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This paper presents a comprehensive study on the multi-objective 

optimization of cutting parameters for Polyethylene (PE) thermoplastic 

material utilizing a CO2 laser. Recognizing the pivotal role of precise and 

efficient cutting in various sectors, from packaging to biomedical 

engineering, we integrate two potent analytical methodologies - Data 

Envelopment Analysis (DEA) and Step-Wise Weight Assessment Ratio 

Analysis (SWARA)-based Comprehensive Criteria Score Optimization 

(CoCoSo) approach. The cutting parameters chosen for the study were 

material thickness, power, and cutting speed. The experiments were 

conducted according to the Taguchi L18 orthogonal array. Surface 

roughness and kerf width measurements were performed to examine the 

cutting quality. Additionally, another response variable, material removal 

rate, was calculated. By integrating Data Envelopment Analysis and the 

SWARA-based CoCoSo approach, the experimental condition that 

yielded the lowest surface roughness, kerf width, and highest material 

removal rate was determined. The optimum experimental condition was 

found to be 4 mm material thickness, 80 W power, and 15 mm/s cutting 

speed. This work, therefore, paves the way for the innovative application 

of these combined methodologies in enhancing the production processes 

of PE and other thermoplastic materials, with clear implications for cost-

effectiveness and sustainability in the manufacturing sector. 
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Bu makale, Polietilen (PE) termoplastik malzeme için CO2 lazer kullanarak 

kesme parametrelerinin çok amaçlı optimizasyonu üzerine kapsamlı bir 

çalışma sunmaktadır. Paketlemeden biyomedikal mühendisliğe kadar çeşitli 

sektörlerde kesme işleminin hassas ve verimli bir şekilde 

gerçekleştirilmesinin önemini göz önünde bulundurarak, Veri Zarflama 

Analizi (DEA) ve Adım Adım Ağırlık Değerlendirme Oranı Analizi 

(SWARA) temelinde Birleşik Uzlaşma Çözümü (CoCoSo) yaklaşımını 

entegre ediyoruz. Kesme parametreleri olarak malzeme kalınlığı, güç ve 

kesme hızı seçilmiştir. Deneyler Taguchi L18 ortogonal dizine göre 

uygulanmıştır. Kesim kalitesini incelemek için yüzey pürüzlülüğü ve kerf 

genişliği ölçümleri gerçekleştirilmiştir. Ayrıca, diğer bir yanıt olan 
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Optimizasyon 

Çok kriterli karar verme 
Polipropilen 
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malzeme kaldırma oranı hesaplanmıştır. Veri Zarflama Analizi ve SWARA 

Tabanlı CoCoSo yaklaşımı entegre edilerek en düşük yüzey pürüzlülüğü, 

kerf genişliği ve en yüksek malzeme kaldırma oranının elde edildiği deney 

koşulu tespit edilmiştir. Optimum deney koşulu; 4 mm malzeme kalınlığı, 

80 W lazer gücü ve 15 mm/s kesme hızı olarak tespit edilmiştir. Bu çalışma, 

birleşik metodolojilerin PE ve diğer termoplastik malzemelerin üretim 

süreçlerini geliştirmede yenilikçi uygulamalarına yol açmaktadır. Bu 

durum, imalat sektöründe maliyet etkinliği ve sürdürülebilirlik açısından net 

etkileri olan bir perspektif sunmaktadır. 

To Cite: Der O., Ordu M., Başar G. Multi-Objective Optimization of Cutting Parameters for Polyethylene Thermoplastic 

Material by Integrating Data Envelopment Analysis and SWARA-Based CoCoSo Approach. Osmaniye Korkut Ata 

Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2024; 7(2): 638-661. 

  

1. Introduction 

Thermoplastic materials are a class of polymers that possess unique properties, making them widely 

utilized in various industries, including automotive, aerospace, electronics, and packaging (Der et al., 

2019a; Der et al., 2022). PE one of the most widely used thermoplastic materials, is characterized by its 

high resistance to impact, moisture, and chemical substances. This polymer, composed of ethylene 

monomers, offers distinct advantages such as low cost, ease of processing, and versatility, making it a 

critical material in diverse industries, including packaging, construction, and automotive engineering 

(Mierzwa-Hersztek et al., 2019). Thermoplastic materials, including polyethylene, exhibit the unique 

property of being mouldable and pliable at high temperatures and becoming hard upon cooling. This 

inherent plasticity facilitates their machining, moulding, and cutting, accommodating a spectrum of 

functional needs (Rastogi et al., 2011). 

One significant procedure used to machine thermoplastic materials is carbon dioxide (CO2) laser cutting 

(Der et al., 2019b). This non-contact, thermal-based process provides a high level of precision and 

operational control, which is ideal for processing thermoplastics like polyethylene. The principle of CO2 

laser cutting revolves around using the high-energy infrared light beam, which upon interaction with the 

material's surface, causes it to heat, melt, and vaporize, thereby effectuating a cut. This technique yields 

remarkable advantages, such as minimal heat-affected zones, low distortion, and the ability to handle 

intricate designs (Powell, 1993). 

Optimizing the cutting parameters in the machining process is essential for ensuring the quality of the 

final product (Cus and Balic, 2003). In this context, three parameters play a crucial role in determining 

the cutting quality: Surface roughness, kerf width, and material removal rate. Surface roughness refers 

to the measure of the texture of the machined surface. A smoother surface denotes a higher-quality cut, 

minimizing post-processing efforts and costs (Liu et al., 2017). Kerf width, the width of material 

removed during the cutting process, directly impacts the precision of the cut and the total material usage. 

