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ABSTRACT. In this paper, we employ group rings and some known results on
group codes to study reversible group DNA codes. We define and study re-
versible cyclic DNA codes from a group ring point of view and we also introduce
the notion for self-reciprocal group ring elements. Moreover, we search for re-
versible group DNA codes with the use of a virus optimisation algorithm. We
obtain many good DNA codes that satisfy the Hamming distance, the reverse,
the reverse-complement and the fixed GC-content constraints.

The interest in studying and designing DNA codes has been started with Adle-
man when he solved a computationally difficult mathematical problem by intro-
ducing an algorithm using DNA strands and molecular biology tools [1] and it is
still an ongoing research area. Some known methods for designing DNA codes that
satisfy certain conditions include the study of reversible codes [15], reversible self-
dual codes over GF'(4) [9], the study of cyclic and extended cyclic constructions or
the study of linear constructions [7].

Recently in [4], linear codes derived from group ring elements are considered
to construct reversible DNA codes that satisfy the Hamming distance constraint.
This suggests that the study of group rings is an interesting research direction that
may have some useful applications to DNA coding. In this work, we employ group
rings and a matrix construction given in [4] to study reversible cyclic DNA codes.
We also use group rings to define a self-reciprocal group ring element. Moreover,
we construct reversible group codes of different lengths over the finite commutative
Frobenius ring R, that satisfy the Hamming distance, the reverse, the reverse-
complement and the fixed GC-content constraints.

The paper is organised as follows. In Section 2, we give the basic definitions
and results on linear codes, DNA codes, group rings, group codes and reversible
group codes. In Section 3, we define and study reversible cyclic DNA codes from a
group ring point of view. In this section, we also define a self-reciprocal group ring
element. In Section 4, we present two generator matrices for reversible group codes
which we then use to search for DNA codes that satisfy the Hamming distance,
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the reverse, the reverse-complement and the fixed GC-content constraints. In our
search scheme, we employ a virus optimisation algorithm which allows us to obtain
numerical results in a reasonable quick time. We finish with concluding remarks
and directions for possible future research.

1. PRELIMINARIES

1.1. Linear Codes and DNA Codes. In this section, we recall basic definitions
on linear codes, DNA codes and DNA constraints.

A linear code of length n over Fy is a subspace of I}, and we also call an element
of a linear code a codeword. The Hamming distance d(x,y) between two codewords
is the number of coordinates in which x and y are distinct. The minimum Hamming
distance dg of a linear code C is defined as

min{du(x,y) | x #y, Vx,y € C}.

Let Sp, = {A,C, G, T} represents the four nucleotides in DNA, which are ade-
nine (A), cytosine (C), guanine (G) and thymine (T) and let x = (1, 22,...,%n),
where z; € Sp,. A DNA code D of length n is defined as a set of codewords
(x1,%2,...,2,) where z; € Sp, = {A,T,C,G}. We use a hat to denote the
Watson-Crick complement of a nucleotide, A =TT = A,C = G and G = C. Let
x = (x1,22,...,2,) € Sp,, then X" = (zp, Tp_1,...,22,21) X = (25, 25,...,25)
and X" = (28,25 _4,...,25,25) denote the reverse of a DNA codeword, the com-
plement of a DNA codeword and the reverse complement of a DNA codeword
respectively. In this paper, the fixed GC-content is simply half the length of the
DNA code D.

A good DNA code D of length n is defined as a set of codewords (z1, 22, ..., zy)
where z; € Sp, = {A,T,C,G}, such that D satisfies some or all of the following
constraints [2]:

(i) The Hamming distance constraint (HD):
min{dy(x,y): Vx,y €D and = # y}
(ii) The reverse constraint (RV):
min{dg(x",y):Vx,y € Dand X" #y }
(iii) The reverse-complement constraint (RC):
min{dg (x"°,y): Vx,y € D and x"° # y}

(iv) The fixed GC-content constraint (GC): The set of codewords with length
n, distance d and GC weight w, where w is the total number of Gs and C's
present in the DNA strand:

