the number of codewords with GC-weight i.

Let AR4 (n, d) denote the maximum cardinality of a DNA code for a given distance
d and length n that satisfies the Hamming distance and reverse constraints. Let
ARC4 (n, d) be the maximum size of a DNA code of length n satisfying the HD and
RC constraints for a given d, AGC4 (n, d, w) be the maximum size of a DNA code of
length n satisfying the HD constraint for a given d with a constant GC-weight w,

and ARC,GC4 (n, d, w) the maximum size of a DNA code of length n satisfying the
HD and RC constraints for a given d with a constant GC-weight w. In [12], for an
even n, the following equality is given;

(1.1) ARC4 (n, d) = AR4 (n, d).

1.2. Group Rings and Group Codes. We shall now give the standard definition
of group rings. Let G be a finite group of order n and let R be a finite ring. Then
any element in RG is of the form v =

∑n
i=1 αgigi, αgi ∈ R, gi ∈ G. Addition in RG

is done by coordinate addition, namely

n∑
i=1

αgigi +

n∑
i=1

βigi =

n∑
i=1

(αgi + βi)gi.

The product of two elements in RG is given by(
n∑
i=1

αgigi

) n∑
j=1

βjgj

 =
∑
i,j

αgiβjgigj .

This gives that the coefficient of gk in the product is
∑
gigj=gk

αgiβj .

The following matrix construction was used to study group codes over Frobe-
nius rings in [6]. Let R be a finite commutative Frobenius ring and let G =
{g1, g2, . . . , gn} be a group of order n and let v =

∑n
i=1 αgi ∈ RG. Define the

matrix σ(v) ∈Mn(R) to be

(1.2) σ(v) =


αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

. . . αg−1
2 gn

...
...

...
...

...
αg−1

n g1
αg−1

n g2
αg−1

n g3
. . . αg−1

n gn

 .

We note that the elements g−1
1 , . . . , g−1

n are simply the elements of the group G
given in some order. This particular order is used because it aids in certain proofs
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and computations. In [6], the following code construction is given:

(1.3) C(v) = 〈σ(v)〉.
The code is formed by taking the row space of σ(v) over the ring R. Such codes
are refereed to as group codes or, for simplicity, G-codes. Moreover, in [6], it is
shown that this matrix construction of G-codes corresponds to an ideal in the group
ring RG and thus the resulting group code has the group G as a subgroup of its
automorphism group. Please see [6] for more details on group codes generated
from group rings. From now on, every time we refer to G-codes, we mean codes
constructed as given above.

1.3. Reversible Group Codes. Here, we recall an interesting result from [4] on
group codes. Namely, this result shows that for certain groups and for a specific
ordering of the group elements, one can construct G-codes that are reversible. We
first start with a definition from [4].

Definition 1.1. A code C is said to be reversible of index α if ai is a vector of length
α and cα = (a0,a1, . . . ,as−1) ∈ C implies that (cα)r = (as−1,as−2, . . . ,a1,a0) ∈ C.

Let G be a finite group of order n = 2l and let H = {e, h1, h2, . . . , h`−1} be a
subgroup of index 2 in G. Let β /∈ H be an element in G, with β−1 = β. We list
the elements of G = {g1, g2, . . . , gn} as follows:

(1.4) {e, h1, . . . , h`−1, βh`−1, βh`−2, βh2, βh1, β}.
The following result was proved in [4].

Theorem 1.2. Let R be a finite ring. Let G be a finite group of order n = 2`
and let H = {e, h1, h2, . . . , h`−1} be a subgroup of index 2 in G. Let β /∈ H be an
element in G with β−1 = β. List the elements of G as in (1.4), then any linear
G-code in Rn (a left ideal in RG) is a reversible code of index 1.

In [4], the authors make a connection between reversibleG-codes and DNA codes,
this is because reversibility is a desirable property for DNA codes.

