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Abstract 

The class of weighted exponential (WE) distribution was introduced in the seminal paper by 

Gupta and Kundu (2009) and have received a great deal of attention in recent years. In the present 

paper, we define a flexible extension of the weighted exponential distribution called new weighted 

exponential (NWE) distribution. Various structural properties including statistical and reliability 

measures of the new distribution are derived. The method of maximum likelihood is used to 

estimate the parameters of the distribution in complete and censored data setting. A simulation 

study is conducted to examine the bias and mean square error of the maximum likelihood 

estimators. Finally, two real data sets have been analyzed for illustrative purposes and it is 

observed that in both cases the proposed model fits better than Weibull, gamma, weighted 

exponential, two-parameter weighted exponential, log-logistic , generalized exponential and 

generalized Weibull distributions.    
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1. INTRODUCTION  

In last three decades or so, an extensive research works have appeared in the literature on the theory of 

statistical distributions (see, for example, Kharazmi (2016), Kharazmi and Saadatinik (2016)). The class of 

weighted exponential (WE) distribution was introduced in the seminal paper by Gupta and Kundu (2009) 

and have received a great deal of attention in recent years. The proposed model has some interesting 

stochastic representations, especially it can be obtained by implementing Azzalini’s method (1985) to the 

exponential distribution. The well-known Azzalini’s method in generalizing family of distribution stated 

as: Let 𝑈 and 𝑉 be two continuous independent random variables with densities 𝑓 and 𝑔, and cumulative 

distribution functions (CDF) 𝐹 and 𝐺, respectively. Then for any 𝛼 ∈ 𝑅, the conditional distribution of 𝑈 

given 𝑉 < 𝛼𝑈 is 

𝑓𝑈|𝑉< 𝛼𝑈(𝑢) =
𝑓(𝑢)𝐺(𝛼𝑢)

P (𝑉< 𝛼𝑈)
 .                                                  (1) 

With the above general result, the weighted exponential distribution denoted by 𝑊𝐸(𝜆, 𝛼), is obtained when 

U and V follow exponential distributions with mean 1 𝜆⁄  and 𝛼 > 0. Its probability density function (PDF) 

is given as 

𝑓𝑋(𝑥, 𝛼, 𝜆) =
𝛼+1

𝛼
𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝛼𝑥) ,                                              (2) 
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where 𝑥 > 0 , 𝛼 > 0   and  𝜆 > 0 . Here 𝛼 and 𝜆 are the shape and scale parameters, respectively. The main 

properties and different interpretations of this density are established by authors. Recently have been shown 

attention to WE distribution and its applications in the literature. For example, Shakhatreh (2012) 

generalized the WE distribution to the two-parameter weighted exponential distributions (TWE). Kharazmi 

et al. (2015) extended weighted exponential distribution to the generalized weighted exponential (GWE) 

distribution and studied its different properties. Several interesting properties of GWE distribution have 

been established by authors. The GWE distribution contains the above mentioned distributions as its sub-

models. It was observed that the GWE distribution can provide a better fit for survival time data relative to 

other common distributions such as weighted exponential (WE), two parameter weighted exponential 

(TWE), gamma, weibull and generalized exponential (GE) distribution. Ghitany et al. (2016) proposed 

weighted half exponential power (WHEP) distribution, which can be used to model negative or positive 

skewed data.  

In the present paper, we introduce a new weighted exponential distribution and provide a comprehensive 

description of some mathematical properties with the hope that it will attract wider applications in 

reliability, engineering and in other areas of research. The interesting NWE distribution has several 

desirable properties, and provides more flexibility to fitting censored and uncensored survival data in the 

real applications. For illustrative purposes we use two real data sets, and it is observed that NWE provides 

better fit than WE model and other common statistical distributions. 

The paper is organized as follows. In Section 2 we define the proposed NWE distribution and provide 

different interesting stochastic representations for construction of NWE distribution. Section 3 presents 

some statistical and reliability properties of the proposed model. Section 4 gives some results about 

asymptotic distribution of order statistics, stochastic ordering, Renyi entropy and an extention model with 

four parameters of NWE distribution. We discuss MLE procedure of unknown parameters for both censored 

and complete data in Section 5. In Section 6, a Monte Carlo simulation study is conducted to examine the 

bias and mean square error of the maximum likelihood estimators for each parameter. The analysis of two 

real data sets have been presented in Section 7. Finally in Section 8 we conclude the paper.   

2.  DEFINITION AND STOCHASTIC REPRESENTATIONS  

In this section, we introduce the definition of the new weighted exponential distribution denoted by 

 𝑁𝑊𝐸(𝛼, 𝛽, 𝜆) and four stochastic representations are given here also.  