Wxpna = {Ti i Xxpya = (z:), 2 € {C, G}

A DNA code can be identified with a code over Fy = {0,1,w,w?} by employing
the standard bijective correspondence between Fy and the DNA alphabet Sp, =
{A,T,C,G} given by

n:Fqs— Sp,,
with n(0) = A, n(1) = T, n(w) = C and n(w?) = G. The same correspondence
has already been used in the literature, for example, please see [9]. We extend the
bijection 7 so that n(C) is regarded as a DNA code for some code C over Fy.
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We denote the complete weight enumerator of a code C over Fy by

CWE, (a’ b, c, d) _ Z ano(c)bnl(c)cnw(c)dan (c)’
ceC

where ng(c) denotes the number of occurrences of s in a codeword c¢. We identify
the complete weight enumerator of a DNA code D with that of a code C over Fy,
where D = 7(C). The GC-weight of a codeword ¢ € C is the sum of n,(c) and
nyz2(c). Therefore, if we let

GCWe(a,b) = CWEc(a,a,b,b),

then GCW¢(a, b) is the GC-weight enumerator of a code C, where the coefficient of
b® is the same as the number of codewords with GC-weight i.

Let Af(n,d) denote the maximum cardinality of a DNA code for a given distance
d and length n that satisfies the Hamming distance and reverse constraints. Let
AFC(n,d) be the maximum size of a DNA code of length n satisfying the HD and
RC constraints for a given d, A% (n,d, w) be the maximum size of a DNA code of
length n satisfying the HD constraint for a given d with a constant GC-weight w,
and AfC’GC(n, d,w) the maximum size of a DNA code of length n satisfying the
HD and RC constraints for a given d with a constant GC-weight w. In [12], for an
even n, the following equality is given;

(1.1) ARC (n, d) = AR(n, d).

1.2. Group Rings and Group Codes. We shall now give the standard definition
of group rings. Let G be a finite group of order n and let R be a finite ring. Then
any element in RG is of the form v = Y"1 | a4, 0i, @y, € R, g; € G. Addition in RG
is done by coordinate addition, namely

D aggi+ > Bigi=> (ag, +Bi)gi

i=1 i=1 i=1

The product of two elements in RG is given by

n n
(Z agi9i> Z Bigi | = Z g, 5i9i9j-
i=1 j=1 4,

This gives that the coefficient of gj in the product is ) 9i9:=g0 g Bj.

The following matrix construction was used to study group codes over Frobe-
nius rings in [6]. Let R be a finite commutative Frobenius ring and let G =
{91,92,...,9n} be a group of order n and let v = > | oy, € RG. Define the
matrix o(v) € M, (R) to be

Qgrlgr Ygrlee %grles Qgrtgn

Qorlar Ygrlee %grles Qg lan
(1.2) o(v) = . . : .

Cgtgr Ygitgs Ygntgs o %gnlg,

We note that the elements g; v g, ! are simply the elements of the group G
given in some order. This particular order is used because it aids in certain proofs
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and computations. In [6], the following code construction is given:

(1.3) C(v) = {o(v)).

The code is formed by taking the row space of o(v) over the ring R. Such codes
are refereed to as group codes or, for simplicity, G-codes. Moreover, in [6], it is
shown that this matrix construction of G-codes corresponds to an ideal in the group
ring RG and thus the resulting group code has the group G as a subgroup of its
automorphism group. Please see [6] for more details on group codes generated
from group rings. From now on, every time we refer to G-codes, we mean codes
constructed as given above.

1.3. Reversible Group Codes. Here, we recall an interesting result from [4] on
group codes. Namely, this result shows that for certain groups and for a specific
ordering of the group elements, one can construct G-codes that are reversible. We
first start with a definition from [4].

Definition 1.1. A code C is said to be reversible of index « if a; is a vector of length
«a and ¢ = (ag,a1,...,a,-1) € C implies that (c*)" = (as_1,a5-2,...,a1,a9) € C.

