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Research Article

Abstract − A smooth cubic surface has at most 27 lines, with equality if and only if the
underlying field is algebraically closed. Only a few cases are possible regarding the number of
lines over fields that are not algebraically closed. The next two cases of interest are smooth
cubic surfaces with 15 or 9 lines. The author has recently settled the case of 15 lines. In this
paper, we address the case of smooth cubic surfaces with 9 lines. We describe a way to create
some cubic surfaces with 9 or more lines based on a set of six field elements. Conditions on
the six parameters are given under which the surface has exactly 9, 15, or 27 lines. However,
the problem of generating all cubic surfaces with 9 lines remains open.

Keywords Cubic surface, parametrization, non-algebraically closed fields

Mathematics Subject Classification (2020) 14G27, 68W30

1. Introduction

It is well known that a smooth cubic surface over an algebraically closed field has exactly 27 lines [1].
However, the number of lines over a non-algebraically closed field varies. Naturally, the following
question arises: How many lines can a smooth cubic surface have over a non-algebraically closed field?
The problem of determining these numbers over the fields of R, Q, Fq where q is odd, and F2 has been
considered by several authors [2–5]. In [6], the author gives the possible number of lines of smooth
cubic surfaces over Fq where q is even. The number of lines of a smooth cubic surface is one of 27, 15,
9, 7, 5, 3, 2, 1, or 0 [3]. The results on cubic surfaces with 15 or 27 lines over a given field are found
in [7–11], as well as using alternative methods in papers [12–14]. All the classification results agree
with an enumerative formula recently found by Das [15].

In this paper, we focus on smooth surfaces with at least 9 lines over various fields, characteristic 0 or
p. In [2], Schlafli described 27 lines of the cubic surface, explaining the line intersection properties.
Each line intersects ten others and skews to 16. He defined the term “double-six”, which has 12 lines
with some special properties, and another 15 can be produced by these 12. To give the intersection
properties of the lines for 9, we use the same idea of the double-six but for double-three. Smooth
cubic surfaces may only have less than 27 lines if the field is nonalgebraically closed. However, over
the algebraic closure of that field, the surface will have 27 lines. Therefore, we can use Schlafli labeling
to notate 9 lines. We will then prove that the line intersection graph of the smooth cubic surfaces
with 9 lines is unique.
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We go back to the original proof by Cayley and Salmon that the surface has 27 lines over the alge-
braically closed fields as we did in [11]. We see that there is a discriminant condition certain polynomial
of degree 5, which can have irreducible factors of degree 3 over the field F, which is not algebraically
closed. When this happens, we end up with cubic surfaces with 9 lines. Considering the rational
lines over a given field F, we formulate the conditions that the surface has 9 lines over the given
field. We describe smooth cubic surfaces with at least 9 lines using six parameters. Our approach is
experimental. We study some examples of smooth cubic surfaces with 9 lines that we obtain using
the computer algebra system Orbiter [16]. Once we observe the pattern, we make the computer free
proof. The proof is based on the symmetry of the projective group. We use the computer algebra
system Maple for the symbolic computations. When we extend the field over the algebraic closure F,
the surface is complete to 27 lines since these surfaces are smooth. Using our model, we will show
examples of cubic surfaces over a field of characteristic zero and p. These examples would have 9, 15,
or 27 lines depending on whether the special polynomial is irreducible or reducible into two irreducible
polynomials or splits completely over the base field.

We give the rational parameterization of points of our new form. To do this, we study the birational
map between cubic surfaces and a plane, [9, 17]. There is an exceptional locus, and the birational
map is defined outside the exceptional locus bijective. The exceptional locus of the map on the plane
is two conics and a line. The exceptional locus of the map on the surface is two skew lines and one
transversal line. We give them explicitly.