1.4. Virus Optimization Algorithm. A new bio-inspired optimization tech-
nique called as virus optimization algorithm (VOA) is proposed in [5] for difficult
and complex mathematical and engineering problems. The VOA is a meta-heuristic
optimization technique based on population and it mimics the behavior of viruses
assaulting a living cell. In each replication step, the number of the viruses increases
then antivirus applied to virus population to avoid the plosive growing of the virus
population. Thus, the number of the virus in the population is controlled with help
of the antivirus. In the VOA, the viruses in the population are separated into two
groups as common and strong. In the initialization phase of the VOA, there are two
steps; parameter setting and the generation of initial viruses. Parameter setting
is a key for an effective search process in the search space. After the parameters
have been set, the initial virus population is randomly produced and the viruses are
classified. In the replication procedure, new viruses are produced by using strong
and common viruses in the initial population. When the new viruses are gener-
ated by the replication procedure, the corresponding objective function values are
evaluated. Then, the old and new viruses are then combined together. If the per-
formance of the virus population is not improved, the antivirus procedure is applied
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to the population and it is followed by the verification of the termination criterion.
If the termination criteria has not been met, the replication is repeated.For more
details on this approach see [10].

Figure 1. Flowchart of VOA

2. Reversible Group Codes and DNA Codes

In this section, we use the results from Section 1.3 to define and study reversible
cyclic DNA codes. We also define self-reciprocal group ring elements.

2.1. Reversible Cyclic DNA Codes as Ideal in Group Rings. Cyclic codes
have a canonical algebraic description as ideals in the polynomial ring R[x]/〈xn−1〉,
where R is a Frobenius ring and n is the length of the code. An alternate view of
cyclic codes is to see them as ideals in the group ring RCn where Cn is the cyclic
group of order n.

For a cyclic code C, there exists a relationship between reversible codes and
self-reciprocal polynomials. More precisely, in Theorem 1 in [13], the following
is proven. The cyclic code over Fq, generated by the monic polynomial g(x), is
reversible if and only if g(x) is self-reciprocal. Therefore, in this setting the search
for reversible codes coincides with the search for self-reciprocal polynomials that
divide xn − 1 over the field Fq.

Often in the literature, reversible cyclic codes are studied over polynomial rings
due to the fact that polynomial rings have a rich algebraic description. In this
section, we intend to study reversible cyclic codes in a different setting - from a
group ring point of view. We begin with a definition.
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Definition 2.1. Let Cn be the cyclic group of order n and let

{e = c0, c, c2, . . . , cn−1}

be a fixed listing of the elements of Cn. Let v =
∑n−1
i=0 αcic

i ∈ RCn. The reciprocal
of v is defined as

v∗ = cn−1(

n−1∑
i=0

αci(c
i)−1) =

n−1∑
i=0

αcic
n−(i+1).

We call the group ring element v self-reciprocal if and only if v∗ = v.

For the cyclic group Cn, the matrices σ(v) and σ(v∗) can be written as follows:

σ(v) =


αe αc αc2 · · · αcn−1

αcn−1 αe αc · · · αcn−2

...
...

...
...

...
αc αc2 αc3 · · · αe

 ,

σ(v∗) =


αcn−1 αcn−2 · · · αc αe
αe αcn−1 · · · αc2 αc
...

...
...

...
...

αcn−2 αcn−3 · · · αe αcn−1

 .

Theorem 2.2. The cyclic code C(v) = 〈σ(v)〉 where v ∈ RCn, is reversible of
index 1 if and only if v is self-reciprocal.

Proof. The proof follows from the fact that v is self-reciprocal if and only if σ(v) =
σ(v∗). The index 1 follows from the construction of the matrix σ(v). �

We illustrate this theorem with an example.

Example 2.3. Let v1 = 1 + 2c + 2c3 + c4 ∈ Z3C5, where C5 = {e, c, c2, c3, c4}.
Here, αe = 1, αc = 2, αc2 = 0, αc3 = 2 and αc4 = 1. Then

σ(v1) =


1 2 0 2 1
1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .

Now, v∗1 = c4(1 + 2c4 + 2c2 + c) = 1 + 2c+ 2c3 + c4 = v1, and

σ(v∗1) =


1 2 0 2 1
1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .

Thus σ(v1) = σ(v∗1). Also, σ(v) = σ(v∗) can be written as

σ(v1) = σ(v∗1) =


1 1 2 0 2
2 1 1 2 0
0 2 1 1 2
2 0 2 1 1

 .
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Clearly, C(v1) = C(v∗1) = 〈σ(v1)〉 = 〈σ(v∗1)〉 is the [5, 4, 2] cyclic code. We also
see that the code C(v1) is reversible since in the generator matrix the reverse of
each row of C(v1) is also in C(v1).

We now give the group ring analogue of the notion of lifted polynomials which
is defined in [16].

Definition 2.4. Let Cn = {e, c, . . . , cn−1} be a cyclic group of order n and v =∑n−1
i=0 αcic

i ∈ FpCn be a self-reciprocal element. A lifted element of v denoted by
`(v) ∈ FpsCn is defined as follows:

(1) if n is odd then

`(v) =

(n−1)/2∑
i=0

θi; θi =

{
βic

i + βic
n−i, αci 6= 0,

0, αci = 0,

(2) if n is even then

`(v) =

n/2∑
i=0

θi; θi =


βic

i + βic
n−i, αci 6= 0, i 6= n

2 ,
0, αci = 0,
βn/2c

n/2, αci 6= 0, i = n
2 ,

where βi ∈ F∗ps .

Lemma 2.5. If the element v is self-reciprocal then `(v) is self-reciprocal.

Proof. The result follows from the definitions. �

Example 2.6. Let v = 1 + 2c + 2c3 + c4 ∈ Z3C5, where C5 = {e, c, c2, c3, c4}.
Then, for βi ∈ F34 = F81,

`(v) =

2∑
i=0

θi = θ0 + θ1 + θ2 = (β01 + β0c
4) + (β1c+ β1c

3) + 0,

`(v) = β0 + β1c+ β1c
3 + β0c

4.

For β0 = α4, β1 = α6, we have `(v) = α4 + α6c+ α6c3 + α4c4. Now,

`(v∗) = α4 + α6c+ α6c3 + α4c4 = `(v),

which gives that `(v) is self-reciprocal.

Theorem 2.7. Let R be a finite commutative Frobenius ring and let Cn be the
cyclic group of order n. Let `(v) be a lifted element of a self-reciprocal element of
group ring RCn. Then the cyclic code C(`(v)) is reversible.

Proof. Follows from Theorem 2.2. �

The following definition is the group ring analogue of the notion of the co-term
polynomial which is defined in [8].

Definition 2.8. Let Cn be the cyclic group of order n and let

{e, c, c2, . . . , cn−1}

be a fixed listing of Cn. Let v =
∑n−1
i=0 αcic

i ∈ RCn. Then v is called a co-term

element if αci = αcn−i for all 1 ≤ i ≤ bn2 c. Moreover, v =
∑n−1
i=0 αcic

i ∈ RCn is the
co-term element if and only if (αc1 , αc2 . . . , αcn−1) is self-reversible.
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Example 2.9. Consider the element v1 from Example 2.3. We saw there that
v1 = v∗1 and therefore v1 is self-reciprocal. The element v1 is not a co-term element
since for instance, αc1 6= αc4 , i.e., αc1 = 2 and αc4 = 1.

We denote the vector v = (αc0 , αc1 , . . . , αcn−1) ∈ Rn for v =
∑n−1
i=0 αcic

i ∈ RCn.
In [8], the following is proven.

Lemma 2.10. Let S ⊆ Rn be a non empty subset such that vr ∈ S whenever
v ∈ S. Then the code generated by S is a linear reversible code of length n over R.

Theorem 2.11. Let v =
∑n−1
i=0 αcic

i ∈ RCn be a co-term element and let t be a
specified positive integer. Suppose v corresponds to the vector v = (αc0 , αc1 , . . . , αcn−1) ∈
Rn. For any length n and even dimension, define the (2t+ 2)× n matrix as:

κt(v) =



αcn−(t+1) αcn−t · · · αcn−(t+3) αcn−(t+2)

...
...

...
...

...
αc1 αc2 · · · αcn−1 αc0
αc0 αc1 · · · αcn−2 αcn−1

αcn−1 αc0 · · · αcn−3 αcn−2

...
...

...
...

...
αcn−t αcn−(t−1) · · · αcn−(t+2) αcn−(t+1)


,

and for odd length n and odd dimension, define the (2t+ 2)× n matrix as:

κt(v) =



αcn−(t+1) αcn−t · · · αcn−(t+3) αcn−(t+2)

...
...

