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Realistic graphics and smooth experience in computer games come with the cost of increased 

computational requirements on the end-user devices. Emerging Cloud Gaming that enables executing 

the games on thin devices comes with its disadvantages such as susceptibility to network latency and the 

incurred cloud computing cost for the game service provider. The monolithic architecture of the game 

engines also presents an issue for cloud gaming where scaling efficiency in the cloud turns out to be 

limited. This paper proposes using edge computing principles to offload a subset of the local 

computations executed by games to a nearby edge server typically assigned for gaming applications. 

Specifically, we focus on physics computations since depending on the number of objects and their 

interactions modes this part may have considerable computational cost. In order to demonstrate the 

effectiveness of our approach we developed an edge gaming framework called Edge Physics Simulation 

(EPS) using the open-source game engine Bevy and the Rapier physics engine. We come up with an 

experiment setup in which a game scene with a high number of objects is executed using both standard 

local computation approach and using the proposed EPS method. In the experiments up to 8000 objects 

of varying shape complexities are employed to trigger significant computational load due to the collision 

detection process. Assessment metrics used are average physics computation time, resource 

consumption of local device and, the breakdown of the physics duration into its critical components such 

network time, simulation time and compression time. Our results show that EPS significantly reduces 

physics time compared to local execution. For the highest number of objects 75% reduction in physics 

computation time is reported where breakdown of physics time is further analyzed. 
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1. INTRODUCTION 

Today's game engines are complex pieces of software encompassing multiple components with unique 

functionalities to provide immersive gameplay close to real life. For example, the visual appearance of real 

life is resembled in the games by the rendering component, the audio component produces sounds of the 

environment and actions, and the physics laws are applied to the objects by the physics engine. Game engines 

achieve these immersive gameplays by producing continuous or discrete outputs and presenting them to the 

user, such as displaying frames from the game world, playing sound from the speakers, and vibrating the 

controller. In addition to producing these outputs, game engines are also required to perform these operations 

in a limited time. Depending on the exact game universe and mechanics implemented, these requirements can 

vary across game genres (Efe & Önal, 2020). 

Immersive gameplay requires a smooth experience, which means producing image frames at a high rate. In 

order to accomplish this experience, both game software should be optimized, and the devices that run the 

games should be computationally powerful enough. This constraint puts pressure on the game engine, the game 

developer, and the hardware itself. Typically, the limiting factor in this situation becomes the end-user device. 
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Newer computer games, despite efficiency measures taken by the developers, turn out to be resource hungry. 

Users with insufficient computational capacity, therefore, are refrained from executing their preferred games. 

This also creates a burden on the game software companies as they can address only a subset of their potential 

users. 

Cloud Computing is a helpful method to let thin devices execute services that require high computing power. 

There are emerging solutions that provide gaming services under the concept of Cloud Gaming. Cloud gaming 

enables players to play games on thin devices by receiving the inputs from the device, executing the game in 

the cloud, and sending the output as a video stream back to the device. However, this method has certain 

drawbacks. First, the latency between the device and the server makes cloud gaming less applicable outside 

the advanced internet infrastructures. Secondly, it has a monolithic architecture where all the games run on 

only one machine and do not attempt to utilize end-user devices. 

As a solution to the strict execution time requirements of services, edge computing can minimize the latency 

substantially compared to cloud computing (Cao et al., 2020). Edge computing allows low latencies between 

the server and the devices by locating powerful servers at the edge of the network in the proximity of end-

users. Edge computing uses the computation offloading technique, which is the delegation of a computational 

task from the client machine to an edge-enabled server machine. Multiple factors affect the decision of which 

part of the game engine should be offloaded, such as computational requirements and memory accesses. 

Offloading lightweight tasks that do not require high computing power may not be worth its communication 

overhead. In this respect, computationally heavy tasks are good candidates for offloading. However, tasks 

unavoidably occur in the local software's call graph and may require interacting with other parts of the engine 

multiple times. Therefore, a component that accesses the core data of the engine frequently may not be a good 

candidate to offload. However, most physics engines have their context separated from the game context, 

making them feasible for computation offloading. 

There is an immense literature on edge computing and its application domains. Edge computing principles 

have been successfully applied to a wide range of use cases ranging from IoT to autonomous driving (Cruz et 

al., 2022). Nevertheless, edge computing for computer games still needs to be explored to its full potential, as 

most studies focus on cloud gaming. Therefore, the challenges and opportunities of edge gaming require further 

exploration. This study specifically focuses on offloading the physics process in an edge computing setting. 