The smooth cubic surface has q2 +tq+1 points where t is between -2 and 7, but 6 is never possible [18].
Studying the birational map helps us to prove that the smooth cubic surfaces with 9 lines have
q2 + 4q+ 1 points. If the cubic surface has a double-six, then the surface is smooth and has exactly 27
lines. However, if the surface has a double-three, it does not necessarily have exactly 9 lines. It can
have more lines, in which case the surface is singular. Hence, a necessary condition for the smoothness
of our new form is needed. We give this condition using the rational parameterization of our new
form.

In section 2, we will provide some basic theory about the cubic surfaces with 27 lines since the structure
of smooth cubic surfaces with 9 lines is the sub-configuration of the structure of cubic surfaces with 27
lines. In section 3, we show the uniqueness of 9 lines and investigate the configuration. In this section,
we also give our new form for smooth cubic surfaces with at least 9 lines using six parameters, and
we provide the conditions when the surface has exactly 9, 15, or 27 over the given field. In section
4, we provide examples of various fields, including Q and some finite fields. In section 5, we give the
rational parameterization of our new form and the condition when our form is smooth. In section 6,
we discuss future work.

2. Preliminaries

In this section, we provide some background material on cubic surfaces and projective geometry over
finite fields. For a deeper treatment, we refer to [11,19,20].

A finite field is a field with only a finite number of elements. Fq is a finite field of order q = pk where p is
a prime number. The characteristic of the field is the smallest n such that 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸

n times

= 0. The

characteristic of Fq is p. Fp = Fp adjoints all the roots of polynomials over Fp. Fp is an algebraically
closed field of characteristic p. Fp contains every Fpe , for all e ≥ 1. Each Fp has a unique Fp.

Let F be a field. A projective space PG(n,F) is a partially ordered set of subspaces of a vector space
v(n+ 1,F). It is a lattice with respect to “join” and “meet”. Join is the span of two subspaces. Meet
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is the intersection of two subspaces. In PG(3,F), a point is denoted by P = P(α0, α1, α2, α3). A line
through the points P(β0, β1, β2, β3) and P(γ0, γ1, γ2, γ3) is denoted by

ℓ = L
[
β0 β1 β2 β3
γ0 γ1 γ2 γ3

]
The plane consists of the non-collinear points P(α0, α1, α2, α3), P(β0, β1, β2, β3), and P(γ0, γ1, γ2, γ3)
and is denoted by

π = v(c0x0 + c1x1 + c2x2 + c3x3) =


α0 α1 α2 α3

β0 β1 β2 β3

γ0 γ1 γ2 γ3


where c0, c1, c2, and c3 are elements of the field F.

A conic is a curve of degree 2 in PG(2,F). It is either an irreducible conic, two distinct lines, or a
double line. The space of quadratic polynomials in three variables has dimension 6. To determine
conic in the associated projective space, 5 linearly independent conditions are required. A cubic curve
is a curve of degree three in PG(2,F). It is one of the following: an irreducible cubic, a conic, and
a line, 3 different lines, or 2 different lines such that one of which is a double or a triple line. To
determine a conic in the associated projective space, 9 linearly independent conditions are required.
A k-arc in PG(2,F) is a set of k points where no three are collinear.

Let π be a plane in PG(3,F), and Q be a point on π. Let ℓ1 and ℓ2 be two skew lines in PG(3,F) \ π.
Then, there is a unique transversal line of ℓ1 and ℓ2 through Q.

The automorphism group PΓL(n+ 1,F) of PG(n,F) is the group of bijective mappings that preserve
collinearity. The collineation group contains PGL(n+ 1,F) as subgroup which is the group of projec-
tivities of PG(n,F). PGL(4,F) is transitive on the points, lines, and planes of PG(3,F). In PG(n,F),
any (n + 2)-arc can be mapped to any other (n + 2)-arc. The pointwise stabilizer of a hyperplane π
in the PGL(4,F) is transitive on the set of two skew lines of PG(3,F) not in π which meet the fixed
plane π in two points.