Let G be a finite group of order n = 21 and let H = {e, hy,ha,...,hy_1} be a
subgroup of index 2 in G. Let 8 ¢ H be an element in G, with 37! = 3. We list
the elements of G = {g1,92,-..,9n} as follows:

(14) {6, hla ey hf*hﬁhffla Bh£7275h276h17 B}

The following result was proved in [4].

Theorem 1.2. Let R be a finite ring. Let G be a finite group of order n = 2/
and let H = {e,hy,ha,...,hy_1} be a subgroup of index 2 in G. Let B ¢ H be an
element in G with 371 = B. List the elements of G as in (1.4), then any linear
G-code in R™ (a left ideal in RG) is a reversible code of index 1.

In [4], the authors make a connection between reversible G-codes and DNA codes,
this is because reversibility is a desirable property for DNA codes.

1.4. Virus Optimization Algorithm. A new bio-inspired optimization tech-
nique called as virus optimization algorithm (VOA) is proposed in [5] for difficult
and complex mathematical and engineering problems. The VOA is a meta-heuristic
optimization technique based on population and it mimics the behavior of viruses
assaulting a living cell. In each replication step, the number of the viruses increases
then antivirus applied to virus population to avoid the plosive growing of the virus
population. Thus, the number of the virus in the population is controlled with help
of the antivirus. In the VOA, the viruses in the population are separated into two
groups as common and strong. In the initialization phase of the VOA, there are two
steps; parameter setting and the generation of initial viruses. Parameter setting
is a key for an effective search process in the search space. After the parameters
have been set, the initial virus population is randomly produced and the viruses are
classified. In the replication procedure, new viruses are produced by using strong
and common viruses in the initial population. When the new viruses are gener-
ated by the replication procedure, the corresponding objective function values are
evaluated. Then, the old and new viruses are then combined together. If the per-
formance of the virus population is not improved, the antivirus procedure is applied
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to the population and it is followed by the verification of the termination criterion.
If the termination criteria has not been met, the replication is repeated.For more
details on this approach see [10].
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FI1GURE 1. Flowchart of VOA

2. REVERSIBLE GROUP CODES AND DNA CODES

In this section, we use the results from Section 1.3 to define and study reversible
cyclic DNA codes. We also define self-reciprocal group ring elements.

2.1. Reversible Cyclic DNA Codes as Ideal in Group Rings. Cyclic codes
have a canonical algebraic description as ideals in the polynomial ring R[z]/{z™—1),
where R is a Frobenius ring and n is the length of the code. An alternate view of
cyclic codes is to see them as ideals in the group ring RC,, where C,, is the cyclic
group of order n.

For a cyclic code C, there exists a relationship between reversible codes and
self-reciprocal polynomials. More precisely, in Theorem 1 in [13], the following
is proven. The cyclic code over F,, generated by the monic polynomial g(z), is
reversible if and only if g(x) is self-reciprocal. Therefore, in this setting the search
for reversible codes coincides with the search for self-reciprocal polynomials that
divide ™ — 1 over the field F,.

Often in the literature, reversible cyclic codes are studied over polynomial rings
due to the fact that polynomial rings have a rich algebraic description. In this
section, we intend to study reversible cyclic codes in a different setting - from a
group ring point of view. We begin with a definition.
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Definition 2.1. Let C), be the cyclic group of order n and let
{e=c ¢ ..., "1}

be a fixed listing of the elements of C,,. Let v = Z?:_Ol agict € RC,. The reciprocal
of v is defined as

n—1 n—1
vt = c”fl(z aei(c)™) = Z Qe
i=0 i=0
We call the group ring element v self-reciprocal if and only if v* = v.