Distributed coordination, state management of game and physics engines, and communication and 

synchronization approaches are explored. 

In this paper, we propose an edge gaming framework named Edge Physics Simulation (EPS) for computer 

games that involve heavy physics computation. We aim to relieve the computational burden on the end user 

device and delegate physics tasks to an edge server. To demonstrate the performance of our method, we 

implement an experiment setup that involves the open-source Bevy game engine and the open-source Rapier 

physics engine (Bevy, 2023; Rapier, 2023). In the proposed setting, the game engine runs on a thin user device, 

and the physics engine runs on the edge server. The results of the experiments show that the proposed solution 

reduces the average calculation time for the physics by up to 75% compared to the solution that executes 

physics on the thin device. 

The contributions of the study can be summarized as: 

• A novel gaming framework is proposed in which edge computing principles are applied to the 

computer games vertical.  

• Gamescene is processed in a distributed fashion in which the game context and physics context take 

place on different hardware environments. An open-source implementation is provided based on 

Bevy game engine. 

• A multi-faceted performance assessment is carried out via extensive experiments where the number 

of game objects and their shape complexities and over-the-network compression rates are varied. 

• Considerable physics execution speed-up is reported, which indicates edge computing as a valid 

research direction for computer games.  
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The organization of this paper follows as: Section 2 summarizes a recent selection of the related works about 

edge gaming and cloud gaming alternatives. Then, Section 3 defines the proposed edge gaming framework 

explains the components in the solution architecture. In Section 4, the experimental setup and the properties 

of the testbed are focused on. Section 5 presents the results of the experiments and discusses them. Finally, 

Section 6 concludes the paper by summarizing the results and listing possible future works. 

2. RELATED WORKS 

The game engine is a crucial software component in game development and design. Although commercially 

well-known game engines exist such as Unity, Unreal, and CryEngine, the realm of game engines is much 

broader (CryEngine, 2023; Unity, 2023; Unreal, 2023). In a recent study, Vagavolu et al. (2021) present a 

dataset of open-source game engines where the authors analyze the software development activities of 526 

game engine projects in the dataset. Similarly, Politowski et al. (2021) discuss the game engines from the 

perspective of a software framework in which authors compare the characteristics of 282 game engines, 

including a survey with 124 game engine developers. 

Before developing an edge computing framework for computer games, the inner details of a typical game 

engine need to be analyzed to understand the overall technical challenges better. In this respect, some of the 

earlier works attempted to dissect the popular game engine Unity3D into its main modules, such as input, 

rendering, scripting, and physics engine; they analyze CPU consumptions of each module tested with different 

games with have different resource requirements (Messaoudi et al., 2015). As a common pattern, the rendering 

module is the most demanding module for the CPU resource. In addition to CPU consumption, the GPU 

consumption of the rendering's submodules is also analyzed. For a complete discussion of the technical 

perspectives on game engines, Gregory (2018) provides an excellent reference where all sub-systems of a 

typical game engine are focused individually and explored in depth. 

A popular approach for augmenting the capabilities of end-user gaming devices is cloud gaming. Cloud gaming 

differs from the edge computing approach in that game software as a whole generally gets executed in the data 

center (Huang et al., 2014). Bhojan et al. (2020) propose an architecture for cloud gaming and report server 

resource consumption when number of players in the system varies. Chen et al. (2019) in which authors 

emphasize the distinction between cloud gaming and video-on-demand (VoD) applications and further propose 

an adaptive real-time streaming policy using the deep reinforcement learning tool that considers both the 

quality of service (QoS) and quality of experience (QoE) in cloud gaming scenarios. 

A related but technically distinct technical approach for edge gaming is defined in 5G architecture via mobile 

edge computing (MEC) (Artuñedo Guillen et al., 2020). Nowak et al. (2021) provide a detailed survey on 5G-

MEC use cases and a technical summary of research in computer games exploiting 5G to enhance the gamer 

experience. The authors provide a wide range of examples from the gaming sector and discuss the direction in 

which 5G can leverage gaming applications from various points. A specific example is reported by Cao et al. 

(2022) in which authors propose a heuristic algorithm to minimize QoE impairments under given constraints. 