Let f be a homogeneous cubic equation in 4 variables over the field F. A cubic surface F in PG(3,F)
is the zero set of f . For instance,

F = v(f) = v
(
x3

0 + x3
1 + x3

2 + x3
3 − (x0 + x1 + x2 + x3)3)

The cubic surface is smooth if the following system of equations has no solution:

f(x0, x1, x2, x3) = 0
∂f(x0,x1,x2,x3)

∂x0
= 0

∂f(x0,x1,x2,x3)
∂x1

= 0
∂f(x0,x1,x2,x3)

∂x2
= 0

∂f(x0,x1,x2,x3)
∂x3

= 0

To define a cubic surface F in PG(3,F), it is sufficient to specify 19 linearly independent points on
it. A line in PG(3,F) either intersects cubic surfaces in three points, or it is the line of F . Therefore,
if the 4 points of the line are on the cubic surface, then the line lies on it. A cubic surface intersects
a plane in a cubic curve. If the surface is smooth, then that cubic curve is one of the following: an
irreducible cubic, a line, an irreducible conic, or 3 different lines. If the cubic surface intersects a plane
in 3 different lines, then that plane is called a tritangent plane.
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A “double-six” in PG(3,F) is the set of 12 lines

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

such that ai intersects bj if and only if i ̸= j, ai are pairwise skew, and bi are pairwise skew.

Figure 1. 19 independent points of cubic surfaces with 27 lines

A double-six determines a unique cubic surface with 27 lines. 15 further lines cij are given by < ai, bj >

∩ < aj , bi > [2]. The red points in Figure 1 represent the 19 independent points that determine the
cubic surface with 27 lines.

When three lines of the cubic surface are concurrent at a point, then this point is called an Eckardt
point. From line intersection properties, only two cases are possible: either ai, bj , and cij are concurrent
where i ̸= j or cij , ckl, and cmn are concurrent where i, j, k, l, m, and n are all different. In the first
case, we notate the Eckardt point as Eij , and for the second case, Eij,kl,mn.

There is a map between the cubic surface in PG(3,F) and a plane. This map is called Clebsch map
in [9]. Here, we refer to [9,11,17,20] and repeat the description of the map. Let F be a cubic surface
and π be a plane in PG(3,F). Let ℓ1 and ℓ2 be two skew lines of F not lying on the plane π, and
P = P(X) be a point of F which is neither on ℓ1 nor on ℓ2. There is a unique line ℓ through P which
is the transversal to ℓ1 and ℓ2. The line ℓ meets π in a unique point Q = P(Y ). Let Q be the image
of P . Therefore,

Φ : F → π

P 7→Q

There is a unique line through Q that is transversal to ℓ1 and ℓ2. This line intersect F in 3 points.
Two of them are on ℓ1 and ℓ2, let the third one to be P . The inverse Φ−1 of this map moves Q to P .

Figure 2. Birational map from cubic surfaces with 27 lines to 6-arc not on a conic

Some properties of this map are as follows: Consider that the surface F has 27 lines. Each line of the
half double-six of F maps to a single point in π under Φ. These six points form a 6-arc not on a conic
in the plane, see Figure 2. Outside these six lines, the map is bijective.
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The following lemma is elementary. For a proof of the lemma, see Proposition 7.3 in [21]. For the
sake of completeness, we include the reference of the previous paper of the author [11].

Lemma 2.1. [11,21] Let F be a smooth cubic surface with at least one line. The number of tritangent
planes through a line of F is one of 0, 1, 2, 3, and 5 but never 4.

Lemma 2.2. [1] If two lines of a smooth cubic surface intersect, then they span a tritangent plane.

We introduce the following notation. Two tritangent planes are called disjoint if their line of intersec-
tion does not belong to F .

Lemma 2.3. [22] Any two disjoint tritangent planes of F determine a third.

The three tritangent planes in Lemma 2.3 give rise to 9 lines of F . These 9 lines give rise to three
further tritangent planes [11,20].

A trihedral pair consists of two sets of three tritangent planes, which pairwise intersect in 9 lines of
F [22].