A smaller kerf width is generally desirable as it allows for more precise cuts and efficient material 

utilization (Llanto et al., 2021). The rate at which material is removed, which refers to the quantity of 

material eliminated in a given period, plays a vital role in determining the productivity of the 

cutting operation. Higher material removal rates indicate faster cutting speeds, leading to increased 
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productivity and cost-effectiveness (Kini and Chincholkar, 2010). Therefore, a comprehensive and 

balanced optimization of these parameters is pivotal to achieving an efficient and high-quality 

machining process. 

This study aimed to determine the optimal experimental parameter by using multi-objective 

optimization of the cutting parameters of thermoplastic materials with a CO2 laser. For this, firstly, an 

experimental setup for the cutting experiment of Polyethylene thermoplastic material with a CO2 laser 

was designed. Three different input parameters were selected: material thickness, power and cutting 

speed. Each input parameter was determined as a factor in the experimental design analysis and three 

levels of each factor were specified. In the experimental study, three different output parameters were 

measured: Surface roughness, kerf width, and material removal rate. Considering the approach 

developed in the study, first of all, efficient experiments were determined by data envelopment analysis. 

Then, the SWARA-based CoCoSo method was used to determine the ranking of the efficient 

experiments among themselves. In the second stage, the outputs of the experiment were used as criteria. 

The criteria weights were calculated by the SWARA method, and these criteria weights were used in 

the CoCoSo method. Parameter optimization of the efficient experiments was carried out by the 

SWARA-based CoCoSo method. 

The rest of the study was organized as follows: Experimental setup and measurement were explained in 

greater detail. Then, the developed decision-making approach was explained step by step. Experimental 

results were given and the effects of cutting parameters on each output were analyzed. Multi-objective 

optimization was carried out by using the developed decision-making approach. Finally, the conclusion 

of the study was emphasized.  

 

2. Literature Review 

In the exploration of CO2 laser cutting for thermoplastic polymers with thicknesses ranging from 2 to 

10 mm, Caiazzo et al. (2005) evaluated an array of influential parameters such as laser power, cutting 

velocity, gas pressure, and the thickness of the work material. The study elucidated the superior laser-

cutting efficacy of polycarbonate (PC), the moderate workability of polypropylene (PP), and the 

restrained suitability of polyethylene (PE) for laser cutting. Concurrently, Zhou and Mahdavian (2004) 

advocated for employing a 60W low-power CO2 laser for slicing non-metallic substances and plastic 

boards, accentuating the efficacy of pulse mode cutting for medium-density fibreboards processing due 

to its narrowed kerf width and reduced burnout probability even amidst intricate angular profile cuts 

(Lum et al., 2000). In a related study, Mathew et al. (1999) executed parametric scrutiny on the laser 

cutting procedure of carbon fiber-reinforced plastic composites employing a pulsed Nd:YAG laser, 

utilizing response surface methodology for the establishment of predictive models. Their investigation 

examined variables including the heat-affected zone and the taper of the cut surface. Kurt et al. (2009) 

probed the implications of CO2 laser cutting on engineering plastics, concluding the necessity of laser 

power and cutting speed regulation and optimization for the attainment of specified dimensions and 
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optimal surface quality, characterized by satisfactory roughness values. The effect of gas pressure on 

achieving target dimensions was found negligible, and lower striation frequency was linked to an 

enhancement in surface quality. Contrarily, no linear correlation was observed between the cutting 

velocity and surface irregularity of the cut surface. In their assessment of laser power and cutting speed 

impacts on the quality of cuts across various polymeric materials, Davim et al. (2008a) identified the 

exceptional workability of Polymethyl Methacrylate (PMMA) for laser cutting, with Polycarbonate (PC) 

also showing high workability. Polypropylene (PP) displayed medium workability while reinforced 

thermoset plastic exhibited low workability in laser cutting operations. Davim et al. (2008b) also 

analyzed the cutting quality of PMMA utilizing a CO2 laser, focusing on linear and complex 2D pattern 

surface quality. They reported a relatively small heat-affected zone and the absence of burr formation 

during the cutting procedure. Ilio et al. (1990) innovatively introduced a digital image processing 

technique for cut quality assessment in their study on laser cutting of aramid fiber-reinforced plastics. 

Furthermore, Rooks (2004) delineated the heterogeneous results stemming from different polymer-laser 

type combinations and discussed the use of robotics for specialized applications such as the dynamic 

scribing of packaging materials and pre-weakening car trims for integrated airbags. Der et al. (2021) 

exhibited the successful cutting of variable-thickness polypropylene plastics using a CO2 laser. The cut 

pieces were subsequently joined via transmission laser welding, forming a flexible pulsating heat pipe, 

a process found to be notably efficient due to impeccable cutting.  