Since the rendering consumes most of the CPU resource, offloading the rendering part to a powerful server 

can help users play the games on resource-limited devices. Bulman and Garraghan (2020) propose a unified 

Graphics API that is mapped to OpenGL or Vulkan Graphics frameworks depending on the hardware 

capabilities of the user device (OpenGL, 2023; Vulkan, 2023). With this approach, unified API can offload 

some of the calls to the cloud when the performance of the device degrades. The authors show that this method 

can achieve 33% more frames per second when the commands are distributed over the cloud and device with 

a 50-50 ratio (Bulman & Garraghan, 2020). 

Virtual reality (VR) and augmented reality (AR) technologies provide a novel opportunity to enhance computer 

game interaction modes for the end users. However, the constrained hardware devices involved in AR & VR 

scenarios necessitate edge computing for a smooth game experience. Nyamtiga et al. (2022) carried out a 

detailed empirical study on an experimental VR offloading testbed where the performance of the system is 

evaluated using three different VR games. The authors demonstrate the advantages and the tradeoffs involved 

in using the reduction in computational load and power consumption on the client device. Another study that 

focuses on the VR edge computing approach is described by Mehrabi et al. (2021), in which online heuristic 
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algorithms are proposed for the tradeoff between average video quality and delivery latency. The authors 

perform a series of simulation-based experiments for performance analysis and report a 22% improvement in 

video delivery and 8% in video quality. 

Another offloading approach, proposed by Messaoudi et al. (2018), partitions the game scene into game objects 

such as the player character environment; then, in turn, it performs offloading of logic execution and rendering 

of these game objects to the server depending on the required device resources, data transfer time, and 

dependencies of the code. As a result of offloading, the server streams OpenGL ES commands back to the 

device to complete the rendering (Messaoudi et al., 2018). 

A similar method for offloading computationally heavy tasks to the cloud for a soft body physics simulator is 

suggested and implemented by Danevičius et al. (2018) This method defines a task set that can be executed 

locally or offloaded to the cloud for the simulation program and partitions them as running on the local device 

or being offloaded to the cloud. This decision is made concerning multiple factors, such as the computation 

speed of the local device and cloud, the size of the inputs and outputs of the task, and network bandwidth and 

latency. An intelligent offloading management component uses these factors to decide if the task should be 

offloaded or not. Even though the study suggests offloading a program that runs a physics simulation, its goals 

heavily differ from our proposal's goals, such as separating the physics calculations from the game engine 

completely. 

It is also possible to design all the game engine components modularly. The authors of SMASH propose a 

distributed game engine that is flexible enough to run the game entirely on the local or distribute its components 

over the network (Maggiorini et al., 2016). The architecture of SMASH resembles microkernels where the 

engine components interact internally by sending messages over a bus. A component with a SMASH-

compatible interface can be added to the engine and can be used by other components. Another distributed 

game architecture is proposed by Mazzuca (2022) that implements a prototype for the rendering component. 

The implementation sends scene information to the rendering service over a UDP socket. The rendering service 

renders the scene and streams encoded video to the device (Mazzuca, 2022). 

In order to apply edge computing principles to computer gaming scenarios, computational offloading should 

be implemented involving the game engine itself. This is not a straightforward task, as existing game engines 

are typically not designed with edge computing in mind. Our initial exploration with the open-source game 

engine Godot showed that distributing game engine functionality over a client-server model is cumbersome as 

the call graph of the overall code does not allow for minimizing communication overhead and latency (Godot, 

2023). A suitable game engine for our purposes should have flexible and modular architecture, allowing a re-

design with the minimum effort possible. When these requirements are considered, Bevy game engine turned 

out to be a valid choice for developing a game engine architecture compatible with edge computing. 

Bevy promotes itself as a data-driven game engine that is open-source, free to use, and written in Rust 

programming language (Bevy, 2023; Rust, 2023). It has active development going on and is being developed 

by the contributions of its community and its members. Being easy to modify and easy to play with its core 

components are the reasons for choosing Bevy instead of other open-source game engines. The Rust 

programming language was also a compelling reason to use the Bevy. Rust presents itself as a system-

programming language that aims to be both performant, reliable, and productive (Rust, 2023). As a benefit of 

ownership-based memory management and being memory-safe, developing edge physics was both fun and 

easy for a network-based application. Another reason for choosing Bevy is the Entity Component System 

(ECS) paradigm used to represent the objects in the game world. 