...
...

...
αc1 αc2 · · · αcn−1 αc0
αc0 αc1 · · · αcn−2 αcn−1

αcn−1 αc0 · · · αcn−3 αcn−2

...
...

...
...

...
αcn−t αcn−(t−1) · · · αcn−(t+2) αcn−(t+1)

αcn−(n−1)/2 αcn−((n−1)/2−1) · · · αcn−((n−1)/2+2) αcn−((n−1)/2+1)


,

where t < bn2 c. Then the code C = 〈κt(v)〉 is reversible.

Proof. Let v = (αc0 , αc1 , . . . , αcn−1). Since v ∈ RCn is a co-term element, it follows
that (αc1 , αc2 , . . . , αcn−1) is self-reversible. Also, since v is a co-term element, for
a positive integer i ∈ {1, 2, . . . , bn2 c − 1} the reverse of the i-th row of the matrix
κt(v) equals to the (n+ 1)− i-th row. We also have

(αcn−(n−1)/2 , αcn−((n−1)/2−1) , · · · , αcn−((n−1)/2+2) , αcn−((n−1)/2+1))r =

(αcn−(n−1)/2 , αcn−((n−1)/2−1) , · · · , αcn−((n−1)/2+2) , αcn−((n−1)/2+1)).

In both cases of the theorem, the spanning sets, that is the rows of κt(v), satisfy
the conditions of Lemma 2.10. Thus the code is reversible. �

Example 2.12. Let v = 1 +ωc+ c2 +ω2c3 +ω2c6 + c7 +ωc8 ∈ F4C9 be a co-term
element and

v = (1, ω, 1, ω2, 0, 0, ω2, 1, ω)
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be the corresponding vector. All the codes 〈κt(v)〉 are reversible. For t = 0,

κ0(v) =

(
αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0
αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8

)
=

(
ω 1 ω2 0 0 ω2 1 ω 1
1 ω 1 ω2 0 0 ω2 1 ω

)
.

For t = 2,

κ2(v) =


αc3 αc4 αc5 αc6 αc7 αc8 αc0 αc1 αc2
αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0 αc1
αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8 αc0
αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7 αc8
αc8 αc0 αc1 αc2 αc3 αc4 αc5 αc6 αc7
αc7 αc8 αc0 αc1 αc2 αc3 αc4 αc5 αc6



=


ω2 0 0 ω2 1 ω 1 ω 1
1 ω2 0 0 ω2 1 ω 1 ω
ω 1 ω2 0 0 ω2 1 ω 1
1 ω 1 ω2 0 0 ω2 1 ω
ω 1 ω 1 ω2 0 0 ω2 1
1 ω 1 ω 1 ω2 0 0 ω2

 .

It can be easily seen that in each of the above matrices, the reverse of each row
is contained in the same matrix.

2.2. Self-Reciprocal Group Ring Elements. In this section, we define a self-
reciprocal group ring element which is the analogue notion of the notion of a self-
reciprocal polynomial.

Definition 2.13. Let G be a finite group and let {g1, g2, . . . , gn} be a fixed listing
of the elements of G. Also, let v =

∑n
i=1 αgigi ∈ RG. The reciprocal of v is defined

as

v∗ =

n∑
i=1

αgign−(i−1).

We call v self-reciprocal if and only if v∗ = v.

Lemma 2.14. Let v =
∑n
i=1 αgigi ∈ RG. Then (v∗)∗ = v.

Proof. We have that v∗ =
∑n
i=1 αgign−(i−1) by definition. Applying the reciprocal

definition to the element v∗ again:

(v∗)∗ =

n∑
i=1

αgign−[n−(i−1)−1] =

n∑
i=1

αgigi = v.

This gives the result. �

It is well known that a group ring is isomorphic to a well defined ring of matrices
and thus every group ring element has an associated matrix. We now generalise the
matrix representation of a reciprocal cyclic group ring element to a more general
group ring.

The matrix representation of a reciprocal group ring element is as follows:
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σ(v∗) =


αg1gn αg1gn−1

αg1gn−2
· · · αg1g1

αg2gn αg2gn−1 αg2gn−2 · · · αg2g1
...