Moreover, the potency of multi-objective optimization techniques in pinpointing the optimal blend of 

process parameters, which take into consideration a variety of evaluated cutting properties, has been 

exhibited. Tackling the shortcomings of the Taguchi method's unifocal optimization, Dubey and Yadava 

(2008) utilized principal component analysis alongside an orthogonal array to bring forth a multi-

objective optimization for the Nd:YAG laser cutting of nickel-based superalloy sheets. Their method 

led to the discovery of optimized process parameters that resulted in a reduction of various cutting 

characteristics, encompassing kerf taper, kerf deviation along the length, and kerf width. The parameters 

could be defined to be optimal as a result of the decrease in oxygen pressure, the shortening of pulse 

duration, the intermediate pulse frequency, and the slower cutting speed. Through the execution of 

ANOVA analysis, the cutting speed was recognized as having the most profound impact (48%) on the 

outcome, subsequently followed by pulse width (33%). In another investigative study, Pandey and 

Dubey (2012) amalgamated the Taguchi method with fuzzy logic theory to enhance multiple results in 

the laser cutting procedure of Duralumin sheets, noted for their high reflectivity and thermal 

conductivity. The determination of the optimized parameter blend hinged on the appraisal of the 

maximum fuzzy multi-response performance index. This index emphasized beneficial outcomes in 

relation to augmented gas pressure, amplified cutting speed, attenuated pulse width, and mitigated pulse 

frequency. Remarkably, in this study, the paramount factor was oxygen gas pressure, which constituted 

61.3% of the effect, with pulse frequency following at 34.5%. Chen et al. (2011) employed Grey 

relational analysis to fine-tune the CO2 laser cutting process for 6 mm thick PMMA. The researchers 
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honed their attention on two crucial performance features: acquiring a significant transmittance ratio 

and curtailing surface irregularities. Through rigorous examination, they discerned the optimal 

parameters to incorporate a moderate assisted-gas flow rate, a minimal defocussing distance, a low pulse 

frequency, and a higher cutting speed. Among these variables, the assisted gas flow rate and beam 

defocusing distance were found to exert the most substantial impact on the ultimate quality of the cut 

surface. Parameter optimization is instrumental in procuring the desired surface roughness for 

thermoplastic materials. Traditional optimization techniques typically concentrate on single-objective 

optimization, which contemplates a single criterion at a time (Nyiranzeyimana et al., 2021), for example, 

Basar et al. (2018) and Güvenç et al. (2019). Yet, in practical scenarios, multiple criteria necessitate 

concurrent consideration to attain optimal results. Multi-objective optimization methodologies, when 

united with multi-criteria decision-making (MCDM) approaches, are gaining recognition for addressing 

such intricate optimization problems (Kumar et al., 2017). AHP and TOPSIS are two of multi criteria 

decision making methods that are extensively used (Sasikumar and Ayyappan, 2019). AHP facilitates 

the determination of the comparative importance of different criteria, while TOPSIS assists in ranking 

the alternatives based on their performance relative to these criteria. The amalgamation of AHP and 

TOPSIS offers a holistic framework for decision-making, enabling effective parameter optimization and 

the realization of the desired surface roughness in thermoplastic materials (Roy et al., 2020). In fact, 

metaheuristic-based ANFIS applications have been implemented to accurately predict surface 

roughness, as demonstrated by Guvenc et al. (2022). 

Numerous studies exist regarding laser cutting in the literature. For instance, Eksilmez et al. (2022) 

studied the laser processing of Hardox 500 steel and evaluated its processing parameters. Cebeci et al. 

(2022) processed AISI 304 stainless steel using a laser, focusing on the impact of cutting parameters on 

outputs such as surface roughness, kerf width, and burr height. The selection of materials suitable for 

laser cutting has also been a research topic, as explored by Ordu and Der (2023a). Moreover, Ordu and 

Der (2023b) concentrated on minimizing environmental impacts when selecting the most suitable plastic 

material for laser cutting. 

Despite the extensive research on laser cutting of various materials, especially thermoplastic polymers, 

there remains a gap in understanding the integration of multi-objective optimization methodologies with 

multi-criteria decision-making techniques. The present study seeks to bridge this gap by combining the 

strengths of AHP and TOPSIS into a comprehensive framework for laser cutting applications. Such an 

approach not only enhances the predictability of outcomes, such as surface roughness but also highlights 

the study's novelty in addressing complex optimization challenges in laser cutting. Through this 

research, we aim to offer a pioneering pathway for stakeholders to achieve optimal results while 

considering multiple concurrent criteria, ensuring superior laser-cutting performance and quality. 
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3. Experimental Setups and Measurements  

3.1. CO2 Laser Machine and Thermoplastic 

The preliminary experiments were carried out with a laser system, consisting of a 100 W continuous 

CO2 laser (LazerFix LF7010 Laser Cutting Machine), and a three-axis CNC-controlled table with a 

working volume of 70 cm×100 cm×20 cm as shown in Figure 1. 

 

                                  

Figure 1. LazerFix LF7010 laser cutting machine 

 

The thermoplastic material selected for this research was PE. Its properties are given in Table 1. The 

selected material thicknesses were 2 and 4 mm. 