Definition 1. A random variable 𝑋 is said to have a new weighted exponential distribution 𝑁𝑊𝐸(𝛼, 𝛽, 𝜆), 

with shape parameters 𝛼 > 0 , 𝛽 > 0 and scale parameter 𝜆 > 0 , if the PDF of  𝑋 is given as following 

𝑓𝑋(𝑥, 𝛼, 𝛽, 𝜆) = 𝐶𝑒−𝜆𝑥 [1 − 𝑒−𝜆𝛼𝑥 −
1

𝛽+1
(1 − 𝑒−𝜆𝛼(𝛽+1)𝑥)] ,   𝑥 > 0,             (3) 

where 𝐶 =
𝜆(𝛼+1)(𝛼(𝛽+1)+1)

𝛽𝛼2 .    

The following theorem explores the shape of the PDF (3). 

Theorem 1. The PDF of the 𝑁𝑊𝐸(𝛼, 𝛽, 𝜆) distribution is unimodal. 

Proof : The derivative of 𝑓(𝑥) can be written as 

𝑓′ = 𝐶𝑒−𝜆𝑥𝑔(𝑥), 

where 

𝑔(𝑥) = − (
1

𝛽 + 1
+ 𝛼) 𝑒−𝛼𝜆(𝛽+1)𝑥 + (1 + 𝛼)𝑒−𝛼𝜆𝑥 −

𝛽

𝛽 + 1
. 

Now we have 
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𝑔′(𝑥) = 𝑒−𝛼𝜆𝑥 ℎ(𝑥), 

where  

ℎ(𝑥) = (1 + 𝛼(𝛽 + 1))𝜆𝛼𝑒−𝛼𝛽𝜆𝑥 − 𝛼𝜆(1 + 𝛼). 

The function ℎ(𝑥) is decreasing because ℎ′(𝑥) < 0 and since ℎ(0) = 𝛼𝛽  and ℎ(∞) = −𝛼𝜆(1 + 𝛼), it 

follows that 𝑔′(𝑥) changes sing from positive to negative. Finally, since 𝑔(𝑥) = 0 and 𝑔(∞) = −
𝛽

𝛽+1
, it 

follows that 𝑔(𝑥) changes sing from positive to negative. This implies that 𝑓(𝑥) is unimodal .  ∎  

Figure 1 shows the PDF of the NWE distribution for fixed scale parameter 𝜆 = 1 and selected shape 

parameters. 

 

Fig. 1. Plots of the NWE density function for fixed scale parameter 1   and some selected shape 

parameters.                                                                                                                                

It is easy to show that if 𝛼 → +∞, then (3) converges to exp (𝜆) and if 𝛽 → +∞ then (3) converges to 

𝑊𝐸(𝛼, 𝜆) and if 𝛼 → 0 then (3) converges to 𝑔𝑎𝑚𝑚𝑎(3, 𝜆).  

Representation 1.  

Proposed distribution can be obtained by implementing Azzalini’s method. Suppose 𝑋1 be a random 

variable having the exponential distribution with mean 1 𝜆⁄  and 𝑋2 be a random variable having the 

weighted exponential with parameters (𝛽, 𝜆). It can be easily observed that for any 𝛼 > 0, the random 

variable 𝑋 = 𝑋1|𝑋2 < 𝛼𝑋1 has the density function (3). 

Representation 2.  

The NWE distribution can be obtained as hidden truncation model proposed by Arnold and Beaver (2000). 

Suppose Z and Y are two dependent random variables with the joint density function 

  2

,

- 1 1- ( 1)

1
( , )    0,  0.Z Y

z yz y
z e ef z y z y

   



  
    

    

It can be shown that the conditionally random variable 𝑍|𝑌 ≤ 𝛼 has the NWE distribution. 

Representation 3.  

Using the moment generating function (MGF), it can be seen if 𝑋 ∼ 𝑁𝑊𝐸(𝛼, 𝛽, 𝜆) then, 
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𝑋 = 𝑈 + 𝑉 + 𝑇, 

where 𝑈 ∼ exp(𝜆), 𝑉 ∼ exp(𝜆(𝛼 + 1)) and 𝑇 ∼ exp(𝜆(1 + 𝛼(𝛽 + 1))) and independent. 

 

Representation 4.  

The  NWE distribution can be stated as a mixtures of  weighted exponential distributions as following 

𝑓𝑋(𝑥, 𝛼, 𝛽, 𝜆) = 𝑤𝑓𝑋1
(𝑥, 𝛼, 𝛽, 𝜆) + (1 − 𝑤)𝑓𝑋2

(𝑥, 𝛼, 𝛽, 𝜆)                            (4) 

where  𝑤 =
𝛼(𝛽+1)+1

𝛼𝛽
  and  𝑋1 ∼ 𝑊𝐸(𝛼, 𝜆), 𝑋2 ∼ 𝑊𝐸(𝛼(𝛽 + 1), 𝜆).        