For the cyclic group C,,, the matrices o(v) and o(v*) can be written as follows:

Qe Qe Q2 0 Oen—1

Qen—1 Qe O ce Qen—2

o(v) = ;

Q¢ Qe2 ez c0 Qe

Aen—1 Aen—2 cee Qe Qe
Qe Qen—1 +++ Q2 Qe

*
o(v*) =
Qen—2  Oen—-3 - Qe Qen—1

Theorem 2.2. The cyclic code C(v) = (o(v)) where v € RCy, is reversible of
index 1 if and only if v is self-reciprocal.

Proof. The proof follows from the fact that v is self-reciprocal if and only if o(v) =
o(v*). The index 1 follows from the construction of the matrix o(v). O

We illustrate this theorem with an example.

Example 2.3. Let v; = 1+ 2c + 2¢3 + ¢* € Z3C5, where Cs = {e,c,c?, ¢, ¢}
Here, a, =1, a. =2, a2 =0, a,s =2 and a2 = 1. Then

o(vy) =

N O N ==
ON R~ N

N = = N
=N O
=N O N

1
1
2
0
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Clearly, C(v1) = C(v]) = {o(v1)) = (o(v])) is the [5,4,2] cyclic code. We also
see that the code C(v1) is reversible since in the generator matrix the reverse of
each row of C'(vy) is also in C'(v1).

We now give the group ring analogue of the notion of lifted polynomials which
is defined in [16].

Definition 2.4. Let C,, = {e,c,...,c" !} be a cyclic group of order n and v =
Z?;Ol agict € F,C, be a self-reciprocal element. A lifted element of v denoted by
L(v) € Fp:Cy, is defined as follows:

(1) if n is odd then

(n—1)/2 . .
ict + By niza ct Oa
l(v) = Z 0:; 91':{50 Puc aa._yéo
i—0 9 ct — Y

(2) if n is even then

n/2 5ici + Bicn_iv Qi # 0, 4 7& %7
()= 6 ;=14 0, i =0,
i=0 ﬂn/an/27 Qi # 07 1= %a

where 3; € F..
Lemma 2.5. If the element v is self-reciprocal then £(v) is self-reciprocal.
Proof. The result follows from the definitions. O

Example 2.6. Let v = 1+ 2¢ + 2¢® + ¢* € Z3Cs, where Cs = {e,c,c?, ¢, ¢}
Then, for 8; € Fza = Fgy,

2
E(U) = Zez =0+0,+0;= (501 + 5004) + (ﬁlc+ 5103) + 0,
1=0

U(v) = Bo + Brc+ fic’ + Poc?
For By = a*, 81 = af, we have £(v) = a* + ac + abc® + a*c*. Now,
(v*) = a* + ale+ a4+ atct = 4(v),
which gives that ¢(v) is self-reciprocal.

Theorem 2.7. Let R be a finite commutative Frobenius ring and let C, be the
cyclic group of order n. Let £(v) be a lifted element of a self-reciprocal element of
group ring RC,,. Then the cyclic code C(£(v)) is reversible.

Proof. Follows from Theorem 2.2. ([

The following definition is the group ring analogue of the notion of the co-term
polynomial which is defined in [8].

Definition 2.8. Let C), be the cyclic group of order n and let

{e,c,c?,...,c" 1}

be a fixed listing of C,,. Let v = Z?;()l agict € RC,. Then v is called a co-term

element if a.i = aen—i for all 1 <4 < [§]. Moreover, v = Z?:_Ol agict € RC), is the
co-term element if and only if (a1, ez ..., en-1) is self-reversible.
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Example 2.9. Consider the element v; from Example 2.3. We saw there that
vy = v] and therefore v is self-reciprocal. The element v; is not a co-term element
since for instance, a1 # Qe4, i.e., @ = 2 and aa = 1.

We denote the vector v = (a0, ety ..., @em-1) € R™ for v = Z?;OI agict € RC,,.
In [8], the following is proven.

Lemma 2.10. Let S C R™ be a mon empty subset such that v € S whenever
v € §. Then the code generated by S is a linear reversible code of length n over R.