Lemma 2.4. Let F be a smooth cubic surface with at least 9 lines over the field F. There exist at
least four tritangent planes of F .

Proof.
As 9 lines of F cannot be pairwise skew, there exist two lines ℓ1 and ℓ2 which intersect. From Lemma
2.2, there is a third line ℓ3 such that ℓ1, ℓ2, and ℓ3 form a tritangent plane. Any line not contained
in a hyperplane intersects the hyperplane at a point. In the case of a tritangent plane and a line of
the surface, this point of intersection must be on one of the three lines of the tritangent plane. Hence,
each mi such that i ∈ {1, . . . , 6} intersect one of the ℓj such that j ∈ {1, 2, 3}. This gives rise to 6
pairs (ℓj ,mi) of intersecting lines. By Lemma 2.2, these 6 pairs create at least 3 tritangent planes
different from the tritangent plane through ℓ1, ℓ2, and ℓ3.

Lemma 2.5. Let F be a smooth cubic surface with at least 9 lines over the field F. Lemma 2.4
guarantees that there are at least 4 tritangent planes. If these 4 tritangent planes of F intersect
pairwise in a line of the surface, then they all intersect in the same line of F .

Proof.
Let π1, π2, π3, and π4 be the tritangent planes arising from Lemma 2.4. Let π1 and π2 intersect in
the line a1 of F . Without loss of generality, we may assume that π1 is spanned by a1, b2, and c12, and
π2 is spanned by a1, b3, and c13. The lines b2 and c12 are skew to the lines b3 and c13. Therefore, if
the third tritangent plane π3 intersects π1 and π2 in lines of F , this line must be a1. The same holds
true for π4.

Lemma 2.6. Let F be a smooth cubic surface with at least 9 lines over the field F. Then, there is at
least one pair of disjoint tritangent planes.

Proof.
From Lemma 2.4, there exist 4 tritangent planes of F . To show that a disjoint pair of tritangent
planes exist, we assume the opposite. From Lemma 2.5, these planes are all through the same line.
By Lemma 2.1, there exists a fifth tritangent plane in this pencil. This configuration gives rise to 11
lines of the surface. Because of Lemma 2.2, any further line would create another tritangent plane
not passing through a1, contradicting Lemma 2.5, and it is not possible that a smooth cubic surface
to have 11 lines.
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3. Construction of a Smooth Cubic Surface with 9 Lines

This section proves the uniqueness of the line intersection graph of a smooth cubic surface with 9 lines
and defines double-three. Besides, is provides a new form of smooth cubic surfaces with at least 9
lines involving 6 parameters.

The result of Cayley (and Salmon) in [1] is strengthened for smooth cubic surfaces with 15 lines in [11].
In this section, we will strength this result for cubic surfaces with 9 lines.

Theorem 3.1. The line intersection graph of a smooth cubic surface with exactly 9 lines over F is
unique.

Proof.
Let F be a smooth cubic surface with 9 lines over F. By Lemma 2.6, there is a pair of disjoint tritangent
planes. Because of Lemma 2.3, there is a unique third tritangent plane which is also disjoint to others.
The 9 lines obtained in this way give rise to 3 more tritangent planes. Hence, there exists a trihedral
pair of F . In addition, there are 2 tritangent planes through each line of F . Moreover, each line in
the trihedral pair intersects 4 others and is skew to 4. Therefore, it is unique.

Let ℓ be a line of F and π(µ) be the plane through ℓ. π(µ) intersects F in a conic C(µ) and the line
ℓ. Let Q(µ) be a quadratic polynomial which represents C(µ). We define ∆(µ) as the discriminant of
the quadratic polynomial Q(µ) as in the proof of Lemma 2.1.

Theorem 3.2. Let F be a non-algebraically closed field, and F be a smooth cubic surface with at
least one line. The smooth cubic surface F has exactly 9 lines over F if and only if ∆(µ) consists of
an irreducible polynomial of degree 3 and 2 linear factors over F.