Remark. All the above four stochastic representations can be used to generating random numbers from 

NWE distribution. Note that the simplest way to generate NWE random number is to use the stochastic 

representation 3. 

In the next, we obtain the CDF of  NWE  distribution based on the representation 4 as 

𝐹𝑋(𝑥, 𝛼, 𝛽, 𝜆) = 𝑤𝐹1(𝑥, 𝛼, 𝜆) + (1 − 𝑤)𝐹2(𝑥, 𝛼, 𝛽, 𝜆), 

where 𝐹1(𝑥, 𝛼, 𝜆) denote the CDF of the 𝑊𝐸(𝛼, 𝜆) as 

𝐹1(𝑥, 𝛼, 𝜆) =
𝛼 + 1

𝛼
[1 − 𝑒−𝜆𝑥 −

1

𝛼 + 1
(1 − 𝑒−𝜆(𝛼+1)𝑥)], 

and 𝐹2(𝑥, 𝛼, 𝛽, 𝜆) is CDF of the 𝑊𝐸(𝛼(𝛽 + 1), 𝜆) as 

𝐹2(𝑥, 𝛼, 𝛽, 𝜆) =
𝛼(𝛽 + 1) + 1

𝛼(𝛽 + 1)
[1 − 𝑒−𝜆𝑥 −

(1 − 𝑒−𝜆(𝛼(𝛽+1)+1)𝑥)

𝛼(𝛽 + 1) + 1
]. 

3.  STATISTICAL AND RELIABILITY PROPERTIES 

In this section, we derive some main properties of NWE distribution.  

If 𝑋~𝑁𝑊𝐸(𝛼, 𝛽, 𝜆), then the moment generate function (MGF) of X for any t   is given by 

  
  

    

     

 
   
   
   

 

 


     

1 1(1 )
( ) .

(1 ) 1 1
XM t

t t t
                       (5) 

Therefore differentiating 𝑀𝑋(𝑡) and having 𝑡 = 0, we obtain 

1 1 1
    ,

( 1) (1 ( 1))
E X

     
 
    

  
                               (6) 

and  

 2

2 2 2 2 2

1 1 1
.

( 1) (1 ( 1))
V X

     
   

  
                          (7) 
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Another measures such as coefficient of variation (CV), skewness and Kurtosis for the NWE distribution 

respectively are given as 

  

 2
2

3 ( 2) 1 ( 1)
,

( 1) 2 ( 2) 3

  (1 )
1 2CV

   

   

   

   


                              (8) 

3 3

3

2
2 2

3

3

1 1
1

(1 ) (1 ( 1))
,

1 1
1

(1 ) (1 ( 1))

2
( )E x

Sk
  

  





 
  

   

 
  

   


                            (9)                           

4 44

4 2

2 2
   

1 1
6 1

(1 ) (1 ( 1))( )
3.

1 1
1

(1 ) (1 ( 1))

E x
k

  



  

 
 
 

 
 
 

 
  

  

 
  

                        (10)                       

Figure 2 shows the skewness and kurtosis of the NWE distribution as a function of   for selected values 

of  parameter 𝛽 and fixed scale parameter 1  .  

 

Fig. 2. Plots of skewness (left) and kurtosis (right) for NWE distribution. 

The survival function of the NWE distribution is given by 

1 2( ) ( ) (1 ) ( ),S x wS x w S x                                             (11) 

where 

1

1 1
( ) 1 ,

( 1)
x xS x e e 

 
  

 
 


 


 

and 

( 1)
2

( 1) 1 1
( ) 1 .

( 1) ( ( 1) 1)
x xS x e e   

   
   

 
 

 
 

  
 

  The hazard rate function (HRF) of X can be written as 
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1 2( ) ( ) ( ) (1 ( )) ( ),h x P x h x P x h x                                      (12) 

where 1

1 2

( )
( )

( ) (1 ) ( )

wS x
P x

wS x w S x


 
 and 1( )h x  is the HRF of the 𝑊𝐸(𝛼, 𝜆), is given by 

   
 1

1 1

1
( ) ,

x

x

e

e
h x









 



 

 
  

and 2( )h x  is the HRF of 𝑊𝐸(𝛼(1 + 𝛽), 𝜆) is given by 

   
 

( 1)

( 1)2

( 1) 1 1

1 ( 1)
( ) .

x

x

e

e
h x

  

 

 

 

  

 

  

  
  

The following lemma provides sufficient conditions for the shape of the HRF of any PDF on (0, ∞). 