 

Table 1. Average physical, thermal, and mechanical properties of PE 

Thermoplastic 
Density 

(kg/m3) 

Yield 

strength 

(MPa) 

Tensile 

Strength 

(MPa) 

Young’s 

Modulus 

(GPa) 

Tm  

(°C) 

Service 

Temperature, 

min/max  

(°C) 

PE 950 23.5 33.00 0.76 125 -70/80 

 

PE, a widely used plastic material, is known for its lightweight, excellent insulation properties, and 

strong resistance to most acids, bases, and numerous organic solvents. Its flexibility and toughness 

combined with resistance to impact and abrasion make it mechanically reliable. Additionally, PE serves 

as an effective vibration damper. The material's melting point is approximately 125°C, emphasizing its 

substantial thermal properties. It also exhibits superior electrical characteristics, including commendable 

dielectric strength, volume resistivity, and high arc resistance, making it a popular choice for electrical 

insulation. Although the grade of polyethylene determines its opacity, it generally ranges from 

translucent to opaque. 
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3.2. Selection of Cutting Parameters 

The cutting process is affected by various constant and varying parameters. The stand-off distance is the 

constant factor, while the variables encompass the power of the laser, the speed of the cut, the thickness 

of the material, and the pressure of the compressed air. The role of compressed air is twofold: to clear 

away molten material from the workpiece and to shield the focusing optics from any dust or smoke. 

Keeping the optics clean is crucial in guaranteeing that the workpiece is subjected to a beam of the 

highest quality. An optimum working distance of 7 mm has been established.  

Once the polymer sheet was situated on the work surface, we examined its evenness with a spirit level. 

We did not employ compression pressure to secure the sheet to the table. For polymer sheets that are 

smaller and/or thinner, compression is generally essential to avoid unsteadiness induced by the effect of 

pressurized air on the sheet; however, with the minimum thickness of 2 mm in this study, it was not 

required. The thrust magnitude and the efficiency in eliminating molten material have correlations with 

the stand-off distance and nozzle diameter, to the contrary these correlations were not explored in this 

research.  

In this study, material thickness, power and cutting speed were chosen as cutting parameters in cutting 

PE material with a CO2 laser. Selected cutting parameters and levels are given in Table 2. Experiments 

were performed according to the Taguchi L18 orthogonal array. 

 

Table 2.  Cutting parameters and levels 

Cutting parameters Symbol Level 1 Level 2 Level 3 

Material thickness (mm) t 2 4 - 

Power (W) P 80 90 100 

Cutting speed (mm/s) Vc 5 10 15 

 

Figure 2 illustrates the geometric shapes employed in the laser-cutting process of polymeric materials. 

The results obtained from these cuts were used to determine surface roughness measurements. From a 

130 mm x 130 mm square plate, nine pieces, each measuring 30 mm x 30 mm, were obtained. These 

pieces were cut at different cutting speeds and powers. 
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Figure 2. Geometric forms of the specimen for surface roughness measurements 

 

In order to measure kerf width - an important cutting parameter - the part depicted in Figure 3 was cut. 

A straight cut was made on a 10 mm x 100 mm rectangular plate to measure the kerf widths associated 

with nine different parameters. 

 

Figure 3. Geometric forms of the specimen for kerf width measurements 

 

3.3. Measurement of Ra with Kerf Width and Calculation of Material Removal Rate 

Surface roughness (Ra) and kerf width (KW) measurements were performed to examine the cutting 

quality of the PE material. Ra measurements were conducted using the DAILYAID brand and DR100 

model surface roughness measurement device. The KW was measured using a computer-connected 

Dino-Lite AM4113T digital microscope. The measurements were taken from the captured images using 

Dino Capture 2.0 software. Ra and KW measurement pictures are shown in Figure 4.  

 

 



646 

 

Another response, material removal rate (MRR), is calculated by Eq. (1) (Madić et al., 2014). 

 

𝑀𝑅𝑅 (𝑚𝑚3 𝑚𝑖𝑛⁄ ) = 𝑡 ∙ 𝑉𝑐 ∙ 𝐾𝑊     (1) 

 

Here; 𝑡 (mm) is material thickness, 𝑉𝑐 (mm/s) means cutting speed and 𝐾𝑊 (mm) represents kerf width. 

 

  

Figure 4. Measurement setup a) Surface roughness and b) Kerf width.  

 

 

b) 

a) 
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4. Data Envelopment Analysis Integrated with SWARA-Based CoCoSo Approach 

4.1. Data Envelopment Analysis Modelling 

Data Envelopment Analysis (DEA) is an approach used to evaluate the relative performance of 

alternatives and it has gained widespread use over the years (Po et al., 2009). Charnes et al. (1978) 

introduced the DEA method featuring the Charnes‐Cooper‐Rodes (CCR) model, while the DEA variant 

using the Banker‐Charnes‐Cooper (BCC) model was proposed by Banker et al. (1984). The core of the 

DEA model is a fractional programming process that optimizes a ratio obtained by dividing outputs by 

their corresponding inputs. The computation of weights involves the application of a mathematical 

programming method (Po et al., 2009). The transformation of fractional programming into a linear one 

was achieved by Charnes et al. (1981). We modified our DEA model for each Decision-Making Units 

(DMUs) following Cooper et al. (2000), incorporating 18 DMUs, three inputs, and three outputs. 

The DEA model assigns efficiencies within the [0, 1] interval, with the highest possible efficiency score 

capped at 1. This restriction might induce uncertainty in comparing the relative efficiency scores of 

high-performing DMUs. That is, the DEA model does not facilitate a ranking system among the most 

efficient DMUs (Ordu et al., 2021). 

 

4.2. Determination of the Criteria Weights by Using SWARA Method 

The SWARA method is one of the multi-criteria decision-making methods and can be used to determine 

criterion weights. SWARA method was developed by Keršulienė et al. (2010). The steps of the method 

(Keršulienė et al., 2010) are given below: 

Step 1: All criteria is sorted in descending order of their importance. 