Proof.
If ∆(µ) has two linear factors over the field F, then there exists 2 tritangent planes through ℓ. With a
similar argument in the proof of Theorem 11 in [11], we start with a fixed tritangent plane. There is
one more tritangent plane through each of the three lines of the fixed plane. This gives 3 tritangent
planes different from the one we started with. Each tritangent plane gives rise to 2 new lines. Counting
all lines gives 1 + 2 + 3 · 1 · 2 = 9 lines. If F has exactly 9 lines, there are 2 tritangent planes through
each line of F from Theorem 3.1. Therefore, there are exactly 2 distinct solutions for µ ∈ F in the
∆(µ). Hence, ∆(µ) has exactly two distinct linear factors.

To give the intersection properties of the lines for smooth cubic surfaces with exactly 9 lines, we used
the same idea of double-six but for double-three.

Definition 3.3. Let F be a field. A double-three in PG(3,F) is the set of 6 lines

a1 a2 a3

b1 b2 b3

such that each line is skew to the ones in the same column or row and meets others. One row from
the array is called half double-three.

Once a smooth cubic surface include a double-three, then it follows with 3 more lines which arise from
the intersection of the following planes:

c12 = ⟨a1, b2⟩ ∩ ⟨a2, b1⟩

c13 = ⟨a1, b3⟩ ∩ ⟨a3, b1⟩

and
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c23 = ⟨a2, b3⟩ ∩ ⟨a3, b2⟩

The intersection table of 9 lines can be seen in Table 1. We insert 1 in the table if the lines intersect;
otherwise, 0.

Table 1. Pairwise intersection table of the 9 lines

a1 a2 a3 b1 b2 b3 c12 c13 c23

a1 − 0 0 0 1 1 1 1 0

a2 0 − 0 1 0 1 1 0 1

a3 0 0 − 1 1 0 0 1 1

b1 0 1 1 − 0 0 1 1 0

b2 1 0 1 0 − 0 1 0 1

b3 1 1 0 0 0 − 0 1 1

c12 1 1 0 1 1 0 − 0 0

c13 1 0 1 1 0 1 0 − 0

c23 0 1 1 0 1 1 0 0 −

The following theorem presents a new form of a smooth cubic surfaces with 9 lines.

Theorem 3.4. Let F be a field with at least 4 elements. Let a, c ∈ F \ {0, 1}, b, d ∈ F \ {0,−1}, and
f, g ∈ F \ {0} such that b ̸= d and f ̸= g. Let Fa,b,c,d,f,g = v(fa,b,c,d,f,g) be the variety over F given by
the equation fa,b,c,d,f,g

d002x
2
0x2 + d012x0x1x2 + d013x0x1x3 + d022x0x

2
2 + d023x0x2x3

+d112x
2
1x2 + d113x

2
1x3 + d122x1x

2
2 + d123x1x2x3 + d133x1x

2
3 = 0

(1)

where

d002 = bgκ3

d012 = g(a+ b)κ2 − f(bf + a)κ1

d013 = fκ1κ4

d022 = agκ3

d112 = −(1 + d)fκ4

d113 = d112

d023 = −abgκ3

d122 = −cfκ4

d133 = cdfκ4

d123 = (d− 1)cfκ4

κ1 = c+ d+ 1

κ2 = dg + c+ g

κ3 = cf + df − dg − c+ f − g

κ4 = ag − bf + bg − a

κ5 = abd+ acd+ bcd+ ab

κ6 = abc+ abd+ bcd+ ab

κ3 ̸= 0, κ4 ̸= 0, aκ1 + bc ̸= 0, and aκ2 + bcf ̸= 0

Let ga,b,c,d,f,g be the polynomial

ga,b,c,d,f,g = A3µ
3 +A2µ

2 +A1µ+A0 (2)
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in µ such that
A0 = −bcdf(ac+ ad+ cd+ a)(ag − bf + bg − a)