Lemma 1. [Glaser (1980)] Let X be a continuous random variable on (0, ∞) with twice differentiable PDF 

( )f x  and HRF ( )h x . Define  ( ) ln ( )x f x   . If ( )x  is increasing, then ( )h x  is increasing.  

Theorem 2. The NWE distribution has increasing HRF for , , 0.     

Proof : By using (3), we have  

   

𝜂′(𝑥) = −
𝑑2

𝑑𝑥2
ln(𝑓(𝑥)) =

𝛼𝛽𝜆𝑒−𝛼𝜆𝑥

(𝑒−𝛼𝜆(𝛽+1)𝑥 − (𝛽 + 1)𝑒−𝛼𝜆𝑥 + 𝛽)2
𝑔(𝑥), 

where 𝑔(𝑥) = 𝛽𝑒−𝛼𝜆(𝛽+1)𝑥 − (𝛽 + 1)𝑒−𝛼𝛽𝜆𝑥 + 1. The function 𝑔(𝑥) is increasing because 𝑔′(𝑥) > 0 and 

since 𝑔(0) = 0, it follows that 𝑔(𝑥) > 0. Therefore ( ) 0x   and it follows that ( )x  is increasing.  ∎ 

In figure 3, we plotted the hazard rate function of the NWE distribution for selected values of the shape 

parameters and fixed scale parameter 1  . Since the HRF is increasing, this is suitable for modeling 

lifetime data in engineering context when wear-out is present. 

The mean residual life function (MRLF) of the NWE distribution is obtained as 

1 2( ) ( | ) ( ) ( ) (1 ( )) ( ),m t E X t X t P x m t P x m t                         (13) 
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Fig. 3. Plots of the hazard rate function of the NWE distribution for fixed scale parameter 1   and 

some selected shape parameters  

where 1

1 2

( )
( )

( ) (1 ) ( )

wS x
P x

wS x w S x


 
 and 1( )m t  is the MRLF of the 𝑊𝐸(𝛼, 𝜆), is given by 

2

1

1 1
1

(1 )
( ) ,

1
1

1

t

t

e

m t
e





 







 
 
 
 









 

and 2( )m t  is the MRLF of 𝑊𝐸(𝛼(1 + 𝛽), 𝜆) is given by 

( 1)
2

2
( 1)

1 1
1

(1 ( 1))
( ) .

1
1

(1 ( 1))

t

t

e

m t
e

 

 

  

 

 

 

 
 
 
 


 




 

 

According to theorem 2, NWE distribution has increasing hazard rate function (IFR) and hence decreasing 

mean residual life (DMRL).  

4. ASYMPTOTIC DISTRIBUTION OF ORDER STATISTICS, STOCHASTIC ORDERING, 

RENYI ENTROPY AND A GENERALIZED MODEL BASED ON NWE DISTRIBUTION 

4.1. Asymptotic distribution of order statistics 

In this section we provide the asymptotic distribution of the minimum and maximum of a random sample 

of size 𝑛 from NWE distribution. 

Theorem 3. Let 1:nX  and :n nX be the minimum and maximum of a random sample 1 2, ,..., nX X X  from 

( , , )NWE    , respectively, then  
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3
*

1:

*

:

( ) lim 1 ,      0,

( ) lim exp( )     x R,

xn n

n
n

xn n n

n
n

X a
a P x e x

b

X a
b P x e

b









  
    

  

  
    

    

where * 0na   , * 1 1
( )nb F
n

  , 1 1
(1 )na F

n

   , 
1

( )
n

n

b
nf a

  and 1( )F c  is the inverse function of CDF 

( )F c . 

Proof : (𝑎) for the ( , , )NWE    , 1(0) 0F   and by three times using L' Hospital rule, we have 

 
 

1

3 3

10 0

(0)
lim lim .

(0)

x

x

F F x e
x x

eF F

 






 




 


 


 

Therefore, by theorem 8.3.6 (ii) of Arnold et al. (1992), the minimal domain of attraction of the NWE 

distribution is the standard Weibull distribution with shape parameter 3, proving part (𝑎). 

 (b) for the ( , , )NWE    , 1(1)F    and it is easy to show that  

1 1 ( ) ( ) ( )
lim lim lim 1 0,

( ) ( ) ( )x x x

d d F x S x x

dx h x dx f x f x



  

     
         

     

 

where  ( ) ln ( )x f x   and ( ) 1 ( )S x F x  . 

Therefore, by theorem 8.3.3 of Arnold et al. (1992), the maximal domain of attraction of the NWE 

distribution is the standard Gumbel distribution, proving part (𝑏).  ∎ 

Now, we use theorem 3 to find the asymptotic distribution of any order statistic. 