3. SYSTEM DEFINITION 

In order to apply edge computing principles in a gaming scenario, we propose an architecture that offloads 

physics computation, which is part of the typical local execution of game software. Figure 1 shows the main 

components of a game engine. Game engines may or may not have a default physics engine included in their 

software stack. Since the design and implementation of a physics engine is an expertise by itself, there is a 

variety of third-party physics engines that can be incorporated into the game engines (Bullet, 2023; Havok, 

2023; PhysX, 2023). When an independent physics engine is employed within the game engine, there is a clear 
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separation of physics related computation procedures from the rest of the game engine software, where physics 

functionality is presented through a well-defined physics application programming interface (API). 

 

Figure 1. Components and Modules of a Typical Game Engine 

In this respect, the proposed system architecture contains a distributed flow of game execution in which gamer 

device (local device) and an edge server (remote device) both take part via a computation offloading sequence. 

Figure 2 depicts the architecture of Edge Physics Simulation (EPS) framework. As dictated by the edge 

computing scenarios in general a fast local access networking technology is assumed to connect gamer devices 

to the edge server. Edge server is not dedicated to client, therefore multiple devices can connect to edge server 

to take offloading service. 

 

Figure 2. Edge Physics Simulation (EPS) Architecture (EGM: Edge Gaming Manager) 

In our implementation, we used the Bevy game engine and Rapier physics engine as the core modules. The 

reasons behind our choice are: (i) both systems are open source and actively maintained by a decent community 

of developers, (ii) they do not impose any licensing fees, (iii) last but not least, the software architecture of 

these systems allowed flexible modification opportunities during the development and testing phases of our 

study. Edge Gaming Manager (EGM) is a special module developed in this study responsible for accessing 

internal data structures and attributes of the objects, supplying device connectivity for offloading and network 

payload size control using configurable compression techniques. 

https://doi.org/10.54287/gujsa.1338594
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3.1. Bevy Game Engine 

At its core, Bevy is built around a "game world" and a system scheduler. The game world is a jargon to denote 

the structure that holds the data that will be used within the game loop. This data includes entities, components 

of the entities, and resources such as a timer that tracks the past time intervals in the game, meshes to be used 

in the rendering and game state. On the other hand, the. On the other hand, the system scheduler schedules the 

systems in the ECS architecture and executes them on the game world. Here, the term "system" refers to a 

process that acts on "entities" with selected "components". For further technical details of the ECS, Hatledal 

et al. (2021) give definitions for ECS units and present a simulation framework implementation based on ECS 

software paradigm. 

Systems can be grouped together by putting them into a System Set. Systems in the set can be chained for 

sequential execution, or the execution order can be left to the scheduler. In addition to chaining the systems, 

System Sets themselves can further be chained to define an execution order between them. If there is no order 

given at development time, the scheduler will try to execute systems concurrently to employ parallelism in a 

way that will avoid modifying a resource by two systems simultaneously. A simplified overview for the System 

Sets that are available in the Bevy by default and their execution order can be seen in Figure 3. From beginning 

to end, the execution of these sets represents the game loop 

 

Figure 3. Bevy's Default System Sets 

Aside from its core units, Bevy provides additional plugins to implement other features, such as rendering and 

audio. Each plugin modifies the game world by inserting resources and instructs the scheduler on executing 

its systems. For example, the input plugin schedules its systems to be run at the PreUpdate set in order to let 

other systems that will be run at the Update set read the user inputs. Plugin-based architecture makes Bevy a 

modular game engine such that a plugin can be swapped with another implementation of the feature, assuming 

it provides a compatible interface to the plugins that depend on it. Even the core without any additional plugins 

is a valuable tool for developing an application that requires a scheduler. 

3.2. Rapier Physics Engine 

Although Bevy implements fundamental components of a game engine as plugins, it does not have a physics 

engine that is available out of the box. However, there are certain physics plugins that integrate independently 

developed physics engines into the Bevy. Bevy Rapier is such a plugin that enables the integration of the 

Rapier physics engine into the Bevy game engine without much effort (Bevy Rapier, 2023). 

As a standalone physics engine, Rapier contains its own world (context) to perform physics simulations. To 

integrate Rapier into Bevy, the Bevy Rapier plugin defines three main system sets that perform (i) syncing 

Bevy's game world to Rapier physics world, (ii) simulating the physics for one step, and (iii) transferring the 

changed values in the physics world to the Bevy's original game world. Here, the word "world" means the 

context, and Bevy's plugin software interface stores Rapier's context in the game world as a resource. The 

integration of Bevy's System Sets and the plugin's System Sets can be seen in Figure 4. 