A1 = g2A12 + g(c2A112 + cA111 +A110) +A10

A2 = a2(fA221 +A220) − abc(f2A212 + fA211 +A210) +A20

A3 = (f − g)(ac+ ad+ bc+ a)(adg + bcf + ac+ ag)

and

A12 = −a(d+ 1)b(abd+ acd+ bcd+ ab) A220 = g(dg + c+ g)(bc+ 2bd+ cd+ 2b)

A112 = −(a+ b)(bd2f + abd− abf − adf − 2bdf) A212 = (c+ d+ 1)(b+ d− 1)

A111 = a(d+ 1)(ab2f − ab2 + abf + adf + b2f + bdf) A211 = −2cdg + 2cd+ 2cg + dg − c+ g

A110 = a2b2f(d+ 1)2 A210 = −g(dg + c+ g)(b+ d)

A221 = −(c+ d+ 1)(2bdg + bc+ 2bg + cd+ cg − c) A20 = −b2c2f(f − g)(2d− 1)

A10 = cf(bf + a)(abcd+ abd2 + bcd2 − abc− acd− ad2 − 2bcd− ab− ad)

Assume that the surface Fa,b,c,d,f,g is smooth over F. The surface Fa,b,c,d,f,g has at least 9 lines, six of
which form a double-three. The conditions on the exact number of lines of Fa,b,c,d,f,g depends on the
polynomial ga,b,c,d,f,g of degree three.

i. If the polynomial ga,b,c,d,f,g is irreducible over the field F, then the surface Fa,b,c,d,f,g has exactly 9
lines.

ii. If ga,b,c,d,f,g is reducible into one irreducible quadratic polynomial and one linear over the field F,
then the surface Fa,b,c,d,f,g has exactly 15 lines.

iii. If ga,b,c,d,f,g splits completely to 3 linear factors over the field F, then the surface Fa,b,c,d,f,g has
exactly 27 lines.

In Table 2, the parametrization of the 9 lines of Fa,b,c,d,f,g can be observed.

Table 2. Lines of Fa,b,c,d,f,g

a1 = L

[
a(b + 1) 0 −b b

a + b b 0 0

]
a2 =


L

[
1 0 0 0

0 d133 0 −d112

]
, κ1 = 0

L

[
−cd 0 0 κ1

1 + d κ1 0 0

]
, otherwise

a3 = L

[
0 0 0 1

0 0 1 0

]

b1 = L

[
1 0 0 0

0 0 0 1

]
b2 = L

[
0 1 0 0

0 0 −1 1

]
b3 = L

[
1 1 1 0

c(b − d)a 0 κ6 aκ1 + bc

]

c12 = L

[
1 0 0 0

0 1 0 0

]
c13 = L

[
a 0 0 1

0 0 b 1

]
c23 = L

[
0 0 d 1

0 c −1 1

]

Proof.
The group PGL(4,F) is transitive on the planes. Therefore, we can start from any hyperplane. Hence,
we may pick π = v(x3). Consider that we want to construct a cubic surface F with 9 lines, including
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the double-three. Considering the sub-configuration of Schlafli configuration and the labeling for 9
lines, we may choose the labels that a1, a2, a3, b1, b2, b3, c12, c13, and c23. To determine this surface
F , we have to specify 19 independent conditions. Nine of them should be on the plane π since the
cubic surface intersects π in a cubic curve. We can assume that the coordinates of 4 of those 9 points
are P1 = P(1, 0, 0, 0), P2 = P(1, 0, 0, 0), P3 = P(1, 0, 0, 0), and P4 = P(1, 0, 0, 0) since the projective
group of the plane is transitive on the quadrangles. Since PGL(4,F) is transitive on the lines, we can
pick the first line of the surface F without any constraints. Let assume that the first line of F is