...
...

...
...

αgngn αgngn−1
αgngn−2

· · · αgng1

 .

We now look at an example in which we give the matrix representations of a
dihedral group ring element and its reciprocal.

Example 2.15. Consider Z3D8 where {e, a, a2, a3, ba3, ba2, ba, b} is the fixed listing
of elements of D8. Let v = 2 + a2 + ba+ 2ba2 + ba3 ∈ Z3D8. Then

σ(v) =



2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 0 2 0 1 0 1 2
0 1 0 2 2 1 0 1
1 0 1 2 2 0 1 0
2 1 0 1 0 2 0 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2


,

and σ(v) can be written as following:

σ(v) =


2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2

 .

Clearly C(v) = 〈σ(v)〉 is the [8, 4, 4] code. It is also clear that C(v) is reversible,
that is, the reverse of each codeword of C(v) is also in C(v).

Next,

σ(v∗) =



0 1 2 1 0 1 0 2
1 0 1 2 2 0 1 0
2 1 0 1 0 2 0 1
1 2 1 0 1 0 2 0
0 1 0 2 2 1 0 1
1 0 2 0 1 0 1 2
0 2 0 1 0 1 2 1
2 0 1 0 1 2 1 0


and σ(v∗) can be written as follows

σ(v∗) =


2 0 1 0 1 2 1 0
0 2 0 1 0 1 2 1
1 2 1 0 1 0 2 0
0 1 2 1 0 1 0 2

 .

We note here that although σ(v) 6= σ(v∗), the codes C(v) and C(v∗) are the
same.

An element v is said to be self-reversible if v = v∗.
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Theorem 2.16. Let v =
∑n
i=1 αgigi ∈ RG be a self-reversible element and let t

be a specified positive integer where t < n
2 . Suppose v corresponds to the vector

v = (αg1 , αg2 , αg3 , . . . , αgn) ∈ Rn. For any length n and even dimension, we define
the (2t+ 2)× n matrix as

κt(v) =



αgt+2g1 αgt+2g2 · · · αgt+2gn−1 αt+2gn
...

...
...

...
...

αg3g1 αg3g2 · · · αg3gn−1 αg3gn
αg2g1 αg2g2 · · · αg2gn−1 αg2gn
αg−1

1 g1
αg−1

1 g2
· · · αg−1

1 gn−1
αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

· · · αg−1
2 gn−1

αg−1
2 gn

...
...

...
...

...
αg−1

t+1g1
αg−1

t+1g2
· · · αg−1

t+1gn−1
αg−1

t+1gn


.

Then the code C = 〈κt(v)〉 is reversible.

Proof. Since v is a self-reversible element, for a positive integer i ∈ {1, 2 . . . , bn2 c−1}
the reverse of the i-th row of the matrix κt(v) equals to the (n + 1) − i-th row.
Therefore, the spanning set, that is the rows of the matrix, satisfy Lemma 2.10.
This completes the proof. �

Example 2.17. Let v = 1 + ab ∈ F2V4, be a self-reversible element, where V4 =
{1, b, ab, a} is a Klein-4-group. We have that v = (1, 0, 1, 0). Then for t = 0

κ0(v) =

(
αg2g1 αg2g2 αg2g3 αg2g4
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4

)
,

κ0(v) =

(
0 1 0 1
1 0 1 0

)
,

so 〈κ0(v)〉 is reversible. Also, for t = 1

κ1(v) =


αg3g1 αg3g2 αg3g3 αg3g4
αg2g1 αg2g2 αg2g3 αg2g4
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

αg−1
2 g4

 ,

κ1(v) =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ,

which is clear that 〈κ1(v)〉 is reversible.

Example 2.18. For the quaternion group Q8, the fixed listing of elements is

{1, i, j, k,−k,−j,−i,−1} = {g1, g2, . . . , g8}.