 

Figure 4. Integration of Bevy Rapier Plugin's System Sets 
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3.3. Proposed Solution 

Standard installation and execution procedures let the Rapier plugin, which is named Local Physics Simulation 

(LPS), execute everything on the local device. This causes heavy physics simulations to become the 

performance bottleneck of the game loop and results in increased frame times. As a remedy, we propose Edge 

Physics Simulation (EPS), which offloads physics-based computation to an edge server. 

The idea originates from the existence of the two different worlds (contexts) that belong to Rapier and Bevy 

that are synchronized two times in each frame. This approach has already reduced the number of interactions 

between the two worlds to a minimum and enabled the separation of these two execution tracks on different 

computational environments. 

In the EPS architecture, a separate controller named Edge Gaming Manager (EGM) separate from the original 

game, is developed and deployed to an edge server. In the edge server, both the simulation step and the context 

are moved into EGM. At the startup, EGM listens on a TCP port and waits for a new connection. For the game, 

it tries to connect to the EGM when it is started. This is achieved by a peer EGM instance on the user device, 

as shown in Figure 2. When a connection from the game is established, EGM reads the synchronization data 

over the connection, simulates the physics for one step using rapier functionality, and sends the new positions 

and the rotations of the objects to the game. These three steps are executed in a loop until the underlying 

connection gets broken or the game sends a shutdown message. In the game, the execution order of the Bevy 

Rapier's System Sets is modified to minimize the time that is taken to receive the response. For example, while 

Edge is performing the StepSimulation step, Client also continues the execution of the PostUpdate and the 

Last sets. A visual representation of the architecture is shown in Figure 5. 

 

Figure 5. Proposed Solution's Architecture 

The EPS should provide smooth gameplay even if there is no demanding physics calculations from the game. 

Moreover, it is also essential to utilize the underlying network connection efficiently. For this reason, reducing 

the time that is spent in the network should be minimized. EPS uses DEFLATE compression algorithm in 

order to reduce the size of the data sent over the network (Deutsch, 1996). DEFLATE employs different 

compression levels that range from 1 to 9 and inform the algorithm to favor faster compression times or smaller 

compressed sizes, respectively. When applicable, it also disables the buffering algorithm applied to TCP socket 

by the operating systems, such as Nagle's algorithm, to minimize the latency (Nagle, 1984). 

4. EXPERIMENTS 

An experiment setup is designed to enable performance evaluation of the two different approaches in a 

comparative manner. One solution is the Edge Physics Simulation (EPS), in which the client offloads its 

physics simulation to the edge server for each frame. Another solution is the Local Physics Simulation (LPS), 

in which all the simulation is executed on the client. For EPS solution, the experiments are conducted on one 

edge machine and one client machine, whereas LPS contains only the client machine. Details of the 

implementation platform will be discussed in the following subsection. 

During the experiments, the rendering component of the game is disabled due to the client's weak GPU. When 

the rendering is enabled, the frame time increases and starts fluctuating. Therefore, instead of measuring the 
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Frames per Second (FPS) for comparison, the physics time taken to perform the StepSimulation step is 

measured and compared for each solution. For the EPS solution, physics time also contains data transmission 

time over the network and StepSimulation step. Figure 6 visualizes the physics time measurement for each 

solution.. 

 

(a) 
 

 

(b) 

Figure 6. a) LPS (Local Physics Simulation) Physics Time, b) EPS (Edge Physics Simulation) Physics Time 

The experiments are based on a scenario that has a multitude of physical objects stacked up on each other to 

form a grid pattern in a confined space. In this setting, a ball with high velocity initially triggers the objects, 

and objects fall due to gravity, and considerable inter-object collision takes place. Elasticity and coefficient of 

friction values are adjusted to maintain the continuous movement of objects. Figure 7 and Figure 8 visually 

depict snapshots from the experiments in which Figure 7 shows the initial condition. 

 

Figure 7. Appearance of the Scene at Initial State 
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Figure 8. Appearance of the Scene at the Steady State 

Parameters for each experiment run are defined in terms of the: 

• number of objects used for the simulation, 

• shape of the objects, 

• whether edge gaming is enabled or not (i.e. EPS vs. LPS), 

• compression level used in the communication, and 

• whether Continuous Collision Detection (CCD) is enabled or not. 