c12 = L

 1 0 0 0
0 1 0 0


Since c12 lies on the surface F , there are 2 more independent points on the intersection c12∩F . Assume
that P7 = P(1, 1, 0, 0) and P8 = P(−1, 1, 0, 0) are the points of F as well as c12 is transitive. It is
known that the pointwise stabilizer of the hyperplane π in the PGL(4,F) is transitive on the set of
two skew lines of PG(3,F) not in π which meet the fixed plane π in two points P1 and P2. Therefore,
we are free to choose two skew lines not on the plane π through P1 and P2. Let

b1 = L

 1 0 0 0
0 0 0 1

 and b2 = L

 0 1 0 0
0 0 −1 1


are the two skew lines. b1 are through P1 and P5 = P(0, 0, 0, 1) and b2 are through P2 and P6 =
P(0, 0,−1, 1). It is known that there is a unique line through P2 and transversal to b1 and b2. We call
this line is a line of F . Because of the configuration of 9 lines, we can label that line as a3 and it is
the line through P5 and P6,

a3 = L

 0 0 0 1
0 0 −1 1


From line intersection properties, we know that there exists a line c23 which meets b2 and a3 and skew
to c12, i.e., not in π. When a3, b2, and c23 are not concurrent which means the Eckardt point E32

does not exist, we may set the line c23 through P9 = P(0, c,−1, 1) and P10 = P(0, 0, d, 1). Since P2,
P6, and P9 are three distinct points from our assumption, we have 0 ̸= c ̸= 1.

From line intersection properties, we know that there exists a line c13 which meets b1 and a3 and skew
to c12, i.e., not in π. When a3, b1, and c13 are not concurrent which means the Eckardt point E31 does
not exist, we may set the line c13 through P11 = P(a, 0, 0, 1) and p′ = P(0, 0, b, 1). Since P1, P5, and
P11 are three distinct points from our assumption, we have 0 ̸= a ̸= 1. Therefore, two lines of F are

c13 = L

 a 0 0 1
0 0 b 1

 and c23 = L

 0 c −1 1
0 0 d 1


Since P3, P5, P6, P10, and p′ are five distinct points on the line a3, we have b, d /∈ {0,−1} and
b ̸= d. Since there are already 4 independent points on a3, we do not count the point p′. The plane
π intersects the line c13 at the point P13 = P(−a, 0, b, 0) and intersects the line c23 at the point
P12 = P(0,−c, d + 1, 0). From line intersection properties, we know that there exists a line b3 which
meets c13 and c23 and skew to a3, b1, b2, and c12. The line b3 cannot intersect the line through P1 and
P3 and the line through P2 and P3 since those lines already have 3 points of F each. The new line b3 is
either P4 or P19 = P(f, g, 1, 0). For this new form, we consider the b3 is through P4. We know that the
line c13 and c23 are not in π, and they are skew. Hence, the transversal line b3 to c13 and c23 through P4

is uniquely determined. It intersects c13 at the point P14 = P(ac(b− d), 0, κ6, aκ1 + bc) and intersects
c23 at the point P15 = P(0,−ac(b− d), κ5, aκ1 + bc) where κ1 = c+ d+ 1, κ5 = abd+ acd+ bcd+ ab,
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and κ6 = abc+ abd+ bcd+ ab. Thus,

b3 = L

 1 1 1 0
c(b− d)a 0 κ6 aκ1 + bc


The line c13 already has 4 independent points of F which are p′, P11, P13, and P14. Hence, it is a
line of F . The line c23 already has 4 independent points of F which are P12, P10, P9, and P15. Thus,
it is a line of F . The lines b1, b2, and b3 have 3 points of F each. Therefore, we force the points
P16 = P(1, 0, 0, 1), P17 = P(0, 1,−1, 1), and P18 = a · P15 + P14 to be on the surface F . The following
18 points are chosen to force the lines

b1, b2, b3, a3, c12, c13, and c23

to be on the cubic surface. More conditions arise from the fact that the cubic surface intersects the
plane v(x3) in a cubic curve which consists of the line c12 and an irreducible conic. Besides, we have
considered the 8 points on π

P1, P2, P3, P4, P7, P8, P12, and P13

We need to force one further point of the surface to lie on this plane. We may pick the point
P19 = P(f, g, 1, 0). The conic through P3, P4, P12, P13, and P19 is irreducible. This gives the
restriction on the parameters a, b, c, d, f , and g such that a, c, f, g ̸= 0, f ̸= g, κ3 ̸= 0, κ4 ̸= 0,
aκ1 + bc ̸= 0, and aκ2 + bcf ̸= 0.