Step 2: For each criterion, the Comparative Significance of the Mean Value (sj) is determined. For this, 

criterion j is compared with the criterion (j+1). The relative importance of the criterion j according to 

the criterion (j+1) is determined. 

Step 3: The coefficient (kj) is calculated using Eq. (2). 

𝑘𝑗 = {
1, 𝑗 = 1

𝑠𝑗 + 1, 𝑗 > 1 (2) 

Step 4: The importance vector (wj) is calculated using Eq. (3). 

𝑤𝑗 = {

1, 𝑗 = 1
𝑥𝑗−1

𝑘𝑗
, 𝑗 > 1 (3) 

Step 5: The criterion weights (qj) is calculated using Eq. (4). 

𝑞𝑗 =
𝑤𝑗

∑ 𝑤𝑘
𝑛
𝑘=1

 (4) 

 

4.3. CoCoSo Method 

The CoCoSo method, proposed by Yazdani et al. (2020), integrates the principles of the following: 

Simple Additive Weighting (SAW), Multiplicative Exponential Weighting (MEW), and Weighted 
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Aggregated Sum Product Assessment (WASPAS). This method's unique capability is to fuse data 

support the development of more dependable models and facilitate highly accurate decision-

making(Torkayesh et al., 2021). The process involved in the CoCoSo method is as follows (Yazdani et 

al., 2019):  

Step 1: The decision matrix is initially established. Based on the compromise normalization equation, 

the criteria values are normalized by using Eq. (5) for maximization-oriented criteria and Eq. (6) for 

minimization-oriented criteria. 𝑥𝑖𝑗 was the value of the alternative i for the criterion j, 𝑟𝑖𝑗 meant the 

normalized value of the alternative i for the criterion j, 

Step 2: The sum of the weighted comparability (Si) and power-weighted comparability sequences (Pi) 

for each alternative are calculated by utilizing Eq. (7) and (8). 𝑤𝑗 is the weight of the criterion j. 

Step 3: Construct three aggregated assessment scores to identify the corresponding weights of the 

alternatives by applying Eq. (9) - (11). 

Step 4: Broadly, Eq. (12) signifies the arithmetic average of the sum of the Weighted Sum Method and 

Weighted Product Method scores. On the other hand, Eq. (13) represents the sum of the relative 

Weighted Sum Method and Weighted Product Method scores in comparison to the optimal choice. Eq. 

(14) provides to determine the balanced compromise score of the WSM and WPM models. While the 

value from Eq. (14) may fluctuate between 0 and 1, the threshold value is generally set at 0.50. 

𝑟𝑖𝑗 =
𝑥𝑖𝑗 − min

𝑖
𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗 − min
𝑖

𝑥𝑖𝑗
 (5) 

𝑟𝑖𝑗 =
max

𝑖
𝑥𝑖𝑗 − 𝑥𝑖𝑗

max
𝑖

𝑥𝑖𝑗 − min
𝑖

𝑥𝑖𝑗
 (6) 

𝑆𝑖 = ∑(𝑤𝑗𝑟𝑖𝑗)

𝑛

𝑗=1

 (7) 

𝑃𝑖 = ∑(𝑟𝑖𝑗)𝑤𝑗

𝑛

𝑗=1

 (8) 

𝑘𝑖𝑎 =
𝑃𝑖 + 𝑆𝑖

∑ (𝑃𝑖 + 𝑆𝑖)𝑚
𝑖=1

 (9) 

𝑘𝑖𝑏 =
𝑆𝑖

min
𝑖

𝑆𝑖
+

𝑃𝑖

min
𝑖

𝑃𝑖
 (10) 

𝑘𝑖𝑐 =
𝜆(𝑆𝑖) + (1 − 𝜆)(𝑃𝑖)

(𝜆 max
𝑖

𝑆𝑖 + (1 − 𝜆) max
𝑖

𝑃𝑖)
 (11) 

𝑘𝑖𝑎 =
𝑃𝑖 + 𝑆𝑖

∑ (𝑃𝑖 + 𝑆𝑖)𝑚
𝑖=1

 (12) 
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Step 5: Ascertain based on the descending order of the total score the final ranking of the alternatives 

(ki) calculated by Eq. (15). 

 

5. Results and Discussion 

5.1. Experimental Results  

The analysis of the data obtained from CO2 laser cutting experiment, as represented in Table 2, has 

revealed interesting patterns and correlations between various factors such as power, cutting speed, and 

material thickness on parameters like surface roughness (Ra), kerf width (KW), and material removal 

rate (MRR). The Ra values have demonstrated that at a constant power and material thickness, an 

increase in cutting speed results in a reduction of surface roughness. For example, with a power of 80 

W and thickness of 2 mm, an increase in cutting speed from 5 mm/s to 15 mm/s resulted in a decrease 

of Ra from 1.21µm to 0.67µm. This result was found to be compatible with the literature (Caiazzo et 

al., 2005; Choudhury and Shirley, 2010). However, at a fixed cutting speed and material thickness, an 

increase in power tended to increase the Ra value, presumably due to the larger amount of heat input 

causing more significant melting and potentially re-solidification phenomena, leading to a rougher 

surface. This outcome has aligned with what was previously published in the field (Anjum et al., 2022). 