CCD is a special collision detection algorithm that considers the positions of the objects between frames. CCD 

provides much more accurate collision detection behavior, especially when objects are small and have high 

velocity. However, this comes with an extra computational cost; therefore, game programmers need to switch 

this feature on only when necessary. Table 1 summarizes the values used in the experiments for the relevant 

parameters. Visual appearances of the shapes are shown in Figure 9. These parameters affect the computational 

load taking place in the game scene and allow us to model different game profiles requiring different levels of 

physics computations. Each experiment run gets executed for 15 seconds. After an exploratory phase of the 

experiments, it was seen that this duration was sufficient for the system to reach a steady state. Please note that 

when the local execution is used, there is no compression option since no data is sent over the network. 

Table 1. Experiment Parameters 

Parameter Values 

Solution Approach Local, Edge 

Number of Objects 500, 1000, 2000, 4000, 8000 

Collision Detection Algorithm Discrete CD, Continuous CD 

Compression Levels No compression, Level 1, Level 3 

Object Shapes ball, capsule, cuboid, complex 

 

    

(a) (b) (c) (d) 

Figure 9. Visual Appearances of Shapes a) Ball b) Capsule c) Cuboid d) Complex 
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There are also other parameters belonging to the physics engine that affect the experiment's behavior and 

computational load. However, values for these parameters are kept constant for all the experiments. Table 2 

summarizes these parameters and the values chosen for them. 

Table 2. Constant Experiment Parameters 

Parameter Values 

Density of Object 0.477 kg/cm3 

Elasticity Coefficient of Object 1.1 

Friction Force 0.0 N 

Gravity 9.81 m/s2 

When the combinations of different values for each option are considered, there are 160 different 

configurations to be tested. Moreover, each configuration is tested 2 times to check if they produce similar 

results. Displaying each possible configuration in this paper is impossible due to space considerations. Instead, 

a subset of the configurations that gives a clear understanding of the general behavior of the solutions is shown 

in Section 5. 

4.1. Implementation Platform 

To implement the experiment platform, two different machines are used as an edge server and a client device. 

For the EPS solution, these machines are connected over a Local Area Network (LAN) with 100 Mbit ethernet 

connections using a modem. Figure 10 presents a diagram that describes the platform visually. 

 

Figure 10. Diagram of the platform used for the implementation 

The flow in this diagram for generating one frame can be explained as: The client accepts input from the user, 

processes it, and sends updated components of the entities to the Edge Server. After completion of the physics 

calculation, the client receives the latest state of the entities from the edge server and outputs the result to the 

Display. In this platform, the Edge Server is a PC that contains powerful hardware compared to the client 

device. On the other hand, the Raspberry Pi 4B device is used as the client. The hardware and software 

configurations of the machines are summarized in Table 3. 

Table 3. Machine Configurations 

Machine 

Hardware Software 

CPU Memory Connection 
OS-Arch-

Distribution 
libc 

Client 
4 core Cortex-

A72@1.8 GHz 
4GB LPDDR4@3200 MHz 

100 Mbit 

Ethernet 

Linux - aarch64 - 

Arch Linux 
Glibc 2.35 

Edge 
6 core AMD Ryzen 

5600X@3.7 GHz 
32GB DDR4@3200 MHz 

100 Mbit 

Ethernet 

Linux - x86_64 - 

Gentoo 
Glibc 2.37 
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4.2. Data Collection from Experiments 

Evaluating and analyzing the experiments requires collecting related information from the application and its 

environment during the experiments. For the application part, some diagnostics are placed into the source code 

of both the client application and the physics server. These diagnostics collect data from the application state 

for every frame. Logs are collected and stored inside a file by another application specifically developed for 

this case. The diagnostics that include information from the physics server are collected in the physics server 

and sent back to the client for each frame. A summary of the data collected and processed during the 

experiments is depicted in Table 4. Other than the diagnostics data collected, the CPU usage data is also 

collected by another process.  