Theorem 4. Letfrom  1 2, ,..., nX X X be the order statistics of a random sample 1: 2: :, ,...,n n n nX X X  

, 1i  . Then for any fixed ( , , )NWE     

(a)     

3* 31
:

*
0

lim 1     0,
!

x ri
i n n

n
rn

X a e x
P x x

rb






  
    

  


 

(b)     
1

( )1:

0

lim      .
!

x
rxi

en i n n

n
rn

X a e
P x e x R

rb




 




  
   

  
  

Proof : The theorem proofs from equation (8.4.2) and (8.4.3) of Arnold et al. (1992). ∎ 
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4.2. Stochastic ordering 

In this section, we are comparing ( , )WE    and ( , , )NWE     with respect stochastic ordering 

information. See Shaked and  Shanthikumar (2007). Suppose X and Y be two random variables with PDFs 

( )Xf x and ( )Yf y  also CDFs ( )XF x and ( )YF y  respectively. 

A random variable X is said to be smaller than Y  in the  

a) stochastic order ( )stX Y if ( ) ( )Y XF x F x  for all .x  

b) hazard rate order ( )hrX Y if ( ) ( )Y Xh x h x  for all .x  

c) mean residual life order ( )mrlX Y if 𝑚𝑋 ≤ 𝑚𝑌 for all .x  

d) likelihood ratio order ( )LrX Y  if 
( )

( )

X

Y

f x

f x
 is decreasing in .x  

We have the following chain of implications among the various partial orderings discussed above: 

( )
( ) ( )

( )

mrL
lr hr

st

X Y
X Y X Y

X Y


   


 

Theorem 5. If ~ ( , , )X NWE     and ~ ( , )Y WE   , then LrY X an hence ( )hrY X , ( )mrlY X  and 

( )stY X
. 

Proof : It is sufficient to show 
( )

( )

X

Y

f x

f x
 is an increasing function of x  

( )
( ),

( )

xX

Y

f xd
e g x

dx f x

  
 

   

where ( 1)( ) ( 1) 1x xg x e e         . The function ( )g x  is increasing because ( ) 0g x   and 

since (0) 0g   and ( ) 1g   , it follows that ( ) 0g x  . Therefore 
( )

0.
( )

X

Y

f xd

dx f x

 
 

 
  ∎ 

 

4.3.  Entropy measure 

Shannon entropy (1948) is a central concept of information theory for expressing the uncertainty about a 

random variable. Renyi (1961) defined a generalization of Shannon entropy which depends on a parameter 
 . Renyi entropy defined by 

 1
( ( )) log ( ) ,

1
H f x f x dx





 
 

Where 0   and 1  . Renyi entropy tends to Shannon entropy as 1  . 

For ( , , )NWE    , note that  
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( 1)

0

1 1 1
( ( )) log 1 ,

1 1 1

x x xC
H f x e e e dx



   


 

   


   

      
        

         
  

where 
2

( 1)( ( 1) 1)
C

   



  
 . It is easy to show that 

( 1)1 1
1.

1

x xe e  

 

   
  

 
 

And we know 
0

(1 )   ,
k

z z
k

 



 
   

 
  for 1z  , then  

( )

0 0

1 1
( ( )) log    1 .

1 1 1

kk x
k x

k

C e
H f x e dx

k

 
  



 

   

 
 



      
                   

 
 

By using the binomial expansion 
0

( )   
k

k j k j

j

k
a b a b

j





 
   

 
  so that 

0 0

( 1)  ( 1)
1

( ( )) log .
1 1 ( )

k j k j

k

k
k j

k

k jC
H f x

k j










      

 



 

    
     

             
 
 



 

4.4. An extention of NWE distribution 

Using the representation 3, one may easily develop a new four -parameter distribution like 

𝑋 = 𝑈 + 𝑉 + 𝑇 + 𝑍, 

where 𝑈 ∼ exp(𝜆), 𝑉 ∼ exp(𝜆(𝛼 + 1)), 𝑇 ∼ exp(𝜆(1 + 𝛼(𝛽 + 1))) and𝑍 ∼ exp(𝜆(1 + 𝛼(𝛽(𝜏 + 1) +
1))), and independent. The random variable 𝑋 with above stochastic representation have PDF as 

𝑓(𝑥, 𝛼, 𝛽, 𝜆, 𝜏) = 𝐶𝑒−𝜆𝑥 × 

[1 − 𝑒−𝜆𝛼(𝛽(1+𝜏)+1)𝑥 −
𝛽(1 + 𝜏) + 1

𝛽(1 + 𝜏)
(1 − 𝑒−𝜆𝛼𝛽(1+𝜏)𝑥) −

1

𝛽 + 1
[(1 − 𝑒−𝜆𝛼(𝛽(1+𝜏)+1)𝑥)

−
𝛽(1 + 𝜏) + 1

𝛽𝜏
(1 − 𝑒−𝜆𝛼𝛽𝜏𝑥)]], 

where   𝐶 =
𝜆(𝛼+1)(𝛼(𝛽+1)+1)(1+𝛼(𝛽(1+𝜏)+1))

𝛼(𝛽(1+𝜏)+1)
. More work is needed in this direction. 
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5. MAXIMUM LIKELIHOOD ESTIMATION 

5.1. Complete maximum likelihood   

In this section, we obtain the equations for finding the maximum likelihood estimators (MLEs) of 

parameters in complete data setting. 