Theorem 2.11. Let v = Z?:_ol aeict € RC, be a co-term element and let t be a
specified positive integer. Suppose v corresponds to the vector v.= (o, e, ..., Qen-1) €
R™. For any length n and even dimension, define the (2t + 2) X n matric as:

Qon—(t+1) Qen—t s O on—(t+3) Qn—(t+2)
(7% Q2 s Qlen—1 Q0
kt(v) = Qo Qo e Qen—2 Qen—1 ,
Qen—1 (%] ce Qen—3 Qen—2
Qlen—t Qn—(t—1) s O on—(t+2) Qon—(t+1)

and for odd length n and odd dimension, define the (2t + 2) X n matric as:

Qon—(t+1) Qlpn—t o O on—(t+3) O on—(t+2)
[e73] Q2 s Qen—1 Q0
Q0 (7] s Qen—2 Qen—1
Ke(v) = ,
Qen—1 Q0 ce Qen—3 Qlen—2
Qen—t O on—(t—1) s O on—(t+2) Olon—(t+1)
An—(n—1)/2 Qn—((n—1)/2-1) R An—((n—1)/2+2) Qn—((n—1)/2+1)

where t < [§]. Then the code C = (k¢(v)) is reversible.

Proof. Let v = (w0, 1, ..., aem—1). Since v € RC,, is a co-term element, it follows
that (qer,qez, ..., ae-1) is self-reversible. Also, since v is a co-term element, for
a positive integer i € {1,2,..., 5] — 1} the reverse of the i-th row of the matrix
kt(v) equals to the (n + 1) —i-th row. We also have
(acnf(nfl)/2 sy Oen—((n—1)/2—1), " " * , Ben—((n—1)/242), acnf((nfl)/Zﬁ»l))T =
(Oécn—(n—1)/2, An—((n—=1)/2=1), " ** , Oen—((n—1)/2+2) , Aen—((n—1)/2+1) )

In both cases of the theorem, the spanning sets, that is the rows of k:(v), satisfy
the conditions of Lemma 2.10. Thus the code is reversible. (I

Example 2.12. Let v = 1 +we+ c +w?c® + w?c® + ¢ + wed € F4Cy be a co-term
element and

v=(1,w,1,w%0,0w%1,w)
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For t =0,
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_ Al Q2 Q3 Qea Q5 Q6 Qe Q8 Q0
ro(v) = (aco Qi Q2 Qs Qpa Qs Qlgs Oler Ozcs>
(w1 w2 0 0 wr 1 w 1
o (1 w 1 w0 0 w? 1 w)'

For t =2,
A3 s s 6 Qe (e8 e0 Olel (X2
Q2 O3 Oed Q5 (6 7 8 (N0 (el
el 2 (e3  Qpda Qs (e Q7 (8 (X0
1{2(’0): Q0 el e2 O3 Olga s 6 Q7 (U8
Q8 (X0 el Qg2 (3 et Qs Qg6 (X7
Qe 8 0 el (2 (e3 s Qs (X6
w? 0 0 w? 1 w 1 w 1
1 w? 0 0 w? 1 w 1 w
w1 w0 0 w1l w1
1 w1 w0 0 W1l w
w 1 w 1 w? 0 0 w? 1
1 w 1 w 1 w? 0 0 w?

It can be easily seen that in each of the above matrices, the reverse of each row
is contained in the same matrix.

2.2. Self-Reciprocal Group Ring Elements. In this section, we define a self-
reciprocal group ring element which is the analogue notion of the notion of a self-
reciprocal polynomial.

Definition 2.13. Let G be a finite group and let {g1,¢2,...,9,} be a fixed listing
of the elements of G. Also, let v = Y"1 | ag,g; € RG. The reciprocal of v is defined

as
n
* —
vo= Qg In—(i—1)-
i=1

We call v self-reciprocal if and only if v* = v.

Lemma 2.14. Let v =>." a,9; € RG. Then (v*)* = v.