Comparing the Ra values for a thickness of 2mm at 80 W power and 5mm/s cutting speed (Ra = 

1.21µm), with those for a thickness of 4mm under the same power and cutting speed conditions (Ra = 

1.28 µm), it can be seen that increased material thickness also tends to increase the Ra values. 

For KW, the values also have tended to decrease as cutting speed increases, consistent with a reduction 

in the dwell time of the laser beam on the material resulting in narrower cuts. However, with increasing 

power and material thickness, the KW values increased, which was expected as a more powerful laser 

would deliver more energy to the cut zone, thus generating wider kerfs. The existing body of research 

also corroborates these findings (Moradi et al., 2017). For example, comparing the KW values for 2 mm 

thickness at 80W and 5mm/s cutting speed (KW = 0.466 mm), with the 4mm thickness under the same 

power and cutting speed conditions (KW = 0.709 mm), has demonstrated the effect of increased material 

thickness on the KW. 

The MRR values ended up with a clear increase with both cutting speed and power, as expected. A 

faster, more powerful laser would be capable of removing material more quickly. For instance, with a 

material thickness of 2mm and power of 80 W, increasing the cutting speed from 5 mm/s to 15 mm/s 

results in the MRR increasing from 280 mm3/min to 724 mm3/min. Similarly, for a cutting speed of 5 

𝑘𝑖𝑏 =
𝑆𝑖

min
𝑖

𝑆𝑖
+

𝑃𝑖

min
𝑖

𝑃𝑖
 (13) 

𝑘𝑖𝑐 =
𝜆(𝑆𝑖) + (1 − 𝜆)(𝑃𝑖)

(𝜆 max
𝑖

𝑆𝑖 + (1 − 𝜆) max
𝑖

𝑃𝑖)
 (14) 

𝑘𝑖 = (𝑘𝑖𝑎𝑘𝑖𝑏𝑘𝑖𝑐)
1
3 +

1

3
(𝑘𝑖𝑎+𝑘𝑖𝑏 + 𝑘𝑖𝑐) (15) 
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mm/s and thickness of 2 mm, increasing the power from 80 W to 100 W increases the MRR from 280 

mm3/min to 341 mm3/min. The results reported in the literature are also compatible with the ones found 

in this study (Varsi and Shaikh, 2019). Interestingly, MRR values also increase noticeably with material 

thickness, even though one might anticipate a thicker material would take longer to cut. This could be 

due to the calculation of MRR, which considers volume (mm³/min), thus thicker materials result in a 

greater volume of material being removed per unit time. To sum up, this analysis implies a delicate 

balance and potential trade-off when choosing the parameters for laser cutting. Higher cutting speeds 

may lead to lower Ra and narrower KWs but at the cost of potentially reduced MMRs. Conversely, 

higher powers may boost the MMR but could result in rougher surface finishes and wider kerfs. 

 

Table 3. Responses from CO2 laser cutting experiment results 

Experiment 

Number 

Thickness 

(mm) 

Power 

(W) 

Cutting 

speed 

(mm/s) 

Ra  

(µm) 

KW  

(mm) 

MRR 

(mm3/min) 

1 2 80 5 1.21 0.466 280 

2 2 80 10 0.82 0.419 503 

3 2 80 15 0.67 0.402 724 

4 2 90 5 1.28 0.538 323 

5 2 90 10 0.90 0.491 589 

6 2 90 15 0.73 0.462 832 

7 2 100 5 1.49 0.569 341 

8 2 100 10 1.09 0.530 636 

9 2 100 15 0.80 0.504 907 

10 4 80 5 1.28 0.709 851 

11 4 80 10 0.85 0.661 1586 

12 4 80 15 0.70 0.623 2243 

13 4 90 5 1.32 0.818 982 

14 4 90 10 0.93 0.754 1810 

15 4 90 15 0.75 0.702 2527 

16 4 100 5 1.51 0.863 1036 

17 4 100 10 1.12 0.793 1903 

18 4 100 15 0.95 0.722 2599 

 

5.2. The Effect of Cutting Parameters on Ra, KW and MRR 

Three-dimensional graphs were generated to investigate the effects of CO2 laser cutting parameters on 

Ra, KW, and MRR. The graphs for Ra were displayed in Figure 5 (a-c). It was established that an 

increase in cutting speed results in a decrease in Ra. Additionally, it was observed that the quality of the 

laser-cut surface improved with a reduction in both material thickness and power. A review of the figures 

suggested that cutting speed and power exerted a more significant influence on Ra than material 

thickness. 
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Three-dimensional graphs depicting KW are presented in Figure 6 (a-c). Observations showed that KW 

decreased as the cutting speed increased. Furthermore, it was determined that KW diminished with a 

reduction in material thickness and laser power. Material thickness and power significantly impact KW, 

whereas the influence of cutting speed was less pronounced. It was evident that the most crucial 

parameter was found to be the material thickness. 

 

 
Figure 5. Three-dimensional graphics for Ra  

    



652 

 

 

Figure 6. Three-dimensional graphics for KW 

 

 
 

Figure 7. Three-dimensional graphics for MRR 

 

Three-dimensional graphs illustrating the MRR are shown in Figure 7 (a-c). It was observed that the 

MRR increases as the cutting speed, power, and material thickness increase. The parameters of CO2 
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laser cutting have a significant impact on the MRR. Since material thickness is a critical parameter 

influencing the KW, it also has the most significant effect on the MRR. As the material thickness 

increases, the KW and, consequently, the MRR also increase. This correlation is due to the use of the 

KW value in the calculation of the MRR. 