Let

v = 1 + 2j + k − k − 2j − 1 ∈ F3Q8,

then v = (1, 0, 2, 1, 1, 2, 0, 1) is the corresponding vector.
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For t = 0,

κ0(v) =

(
αg2g1 αg2g2 αg2g3 αg2g4 αg2g5 αg2g6 αg2g7 αg2g8
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4
αg−1

1 g5
αg−1

1 g6
αg−1

1 g7
αg−1

1 g8

)
,

κ0(v) =

(
i −1 k −j j −k 1 −i
1 i j k −k −j −i −1

)
=

(
0 1 1 2 2 1 1 0
1 0 2 1 1 2 0 1

)
.

For t = 2,

κ2(v) =



αg4g1 αg4g2 αg4g3 αg4g4 αg4g5 αg4g6 αg4g7 αg4g8
αg3g1 αg3g2 αg3g3 αg3g4 αg3g5 αg3g6 αg3g7 αg3g8
αg2g1 αg2g2 αg2g3 αg2g4 αg2g5 αg2g6 αg2g7 αg2g8
αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
αg−1

1 g4
αg−1

1 g5
αg−1

1 g6
αg−1

1 g7
αg−1

1 g8

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

αg−1
2 g4

αg−1
2 g5

αg−1
2 g6

αg−1
2 g7

αg−1
2 g8

αg−1
3 g1

αg−1
3 g2

αg−1
3 g3

αg−1
3 g4

αg−1
3 g5

αg−1
3 g6

αg−1
3 g7

αg−1
3 g8


,

κ2(v) =


k j −i −1 1 i −j −k
j −k −1 i −i 1 k −j
i −1 k −j j −k 1 −i
1 i j k −k −j −i −1
−i 1 −k j −j k −1 i
−j k 1 −i i −1 −k j

 =


1 2 0 1 1 0 2 1
2 1 1 0 0 1 1 2
0 1 1 2 2 1 1 0
1 0 2 1 1 2 0 1
0 1 1 2 2 1 1 0
2 1 1 0 0 1 1 2

 .

3. Computational Results

In this section, we define two generator matrices using the map given in Equa-
tion (1.2) with a fixed listing of the group elements as given in Equation (1.4). We
employ the cyclic group of even order and the dihedral group of order 2n. We next
use these generator matrices to search for DNA codes over F4. We perform our
search in the software package MAGMA ([3]) using a heuristic search scheme called
the virus optimization algorithm (VOA). This method, as shown in [10], allows
us to obtain the computational results significantly faster then the standard linear
search.

We obtain many DNA codes of up to and including length 32. Our DNA codes
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed

GC-content constraints. We find the lower bounds on ARC,GC4 (n, d, k) by computing
the complete weight enumerators of all DNA codes that we found. The generator
matrices, weight enumerators, GC-weight enumerators for the codes constructed
can be found at [11].

Let w1 ∈ RC2n, where C2n is the cyclic group of order 2n with its elements being
listed as follows:

(3.1) {1, c2, c4, c6, . . . , c2n−2, cnc2n−2, cnc2n−4, . . . , cnc2, cn}.

Then the generator matrix σ(w1) has the following form:

G1 = σ(w1) =

(
A1 B1

B2 A2

)
,

where

A1 = cir(α1, αc2 , . . . , αc2n−2)
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is a n× n circulant matrix,

B1 = rcir(αcnc2n−2 , αcnc2n−4 , . . . , αcn)

is a n × n reverse circulant matrix. We note that B2 is a reverse circulant matrix
in which the first row is obtained by reversing the last row of the matrix B1. The
matrix A2 is a circulant matrix in which the first row is obtained by reversing the
last row of the matrix A1. More precisely, A2 = cir(α1, αc2n−2 , . . . , αc4 , αc2) is an
n×n circulant matrix and B2 = rcir(αcnc2 , . . . , αcnc2n−4 , αcnc2n−2 , αcn) is an n×n
reverse circulant matrix.

Let w2 ∈ RD2n, where D2n is the dihedral group of order 2n with its elements
being listed as follows:

(3.2) {e, a, a2, . . . , an−1, ban−1, ban−2, . . . , ba, b}.
Then the generator matrix σ(w2) has the following form:

G2 = σ(w2) =

(
A B
BT AT

)
,

where
A = cir(αe, αa, . . . , αan−1)

is a n× n circulant matrix and

B = cir(αban−1 , αban−2 , . . . , αb)

is a n× n circulant matrix.
We now present a small example of how we construct the DNA codes using our

group ring approach.