Proof. We have that v* = Y7 | ay, Gn—(i—1) by definition. Applying the reciprocal
definition to the element v* again:

(v*)* = Z Qg;n—[n—(i—1)—1] = Zagigi =v.
i=1 i=1

This gives the result. ([l

It is well known that a group ring is isomorphic to a well defined ring of matrices
and thus every group ring element has an associated matrix. We now generalise the
matrix representation of a reciprocal cyclic group ring element to a more general
group ring.

The matrix representation of a reciprocal group ring element is as follows:
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Qgrg,  Qgign1  Qgign o """ Qgigy

. Xgagn  Xgagn—1  Fgagno 7 Fgagy
o(v*) = ) ) .

agngn agngnfl agngn72 e agngl

We now look at an example in which we give the matrix representations of a
dihedral group ring element and its reciprocal.

Example 2.15. Consider Z3Dg where {e, a,a?, a3, ba®,ba?, ba, b} is the fixed listing
of elements of Dg. Let v = 2 4+ a2 + ba + 2ba® + ba® € Z3Dg. Then

20101210

020101 21

10 2 01 0 1 2

o(v) = 01 02 2101
101 2 2 0 1 0f”

21 010 2 01

121010 20

01 2 1010 2

and o(v) can be written as following:

20101210

o201 01 21

@W=11 2101020

01 21010 2

Clearly C(v) = (o(v)) is the [8,4,4] code. It is also clear that C(v) is reversible,
that is, the reverse of each codeword of C(v) is also in C(v).

Next,
01 2 1 0 1 0 2
1 01 2 2 0 1 O
21 01 0 2 01
= |1 2101020
W)= 10 102210 1
1 02 01 0 1 2
02 01 01 2 1
2 01 01 2 10
and o(v*) can be written as follows
201 01 2 10
Wy 020102
W)=l 21010 20
01 2 1 0 1 0 2
We note here that although o(v) # o(v*), the codes C(v) and C(v*) are the

same.

An element v is said to be self-reversible if v = v*.
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Theorem 2.16. Let v =) . ag.9; € RG be a self-reversible element and let t

n

be a specified positive integer where t < %. Suppose v corresponds to the vector

2

J— n Y y
v = (ag,,Qg,,0q,,...,04,) € R". For any length n and even dimension, we define

the (2t 4+ 2) x n matriz as

Qgiiogr Qgirages 77 Qgiiogn1 Yiiogn
Qgzg: Qgsgo e Qg3gn 1 Agsgn
() Qgag1 Qgogs "7 Qgagn Qgagn
KRt(V) = _ _ . _ —
Qg Yot Yot Yorton
Yortar Ygrlgs Y lgnr Ygrtgn
o -1 o -1 cee o -1 o -1
9191 941192 9t419n—-1 9iyr19n
Then the code C = (k¢(v)) is reversible.
Proof. Since v is a self-reversible element, for a positive integer i € {1,2...,[%| -1}

the reverse of the i-th row of the matrix x:(v) equals to the (n 4+ 1) — i-th row.
Therefore, the spanning set, that is the rows of the matrix, satisfy Lemma 2.10.

This completes the proof.

Example 2.17. Let v = 1 4 ab € FyVy, be a self-reversible element, where V; =
{1,b,ab,a} is a Klein-4-group. We have that v = (1,0,1,0). Then for t =0

« (0% «

« « « «
_ 9291 9292 9293 9294
Ko(v) = ( ) )
9a

(07

-1 -1
91 92 91 93

01 0 1
"50(’[}): 1 0 1 0)°

so (ko(v)) is reversible. Also, for t =1

-1
91 91

-1
91

O49391 agsgz ag3gs aggg4

R1\V) =
) Qgrigr Cgrlgy Cgrlgy Ggrt
Qgrlgr Fgrlgs Qgrlgy Ggrt
1 01 0
01 0 1
K/l(v) 1 0 1 0 9
01 0 1

which is clear that (k;(v)) is reversible.