 

5.3. Multi-Objective Optimization of Cutting Parameters 

In the multi-objective optimization of cutting parameters, we have integrated three different methods: 

First, we determined the efficient experiments by using the data envelopment analysis method, then the 

weights of the criteria were calculated to evaluate the efficient experiments among themselves within 

the framework of a set of criteria, and lastly, the efficient experiments were ranked from the most optimal 

to the non-optimal. In the first stage, the efficiency scores of the experiments were calculated based on 

the input-output relationship by the data envelopment analysis. A total of 18 experiments were 

considered as decision-making units (DMUs). The factors considered in the experiment were taken into 

account as inputs and the measured parameters were selected as outputs. As can be seen in Table 4, 14 

of the 18 experiments were found to be efficient, and all the efficiency scores are shown in Table 5. 

 

Table 4. The summary of the DEA modeling 

Maximum efficiency score 1.00 

Minimum efficiency score 0.91 

Number of efficient DMUs 14 

Total number of DMUs 18 

% of efficient DMUs 77.78 

 

Table 5. The experiments and efficiency scores (%) 

Experiments Efficiency Scores (%) 

E1 1.00 

E2 1.00 

E3 1.00 

E4 0.97 

E5 0.95 

E6 1.00 

E7 0.91 

E8 0.92 

E9 1.00 

E10 1.00 

E11 1.00 

E12 1.00 

E13 1.00 

E14 1.00 

E15 1.00 

E16 1.00 

E17 1.00 

E18 1.00 

 

In this multi-objective optimization study, we prioritized Ra, MRR, and KW, with the criteria weights 

of 50.4%, 28%, and 21.6%, respectively (see Table 6). These weights, signifying their importance, were 
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derived using the SWARA method. Ra received the highest weight among the criteria, reflecting its 

crucial importance in the machining of polyethylene thermoplastic material. The quality of a finished 

product was primarily determined by the Ra, which was directly influenced by the cutting parameters. 

A superior surface finish could reduce the need for additional finishing processes, potentially saving 

time and cost. Moreover, a smoother surface was more resistant to wear and tear, leading to a longer 

product lifespan. Therefore, the weight of Ra, which reflected its dominant role in the machining 

process, was set at 50.4%. 

 

Table 6. Criteria weights (%) 

Criteria sj kj qj wj 

Surface Roughness  1.00 1.000 0.504 

Material Removal Rates 0.80 1.80 0.556 0.280 

Kerf Width 0.30 1.30 0.427 0.216 

 

On the other hand, the MRR also has played a significant role in machining, though its weight was less 

than Ra. This criterion was associated with the efficiency of the machining process, as a higher removal 

rate translates to faster job completion. However, a higher removal rate might have compromised the 

quality of the surface finish and the dimensional accuracy of the product. As a result, while it was 

important to maximize the MRR, this must be balanced with the need to achieve optimal Ra. Hence, the 

weight assigned to MRR was 28%. Lastly, the KW represented the width of the material that was 

removed during the cutting process. Although it had a lower weight of 21.6%, it still holded relevance 

in the optimization process. The KW had impacts on the amount of material wasted in the process and 

also affected the precision of the cut. A smaller KW often corresponds to a more precise cut, which is 

particularly critical in industries where high precision is required. However, due to the inherent 

resilience and relatively low cost of polyethylene thermoplastic material, the KW was deemed less 

important than Ra and MRRs in this specific context. In summary, criteria weights, derived from 

polyethylene material properties and machining implications, balance product quality (surface 

roughness), efficiency (material removal rates), and precision (kerf width) for optimal cutting parameter 

optimization. 

The experimental results of the multi-objective optimization of cutting parameters for PE thermoplastic 

material are summarized in Table 7. This section has elucidated the findings, focusing primarily on the 

individual and combined effects of the key cutting parameters: thickness, power, and cutting speed. 

These parameters were optimized using the integrated Data Envelopment Analysis and SWARA-based 

CoCoSo approach, without delving into the specifics of the CoCoSo parameter values. 
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Table 7. Ranking experiments by CoCoSo Method 

Experiments 

Input Parameters Parameter Values of CoCoSo Method 

Rank Thickness  

(mm) 

Power 

(W) 

Cutting speed 

(mm/s) 
ka kb kc k 

E1 2 80 5 0.0489 6.1531 0.5301 2.7863 11 

E2 2 80 10 0.0777 10.4233 0.8423 4.6613 8 

E3 2 80 15 0.0862 12.0807 0.9350 5.3585 3 

E6 2 90 15 0.0842 11.4840 0.9136 5.1203 4 

E9 2 100 15 0.0818 10.8488 0.8874 4.8628 6 

E10 4 80 5 0.0574 5.7771 0.6221 2.7429 12 

E11 4 80 10 0.0816 10.6322 0.8854 4.7823 7 

E12 4 80 15 0.0922 12.9947 1.0000 5.7577 1 

E13 4 90 5 0.0510 4.8655 0.5532 2.3391 13 

E14 4 90 10 0.0769 9.7548 0.8341 4.4106 9 

E15 4 90 15 0.0897 12.5468 0.9729 5.5672 2 

E16 4 100 5 0.0208 2.0000 0.2258 0.9599 14 

E17 4 100 10 0.0687 8.1533 0.7453 3.7366 10 

E18 4 100 15 0.0829 11.0228 0.8989 4.9380 5 

 

The thickness of the PE material seems to play a substantial role in the ranking. In particular, 

experiments conducted on materials with a thickness of 4mm (E10 - E18) predominantly ranked higher 

than those with a thickness of 2mm (E1 - E9). This suggests that, within the parameters tested, the 

cutting process efficiency tends to improve with increased thickness. The most important reason behind 

this is that the MRR value increases significantly when the material thickness increases. For example, 

while this value was 13.86 in E6, it increased to 43.34 in E18. 