Suppose 𝑋1, … , 𝑋𝑛 be a random sample from 𝑁𝑊𝐸(𝛼, 𝛽, 𝜆). The log-likelihood function based on the 

observed sample (𝑥1, … , 𝑥𝑛) is 

       𝑙(𝜽) = ln 𝐿(𝑥1, … , 𝑥𝑛|𝜽) 

= 𝑛ln𝜆 + 𝑛ln(𝛼 + 1) + 𝑛ln(𝛼(𝛽 + 1) + 1) − 𝑛ln𝛽 − 2𝑛ln𝛼 

−𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑ ln

𝑛

𝑖=1

(1 − 𝑒−𝛼𝜆𝑥𝑖 −
1

𝛽 + 1
(1 − 𝑒−𝛼𝜆(𝛽+1)𝑥𝑖)), 

where 𝜽 = (𝛼, 𝛽, 𝜆). 

To find the MLE estimates for the NWE model parameters, we differentiate the log-likelihood function and 

equating the resulting to 0 as follows 

𝜕𝐿

𝜕𝛼
=

𝑛

𝛼 + 1
+

𝑛(𝛽 + 1)

𝛼(𝛽 + 1) + 1
−

2𝑛

𝛼
+ ∑

𝜆𝑥𝑖𝑒−𝛼𝜆𝑥𝑖 − 𝜆𝑥𝑖𝑒−𝛼𝜆(𝛽+1)𝑥𝑖

1 − 𝑒−𝛼𝜆𝑥𝑖 −
1

𝛽 + 1
(1 − 𝑒−𝛼𝜆(𝛽+1)𝑥𝑖)

= 0,

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝛽
=

𝑛𝛼

𝛼(𝛽 + 1) + 1
−

𝑛

𝛽
+ ∑

−𝛼𝜆(𝛽 + 1)𝑥𝑖𝑒−𝛼𝜆(𝛽+1)𝑥𝑖 − 𝑒−𝛼𝜆(𝛽+1)𝑥𝑖 + 1

(𝛽 + 1)2 (1 − 𝑒−𝛼𝜆𝑥𝑖 −
1

(𝛽 + 1)
(1 − 𝑒−𝛼𝜆(𝛽+1)𝑥𝑖))

= 0,

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝜆
=

𝑛

𝜆
− ∑ 𝑥𝑖 + ∑

𝛼𝑥𝑖𝑒−𝛼𝜆𝑥𝑖 − 𝛼𝑥𝑖𝑒−𝛼𝜆(𝛽+1)𝑥𝑖

1 − 𝑒−𝛼𝜆 𝑥𝑖 −
1

𝛽 + 1
(1 − 𝑒−𝛼𝜆(𝛽+1)𝑥𝑖)

= 0

𝑛

𝑖=1

𝑛

𝑖=1

. 

The MLEs of the unknown parameters cannot be obtained explicitly. They have to be obtained by solving 

some numerical methods, like Newton-Raphson or Gauss-Newton methods or their variants. 

5.2. Censored maximum-likelihood  

In real life, sometimes it is hard to get a complete data set. Often with lifetime data, one encounters 

censoring. There are different forms of censoring: type 𝐼, type 𝐼𝐼, etc. Here, we consider the general case 

of multi-censored data, the likelihood function is given as 

𝐿(𝜃) = ∏ 𝑓(𝑥𝑖 , 𝜃)

𝑛0

𝑖=1

∏ 𝐹(𝑥𝑗
𝑢, 𝜃)

𝑛1

𝑗=1

∏ (1 − 𝐹(𝑥𝑘
𝑙 , 𝜃))

𝑛2

𝑘=1

∏ (𝐹(𝑥𝑚
𝑢, 𝜃) − 𝐹(𝑥𝑚

𝑙 , 𝜃))

𝑛3

𝑚=1

 

with 𝑥𝑖 the 𝑛0 non-censored observations, 𝑥𝑗
𝑢 upper values defining the 𝑛1 left-censored observations, 𝑥𝑘