Example 3.1. Let D6 be a dihedral group of order 6 with the ordering of elements
{e, a, a2, ba2, ba, b}, v = w + wa + wa2 ∈ F4D6 then the generator matrix has the
form

(3.3) σ(v) = G2 =


w w w 0 0 0
w w w 0 0 0
w w w 0 0 0
0 0 0 w w w
0 0 0 w w w
0 0 0 w w w

 .

From the above generator matrix, we construct a DNA code C with 16 codewords
satisfying R-constraint with d = 3 as follows;

(3.4)
AR4 (6, 3) = {AAAAAA,AAAGGG,AAATTT,GGGAAA,CCCAAA,AAACCC,

TTTAAA, TTTTTT,GGGCCC,CCCCCC,GGGGGG,TTTCCC,

CCCGGG,GGGTTT, TTTGGG,CCCTTT}.
We know by [12] that for an even n:

(3.5) ARC4 (n, d) = AR4 (n, d).

Therefore ARC4 (6, 3) = AR4 (6, 3). The GC-weight enumerator of C is

GCW (a, b) = 4a6 + 8a3b3 + 4b6.
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Thus we construct a DNA code with 8 codewords satisfying hamming distance
constraint 3, reversible complement constraint and fixed GC-content constraint
with k = 3.

We now employ the generator matrices G1 and G2, to search for DNA codes that
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed
GC-content constraints of lengths up to and including 32. We tabulate our findings
in Table 2 and Table 1. The results that are equal to or better than the currently
known best bounds are written in bold, and new results are also written in bold.
Generator matrices, GC-weight enumerators and parameters of codes in Tables 2
and 1 can be found in [11].
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Table 1. Lower bounds on ARC4 (n, d) and ARC,GC4 (n, d, k) from G2

n d ARC4 (n, d) ARC,GC4 (n, d, k)
4 3 16 12
6 3 64 30
6 2 1024 480
8 4 256 176
8 3 256 152
8 2 4096 2240
12 6 4096 1848
12 4 16384 6144
14 5 65536 13728
14 4 65536 13728
16 6 65536 25880
16 4 1048576 461824
16 2 268435456 105431040
18 4 4194304 1400256
18 3 16777216 3111680
18 2 4294967296 1429733376
20 5 16777216 2956096
20 4 1073741824 376832000
20 3 4294967296 756760576
20 2 68719476736 12108169216
20 6 1048576 369008
20 7 1048576 369512
22 6 16777216 2821728
22 2 1099511627776 339270959104
24 4 68719476736 22409117696
24 3 68719476736 11098587136
24 2 17592186044416 2841238306816
24 6 268435456 86739968

4. Conclusion

In this work, we showed that one can construct good DNA codes from G-codes
that are reversible- this is a crucial property for DNA codes. We defined and studied
reversible cyclic DNA codes and we also defined self-reciprocal group ring elements.
We presented two generator matrices that one can use to search for DNA codes. We
employed these generator matrices with the use of only two groups, the cyclic group
of even order and the dihedral group of order 2n, to search for reversible cyclic and
dihedral DNA codes that satisfy the Hamming distance, the reverse, the reverse
complement and the GC-weight enumerator constraints. Our group ring approach
proved to be successful as we constructed many DNA codes. A possible research
direction is to consider reversible group ring approach and specifically Theorem 3.10
to construct, possibly, more DNA codes with better parameters.
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Table 2. Lower bounds on ARC4 (n, d) and ARC,GC4 (n, d, k) from G1

n d ARC4 (n, d) ARC,GC4 (n, d, k)
24 4 4294967296 1387323392
24 3 68719476736 22160015360
24 2 17592186044416 2835513081856
26 2 281474976710656 81000264630272
28 4 1099511627776 328637349888
28 3 17592186044416 2630898155520
28 2 4503599627370496 1345974567960576
30 4 1125899906842624 304973453721600
30 3 4503599627370496 650610034606080
30 2 1125899906842624 162652508651520
32 2 1152921504606846976 322709486693253120
32 4 17592186044416 4928618364928
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