The power input used during the cutting process, however, did not show a straightforward correlation 

with the ranking. Considering experiments with constant thickness and cutting speed, we observed that 

an increase in power from 80W to 90W often improved the rank (as seen in E3 versus E6 and E12 versus 

E15), but a further power increase to 100W tended to result in a lower rank (as seen in E6 versus E9 and 

E15 versus E18). This could be indicative of a non-linear relationship between power input and 

performance, suggesting a need for more targeted optimization to identify the ideal power range. The 

most important factor that causes this situation is the increase in Ra and KW when the power reaches 

100 W. These results are also supported by the existing literature (Eltawahni et al., 2010). For example, 

Ra was 0.73 at E6 and 0.8 at E9. Similarly, when the thickness reached 4 mm, KW was 0.623 at E12 

and 0.863 at E16. 

The cutting speed appeared to have the most consistent correlation with the performance rank. Higher 

cutting speeds generally yielded better ranks, particularly evident when other parameters remained 

constant (as shown in the set of experiments E1, E2, and E3). This pattern was also observed in 

experiments E10, E11, and E12, further emphasizing the positive correlation between the cutting speed 

and ranking. The most important factor behind this was that as the cutting speed increased, the Ra and 

KW values decreased and the MRR value increased. For example, in E10, Ra and KW were 1.28 and 

0.709, respectively, while in E12, these values decreased to 0.7 and 0.623. Several scientists have 

examined the correlation between surface texture and parameters like cutting velocity, laser intensity, 
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and the thickness of the material. The materials used for their experiments were polypropylene, 

polyethylene, and polycarbonate. Their research indicated that as the rate of cutting grew, the surface 

roughness diminished. This observation aligns well with the results of our latest study, which similarly 

has shown this pattern (Caiazzo et al., 2005; Choudhury and Shirley, 2010). 

 

6. Conclusion 

In this study, we explored the effects of material thickness, power, and cutting speed on surface 

roughness, KW, and MRR during CO2 laser cutting of PE material. To optimize the cutting parameters 

for improving cutting quality, we integrated the use of Data Envelopment Analysis (DEA) and the 

SWARA-based CoCoSo (Combining Compromise Solution) approach. Our results are as follows:  

 The surface roughness decreased with a decrease in material thickness and power, coupled with 

an increase in cutting speed. This means that using thinner materials, lowering power settings, 

and increasing cutting speeds can contribute to achieving smoother surfaces in the laser cutting 

process.  

 Cutting speed emerged as the most influential parameter on surface roughness, suggesting its 

adjustment can significantly reduce surface roughness, even more so than varying material 

thickness.  

 In terms of KW, we observed a decrease with an increase in cutting speed and a decrease in 

both material thickness and power.  

 Material thickness stood out as the most influential parameter, implying that KW reduction was 

most effective when the material thickness was adjusted. For instance, when we doubled the 

material thickness while keeping the power and cutting speed constant, we saw a KW increase 

of 54.98%.  

 We also determined that the MRR increases in line with increases in material thickness, power, 

and cutting speed. Given that the calculation of MRR takes into account KW, material thickness, 

and cutting speed, it is clear that material thickness significantly affects both KW and MRR. 

This is because of increasing the material thickness leading to a rise in KW and, subsequently, 

the MRR value.  

 Applying the DEA model, we found that 77.78% of Decision-Making Units (DMUs) were 

efficient.  

 Experimental conditions E4, E5, E7, and E8, which involved a material thickness of 2 mm, fell 

below efficiency with scores under 1.  

 The SWARA method revealed that surface roughness, with a weight of 50.4%, was the most 

important criterion, followed by MRR with a weight of 28%, and KW with a weight of 21.6%.  
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 Using the DEA and SWARA-based CoCoSo approach, we determined that the best 

experimental condition was E12, where the material thickness was 4 mm, power is 80 W, and 

cutting speed was 15 mm/s.  

 These findings on CO2 laser cutting parameters, which have been obtained through multi-

objective optimization, offer valuable insights for industry practitioners. By applying these 

optimized parameters, they can realize time and cost savings while ensuring a higher quality 

cutting process. 

In conclusion, the results of the study underscore the importance of careful selection and optimization 

of cutting parameters when processing Polyethylene thermoplastic materials. It is suggested that while 

higher material thickness and cutting speed consistently enhance performance, the relationship between 

power input and performance would be more complex and non-linear. Future work should consider 

exploring this complexity further and might benefit from deploying additional experimental designs to 

comprehensively understand the interactions among these parameters and potentially discover optimal 

combinations. This study has underlined the power of an integrated approach to multi-objective 

optimization, combining data envelopment analysis with the SWARA-based CoCoSo method, to derive 

meaningful, real-world insights. 
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