Table 4. Edge Gaming Experiment Data Summary 

Diagnostic Description 

Time Time passed since application startup 

Frame Count Number of frames generated since startup  

Frame Time Time taken to generate current frame 

Physics Time Time taken to complete physics computation  

Network Time Time spent in the network communication 

Sent Bytes Number of bytes sent to edge server 

Sent Compressed Bytes 
Number of actual bytes that are sent over the network. For 

No Compression case, this is equal to Sent Bytes 

Received Bytes Number of bytes expected to be received from edge server 

Received Compressed Bytes 
Number of actual bytes that are received over the network. 

For No Compression case, this is equal to Received Bytes 

Compression Time in Client Time taken to compress payload on the client 

Decompression Time in Client Time taken to decompress payload on the client 

Compression Time in Server Time taken to compress payload on the server 

Decompression Time in Server Time taken to decompress payload on the server 

5. RESULTS AND DISCUSSION 

The two solutions discussed, namely EPS and LPS, are investigated concerning two different criteria: 

execution performance and resource consumption. The execution performances of the solutions are identified 

by their physics time durations, whereas the resource consumptions are identified by their CPU usage. For EPS 

solution, bandwidth usage of the network is also considered to be a metric for resource consumption. 

5.1. Physics Time 

In order to obtain a general overview, the performances of EPS and LPS are compared with respect to their 

physics execution time under different configurations. In the first set of experiment runs, the effect of the 

number of objects on the scene is explored. In order to underline the physics computation, the object shape is 

chosen as "complex" so that extra collision geometry is involved. For other experiment parameters, CCD 

(Continuous Collision Detection) mode is switched off, and for the EPS part, the compression level is set to 1. 

Figure 11 shows the performances of LPS and EPS comparatively. The performance gap increases for a larger 

number of objects in the scene in favor of the edge-based solution. 
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Figure 11. Average Physics Time for solutions, shape = complex, CCD = off 

Apart from reporting the mean physics time values, it is also meaningful to see how physics time in every 

frame evolves during the experiments. In Figure 12, the characteristics of the scenario can be seen. Initially, 

physics time is small since all the objects are idle. When the ball on the ground hits the objects, a spike in 

physics time is observed. After a small amount of time from the collision, the physics time converges to a 

steady state with small variations over time. This convergence is because the number of collisions that happen 

in one step becomes steady due to gas molecules like the perpetual movement of the objects. As expected from 

Figure 11, Figure 12 reveals that edge-based proposed solution (EPS) outperforms local computing (LPS) at 

all times. 

 

Figure 12. Time series visualization of physics computation time. Each data point belongs to successive 

frames over time. (Objects=2000, Shape Type = Complex, CCD=off) 

To explore the EPS model in more detail, the extra computational load incurred by collision detection modality 

is experimented by turning CCD mode on and off. These two configurations illustrate the characteristics of the 

solution under different computational requirements for the physics calculations. Figure 13 clearly shows the 

effect of the CCD where turning on the CCD mode changes the linear behavior of the solution under different 

number of objects. The non-linearity of Average Physics Time where CCD mode is turned on indicates that 

the behavior of the EPS solution is mostly dependent on the physics calculation performed under the hood. 
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Figure 13. Average Physics Time for EPS where CCD is toggled for the configurations 

The performance of edge computing approaches is determined not only by the computation time on the server 

but also by the time spent over the network. In this respect, our proposed solution employs data compression 

techniques further to minimize the data context transfer time for physics offloading. Compression, however, 

comes with a new trade-off where higher compression levels result in lower data size at the expense of 

increased computation overhead. The compression algorithm used in the experiments allows for ten different 

compression levels where level=1 has the fastest computation time, and level=10 has the maximum 

compression rate (Deutsch, 1996). 

To explore the trade-off brought by compression, a series of experiments is executed with different 

compression rates for over-the-network transfer. Figure 14 depicts how local solution (LPS) compares to edge 

solution (EPS) with different compression rates. For a clear visual representation, the figure presents 

normalized values for physics time. For a very low number of game objects, edge computing turns out to be 

not effective. However, as the number of game objects increased, all variants of edge computing solutions 

outperformed local computation based approach. It is apparent that compression enhances performance. The 

best-performing compression rate occurs at level=1, meaning that extra time required for more complex 

compression does not pay off. Results belonging to all possible compression configurations are not included 

in Figure 14 to avoid a cluttered view where compression levels 1 and 3 are sufficient to understand the general 

trend. 

 

Figure 14. Normalized physics computation time to depict the effect of compression rates. (Local physics 

computation is normalized to 1) 
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To better understand the reported physics time for the edge-based solution, Figure 15 shows the breakdown of 

the overall physics time in terms of network transfer time, physics simulation time, and data compression time. 