𝑙 

lower values defining the 𝑛1 right-censored observations, [𝑥𝑚
𝑙 , 𝑥𝑚

𝑢] the intervals defining 𝑛3 interval-

censored observations Klein and Moeschberger (2003). Note that 𝑛 = 𝑛0 + 𝑛1 + 𝑛2 + 𝑛3 and that type 𝐼 

and type 𝐼𝐼 censorings are contained as particular cases of multi-censoring. In the case of NWE distribution, 

the corresponding likelihood equations are complicated, so they are not presented here. The estimation of 

parameters in this case can be obtained by numerical methods. 
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6. SIMULATION 

In this section, we perform a simulation study to investigate the finite sample properties of MLE estimators 

described in Section 5. To conduct the experimental study, we generate 5000 synthetic samples of size n = 

10, 30, 50, 150, 100 and 200 from NWE with true selected parameters 𝐶1 = (𝑎 = 1, 𝛽 = 2, 𝜆 = 2) and 

𝐶2 = (𝑎 = 2, 𝛽 = 2, 𝜆 = 2). To examine the estimation accuracies, the absolute bias and the mean squared 

error (MSE) are computed. Figures 4-7 show a graphical representation of the absolute bias and the MSE 

of the parameter estimates as a function of sample size n.    

 
Fig 4. Absolute bias of selected parameters (𝑎 = 1, 𝛽 = 2, 𝜆 = 2) for NWE model. 

 
 Fig. 5. Absolute MSE's of selected parameters(𝑎 = 1, 𝛽 = 2, 𝜆 = 2) for NWE model. 
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Fig. 6. Absolute bias of selected parameters (𝑎 = 2, 𝛽 = 2, 𝜆 = 2) for NWE model. 

 
 Fig. 7. Absolute MSE's of selected parameters(𝑎 = 2, 𝛽 = 2, 𝜆 = 2) for NWE model. 

This simulation method seems to work well, giving estimates close to the true values of parameters. Clearly, 

the bias and MSE of three parameters converge to zero when n increases. 

7. DATA ANALYSIS AND APPLICATIONS 

In this section, we illustrate the usefulness of the NWE distribution. We fit proposed distribution to real 

data sets in complete and censored cases by ML method and compare the results with the gamma, Weibull, 

generalized exponential (GE), weighted exponential (WE), generalized Weibull (GW), two parameter 

weighted exponential (TWE) and log-logistic (LL) with respective densities 

 𝑓𝑔𝑎𝑚𝑚𝑎(𝑥) =
1

Γ(𝛼)
𝜆𝛼𝑥𝛼−1𝑒−𝜆𝑥,                       𝑥 ≥ 0, 

 𝑓𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥) =
𝛽

𝜆𝛽
𝑥𝛽−1𝑒

−(
𝑥
𝜆

)𝛽

,                             𝑥 ≥ 0, 
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  𝑓𝐺𝐸(𝑥) = 𝛼𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛼−1,                        𝑥 ≥ 0 , 

𝑓𝑊𝐸(𝑥) =
𝛼 + 1

𝛼
𝜆𝑒−𝜆𝑥(1 − 𝑒−𝛼𝜆𝑥),                  𝑥 ≥ 0 , 

𝑓𝐺𝑊(𝑥) = 𝛽𝛼𝜆𝑥𝛼−1𝑒−𝜆𝑥𝛼
(1 − 𝑒−𝜆𝑥𝛼

)𝛽,         𝑥 ≥ 0 , 

𝑓𝑇𝑊𝐸(𝑥) =
𝛼

𝐵(1 𝛼⁄ , 3)
𝜆𝑒−𝜆𝑥(1 − 𝑒−𝜆𝛼𝑥)2,      𝑥 ≥ 0 , 

 𝑓𝐿𝐿(𝑥) =
𝛼 (

𝑥
𝜆

)
𝛼−1

𝜆 (1 + (
𝑥
𝜆

)
𝛼

)
2 ,                                       𝑥 ≥ 0 . 

Censored Data Set: the survival times in months of 100 patients who have been infected by HIV were 

provided by Hosmer and Lemeshow (1999), where the plus sign in the data indicates a right-censored time.                                                                                                                       

5  6+  8  3  22   1+  7  9  3  12  2+  12  1  15  34  1  4  19+  3+  2  2+  6  60+  7+  60+  11  2+  5  4+  1+  13  

3+  2+  1+  30  7+  4+  8+ 5+  10  2+  9+  36  3+  9+  3+  35  8+  1+  5+  11  56+  2+ 3+  15  1+ 10  1+  7+  

3+  3+  2+  32  3+  10+  11  3+  7+  5+  31  5+  58  1+  2+  1  3+  43  1+  6+ 53  14  4+  54  1+  1+  8+  5+  

1+  1+  2+  7+  1+ 10  24+  7+  12+  4+  57  1+  12+. 