Example 2.18. For the quaternion group Qg, the fixed listing of elements is

Qgag1 Agags Qgags Qgagy

g4

g4

{]wimjvka _kv _jv _iv _1} = {91792, O 398}'

Let
’U:1+2j+k—l€—2j—1€F3Q8,
then v =(1,0,2,1,1,2,0,1) is the corresponding vector.
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For t =0,
I*io(?]) _ ( agz!]l agzgz a92!13 O49294 049295 a!]zgs agzm agzgs )
- 1)
Qe Yrlee %rles Yrten %erles %erles Yorter Qorles
H(v)—i_lk_j j -k 1 —\ (0 1 1 2 2 110
0 1 i j k -k —j —i -1 1021120 1)
For t =2,
a9491 a9492 a9493 a94g4 ag4g5 ag4ge. ag4g7 ag4gs
Qgsgy Qgsgs  Qgzgs  Ogzgy  Qgzgs  Qgggs  Qgzgr  CQlgagg
( ) agzgl O49292 a9293 a9294 af]zgs agzgs a!]297 agzgs
KRo\V) = _ _ _ B B B -~ -~
Ylar YTl %rtes Yitan Yerles Yerlee Yerter Yerles
Yrlar %erter %estes %eitar %Yertes Yertese Pester Pentes
Ayl Fgilgs Ygilgs Yilgn Ygilgs %grtes Yester Ygsles
k j —i -1 1 T -5 —k 1 2 0110 21
i -k -1 ¢ —i 1 k —j 21 1 0 0 1 1 2
(v) i -1 k -5 i -k 1 —i 01 1 2 2 1 10
Kko(v) = . . . . =
2 1 0§ k -k —j —i -1 10211201
-~ 1 -k j —j k -1 i 01 122110
-5 k 1 - ¢ =1 -k j 21 1 0 0 1 1 2

3. COMPUTATIONAL RESULTS

In this section, we define two generator matrices using the map given in Equa-
tion (1.2) with a fixed listing of the group elements as given in Equation (1.4). We
employ the cyclic group of even order and the dihedral group of order 2n. We next
use these generator matrices to search for DNA codes over Fy. We perform our
search in the software package MAGMA ([3]) using a heuristic search scheme called
the virus optimization algorithm (VOA). This method, as shown in [10], allows
us to obtain the computational results significantly faster then the standard linear
search.

We obtain many DNA codes of up to and including length 32. Our DNA codes
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed
GC-content constraints. We find the lower bounds on AfC’GC (n,d, k) by computing
the complete weight enumerators of all DNA codes that we found. The generator
matrices, weight enumerators, GC-weight enumerators for the codes constructed
can be found at [11].

Let wy € RCay,, where Co,, is the cyclic group of order 2n with its elements being
listed as follows:

(3.1) {1,822 e et L AP )
Then the generator matrix o(w;) has the following form:
A1 B
6= ot = (5 ).
where
Ay =cir(ag, ez, ..., Qen—2)
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is a n X n circulant matrix,
By = reir(Qenezn—2, Qgnezn—a, ..., Qen )

is a n X n reverse circulant matrix. We note that Bs is a reverse circulant matrix
in which the first row is obtained by reversing the last row of the matrix By. The
matrix As is a circulant matrix in which the first row is obtained by reversing the
last row of the matrix A;. More precisely, As = cir(ay, aeen-2,...,Qu,q.2) is an
n X n circulant matrix and Ba = rcir(aenez, . . ., Qenezn—1, Qgne2n—2, Qen ) i8S a0 0 X N
reverse circulant matrix.

Let we € RD,,, where Ds, is the dihedral group of order 2n with its elements
being listed as follows:

(3.2) {e,a,a?, ...,a" * ba" * ba" "2, ... ba,b}.

Then the generator matrix o(ws) has the following form:
A B
Go = o(w2) = (BT AT>7

A = cir(ae, gy .., Qgn-1)

where

is a n X n circulant matrix and
B = cir(apgn—1, Qpgn-2, - - ., Qp)

is a n X n circulant matrix.
We now present a small example of how we construct the DNA codes using our
group ring approach.