Timings are reported for one physics simulation step of EPS where level 1 compression and complex shape 

are used, as CCD is turned off. The figure shows that network time takes most of the physics time at the lower 

number of objects. This network overhead can be eliminated using higher-speed connections such as gigabit 

ethernet. As the number of objects increases, the simulation and compression times increase to a point where 

network time takes less than half of the physics time. 

 

Figure 15. Breakdown of Physics Time, shape = complex, CCD = off 

5.2. Resource Consumption 

In order to compare the resource consumption of the edge and local computation-based solutions, CPU 

utilization statistics of the game execution processes are recorded. Note that LPS (Local Physics Simulation) 

involves the execution of both the Bevy game engine and the Rapier physics engine as a bundle. In contrast, 

EPS (Edge Physics Simulation) includes our proposed modified setup for offloading physics computation. 

Figure 16 shows that the edge-based solution lowers the CPU utilization of the client considerably. This 

observation parallels the general edge computing paradigm, where applications can be run on low-end devices. 

As the number of objects increases, the usage of the EPS decreases. This behavior is because the time spent 

on the edge server and on the I/O increases as the number of objects increases. This blocks the client and keeps 

it idle most of the time. 

 

Figure 16. Average CPU Usage for solutions, shape = complex, CCD = off 
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One could imagine that CPU usage for the LPS solution should be similar across the experiments. On the 

contrary, Figure 16 shows that configurations for 500 and 1000 objects have very different CPU usage. The 

usages only become similar after the 2000 number of objects. This shows that Rapier's physics engine employs 

parallelism in its implementation. However, this implementation hits scaling issues under different 

configurations. 

In Figure 17, there are three different metrics for the bandwidth usage. The first, Uplink, represents the data 

transmitted from the client to the edge, whereas the second, Downlink, represents the data received from the 

edge. Since the objects are spawned at the beginning of the experiment, the client uses the Uplink only at that 

time. Throughout the experiment, Uplink stays close to 0. For the Downlink, as seen in Figure 12, it becomes 

steady over time except for some significant drops that also affect the frame time. 

 

Figure 17. Bandwidth Usage over time, number of objects = 2000, shape = complex, CCD = off 

The experiments are executed in a network environment with a 100Mbps line rate. Downlink figures stay much 

below this because communication between two machines does not occur during the whole frame. We include 

one additional metric, Downlink for WriteBack Step, as a correction factor. This metric takes into account the 

time that is passed in the WriteBack step. This clearly shows that the connection speed limit is reached during 

this step. 

After performing multiple comparisons between two solutions under different configurations, it can be said 

that the proposed solution EPS provides substantially shorter physics simulation time compared to default LPS 

and reduces CPU usage when a weak client and a powerful edge server are used. The performance of EPS can 

also be improved further by increasing the bandwidth of the network, such as employing a higher-speed 

connection. 

6. CONCLUSION 

Computer games belong to the group of the most resource-demanding software in the modern era. Gamers 

continuously face a hardware challenge as newer games typically require more computational capacity. As a 

remedy, this study proposes an edge gaming architecture called Edge Physics Simulation (EPS) that offloads 

physics computation tasks to the edge server. EPS further enhances task offloading operation by incorporating 

a compression mechanism that can be tuned. To demonstrate the performance of EPS, an edge gaming setup 

is implemented by employing an open-source Bevy game engine and Rapier physics engine. A series of 

experiments are conducted covering various system parameters, including the number of objects on the game 

scene, the complexity of the object shapes, collusion detection algorithm type, and the level of compression. 

By looking at the results of the experiments, it is shown that the edge computing based implementation can 

speed up the physics calculation up to 75% compared to its local-only counterpart. The speed-up figures 

reported are significant and show the feasibility of edge computing for computer games. As such, EPS will 

enable users to play their games on hardware with relatively low resources. 
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As future work, we aim to focus on other critical components of a typical game engine that can potentially be 

distributed over the network, such as rendering and AI modules. This will enable a full-fledged edge gaming 

setup in which low-resource devices are able to execute games with high computational requirements. Also, 

we plan to examine the effect of client hardware resources on the overall system performance. This will enable 

us to model different user equipment profiles, such as mobile phones, tablets, and older generation PCs. 
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