For this data set, there are 37 uncensored time and 63 right censored time.  We estimate the parameters of 

our proposed model by using the likelihood method 

Complete Data Set: Bjerkedal (1960) provides a data set consists of survival times of 72 guinea pigs injected 

with different amount of tubercle. This species of Guinea pigs are known to have high susceptibility of 

human tuberculosis, which is one of the reasons for choosing. We consider only the study in which animals 

in a single cage are under the same regimen. The data represents the survival times of Guinea pigs in days. 

The data are given below: 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 63 65 65 67 

68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 146 175 175 

211 233 258 258 263 297 341 341 376. 

Before analyzing this data set, we use the scaled-TTT plot to verify our model validity, see Aarset (1987). 

It allows to identify the shape of hazard function graphically. We provide the empirical scaled-TTT plot of 

above data set. Fig. 8. Shows the scaled-TTT plot is concave. It indicates that the hazard function is 

increasing; therefore it verifies our model validity. 

 

 

Fig.8. Scaled-TTT plot of the Guinea pigs data set. 
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7.1. Analysis results for censored data set 

Here, we fit the NWE distribution to the censored data set and compare it with the gamma, generalized 

exponential, weighted exponential, Weibull, generalized Weibull, two parameter weighted exponential, 

weighted exponential and log-logistic densities. Table 1 shows the MLEs of parameters, log-likelihood, 

Akaike information criterion (AIC) for the censored data set. The NWE distribution provides the best fit 

for the data set as it shows the lowest AIC than other considered models.  

Table 1. The MLEs of parameters for HIV data. 

Model               MLEs of parameters                                    Log-likelihood             AIC                   

  NWE         𝒂̂ =3.577,  𝜷̂ =17.362, 𝝀̂ = 0.051                     -159.641                    325.282                                                                               

 gamma        𝛼̂ =1.306, 𝜆̂ = 0.047                                          -162.438                   328.877                                                                   

                                  

 Weibull       𝛽̂ =1.182, 𝜆̂ = 29.514                                       -162.632                    329.263       

                                                                  

 GE               𝛼̂ =1.325, 𝜆̂ =0.043                                          -162.416                    328.832  

 

 GW             𝛼̂ =2.414,  𝛽 =0.700, 𝜆̂ =0.170               -162.232                    330.464 

 

TWE            𝛼̂ =46.11,  𝜆̂ =0.035                               -162.155                    328.31 

 

WE              𝛼̂ =15.793,  𝜆̂ =0.037                                         -162.160                    328.32 

 

log-logistic   𝛼̂ =0.010, 𝜆̂ =1.559                                         -162.808                     329.616 

 

 

7.2. Analysis results for complete data set 

Here, we fit the NWE distribution to the complete data set and compare it with the gamma, generalized 

exponential, weighted exponential and Weibull densities. Table 2 shows the MLEs of parameters, log-

likelihood, Akaike information criterion (AIC), (K-S) distance and related P-value for the complete data 

set. Analysis of Table 2 shows that the model NWE provides the best fit among other models all those used 

here to fit dataset. The relative histograms, fitted NWE, gamma, generalized exponential and Weibull PDFs 

for complete data are plotted in Fig. 9(a). The plots of empirical and fitted survival functions for the NWE 

and other fitted distributions are displayed in Fig. 9 (b). These plots also support the results in Table 2. 
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Table 2. The MLEs of parameters for Guinea pigs data. 

Model            MLEs of parameters                           Log-likelihood        AIC        K-S test    P-value         

  NWE         𝜶̂ =3.966,  𝜷̂ =0.001, 𝝀̂ = 0.014         -391.367                788.734     0.113        0.321   

                                                                                

 gamma        𝛼̂ =2.081, 𝜆̂ = 0.020            _               -394.248               792.495     0.139       0.112                                                                  

                                  

 Weibull       𝛽̂ =1.393, 𝜆̂ = 110.530        _               -397.148              798.295     0.149       0.082      

                                                                  

 GE               𝛼̂ =2.473, 𝜆̂ =0.017            _                -393.110              790.221     0.135       0.135   

 

WE              𝛼̂ =1.623,  𝜆̂ =0.014              _               -393.570               791.138     0.117       0.275 

 

 

 

Fig 9 (a). The fitted PDFs and the relative histogram for the Guinea pigs data histogram for the           
Guinea pigs data.                 
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Fig 9(b). Empirical and fittrd survival functions for Guinea pigs data 

8. CONCLUSIONS 

In this paper, we have proposed the new weigthed exponential distribution denoted by NWE. The proposed 

distribtion generalizes the WE distributions and contains this distribution as its sub-model. It is investigated 

that the new model has increasing hazard function. Two applications of the NWE distribution to the real 

data sets are provided to illustrate that this distribution provides a better fit than its sub-models and other 

common statistical distributions. 
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