Example 3.1. Let Dg be a dihedral group of order 6 with the ordering of elements
{e,a,a? ba?, ba,b}, v = w+ wa + wa?® € F4Dg then the generator matrix has the
form

(3.3) o(v) =Gy =

cocog g 8
coco=g g 8
coco=g g g
€ g coo
E 8 cooo
f g oo o

wow w

From the above generator matrix, we construct a DNA code C with 16 codewords
satisfying R-constraint with d = 3 as follows;

(:Z%)(& 3) = {AAAAAA, AAAGGG, AAATTT, GGGAAA, COCAAA, AAACCO,
TTTAAA,TTTTTT,GGGCCC,CCCCCC,GGGGGG, TTTCCC,
CCCGGG, GGGTTT, TTTGGG, CCCTTTY).

We know by [12] that for an even n:
(3.5) ARC(n,d) = AR(n,d).
Therefore AFC(6,3) = AF(6,3). The GC-weight enumerator of C is

GCW (a,b) = 4a® + 8a3b> 4 4b°.
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Thus we construct a DNA code with 8 codewords satisfying hamming distance
constraint 3, reversible complement constraint and fixed GC-content constraint
with £ = 3.

We now employ the generator matrices G; and G, to search for DNA codes that
satisfy the Hamming distance, the reverse, the reverse-complement and the fixed
GC-content constraints of lengths up to and including 32. We tabulate our findings
in Table 2 and Table 1. The results that are equal to or better than the currently
known best bounds are written in bold, and new results are also written in bold.
Generator matrices, GC-weight enumerators and parameters of codes in Tables 2
and 1 can be found in [11].
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TABLE 1. Lower bounds on AFC(n,d) and A¥%CY(n, d, k) from G,

nod Afnd)  AFnd k)
4 3 16 12

6 3 64 30

6 2 1024 480

8 4 256 176

8 3 256 152

8 2 4096 2240

12 6 4096 1848

12 4 16384 6144

14 5 65536 13728

14 4 65536 13728

16 6 65536 25880

16 4 1048576 461824

16 2 268435456 105431040
18 4 4194304 1400256

18 3 16777216 3111680
18 2 4294967296 1429733376
20 5 16777216 2956096

20 4 1073741824 376832000
20 3 4294967296 756760576
20 2 68719476736 12108169216
20 6 1048576 369008

20 7 1048576 369512

22 6 16777216 2821728

22 2 1099511627776 339270959104
24 4 68719476736 22409117696
24 3 68719476736 11098587136
24 2 17592186044416 2841238306816
24 6 268435456 86739968

4. CONCLUSION

In this work, we showed that one can construct good DNA codes from G-codes
that are reversible- this is a crucial property for DNA codes. We defined and studied
reversible cyclic DNA codes and we also defined self-reciprocal group ring elements.
We presented two generator matrices that one can use to search for DNA codes. We
employed these generator matrices with the use of only two groups, the cyclic group
of even order and the dihedral group of order 2n, to search for reversible cyclic and
dihedral DNA codes that satisfy the Hamming distance, the reverse, the reverse
complement and the GC-weight enumerator constraints. Our group ring approach
proved to be successful as we constructed many DNA codes. A possible research
direction is to consider reversible group ring approach and specifically Theorem 3.10
to construct, possibly, more DNA codes with better parameters.
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TABLE 2. Lower bounds on AFC(n,d) and A¥“%“(n,d, k) from G,

n d ARC(n, d) AFCCC (0, d, k)
24 4 4294967296 1387323392

24 3 68719476736 22160015360
24 2 17592186044416 2835513081856
26 2 281474976710656 81000264630272
28 4 1099511627776 328637349888
28 3 17592186044416 2630898155520
28 2 4503599627370496 1345974567960576
30 4 1125899906842624 304973453721600
30 3 4503599627370496 650610034606080
30 2 1125899906842624 162652508651520
32 2 1152921504606846976 322709486693253120
32 4 17592186044416 4928618364928
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