The points P1, . . . , P19 define the cubic surface uniquely since they are linearly independent. Using
Maple, we compute the equation fa,b,c,d,f,g as in Equation 1 which is the unique equation of a cubic
surface Fa,b,c,d,f,g defined by these 19 points. This surface also involves a double-three. By Theorem
3.1, we know that there is only one way to complete the configuration of the lines. By Definition 3.3,
further lines will be defined as a1 and a2. These further lines a1 and a2 can be computed using Maple.
All these 9 lines can be seen in Table 2.

Figure 3. Configuration of 19 points
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We check whether the cubic surface Fa,b,c,d,f,g has any further lines. The only possible way would be
the surface having 15 or 27 lines. This depends on the discriminant condition. By Theorem 3.2 and
Theorem 11 in [11], we know that it depends on the factors of the discirimant. Therefore, we need
to compute it. As in the proof of Theorem 3.2, we start with a fixed tritangent plane π = v(x3).
Consider the line

c12 = L

 1 0 0 0

0 1 0 0


and the planes

v(x2 − µx3)

through this line c12. Each of these planes intersects Fa,b,c,d,f,g in c12 and in a conic C(µ). Substituting
x2 = µx3 into the equation of Equation 1, we find the conic equation C(µ) in x0, x1, and x3. Hence, we
calculate the discriminant ∆(µ) of C(µ). It has a factor of the polynomial ga,b,c,d,f,g of degree 3 as in
the Equation 2. Similarly, considering the planes through a1 and b2, two further polynomials fa,b,c,d,f,g

and ha,b,c,d,f,g of degree three arise. These polynomials are not stated due to space restrictions. For a
given field F, if the polynomial ga,b,c,d,f,g is irreducible, then fa,b,c,d,f,g and ha,b,c,d,f,g are irreducible,
and vice versa.

There are 2 tritangent planes of Fa,b,c,d,f,g through each created 9 lines. Hence, there are either one
or 3 more tritangent planes through each line. Then, these further lines would arise from the new
tritangent planes.

If ga,b,c,d,f,g is reducible into one linear factor and one irreducible quadratic, then the surface Fa,b,c,d,f,g

has 15 lines over F from Part 2 of Theorem 11 in [11]. The further 6 lines arise as following: Each of
c12, a1, and b2 lies on one further tritangent planes, and each of which gives two lines to the surface.
This gives 3 · 1 · 2 = 6 further lines of F .

If ga,b,c,d,f,g is reducible into three linear factors, then the surface Fa,b,c,d,f,g has 27 lines over F from
Part 1 of Theorem 11 in [11]. The further 18 lines arise as following: Each of c12, a1, and b2 lies on
three further tritangent planes, each of which gives two lines to the surface. This gives 3 · 3 · 2 = 18
further lines of F .

If the polynomial ga,b,c,d,f,g is irreducible over F, then the surface Fa,b,c,d,f,g has exactly 9 lines over
this field by Theorem 3.2.

Remark 3.5. Figure 3 summarises the content of Theorem 3.4 by giving the configuration of 19
points on the cubic surface and forcing the surface including the double-three.

Remark 3.6. The cubic surface Fa,b,c,d,f,g cannot have 2 specific Eckardt points. Therefore, we
cannot create all possible smooth cubic surfaces with 9 lines using this form.

Remark 3.7. The line b3 of Fa,b,c,d,f,g could be through P19 instead P4. Considering this way would
give another form of such surfaces.

4. Illustrative Examples

This section exemplifies the aforesaid form over finite fields and fields of characteristic zero.

Example 4.1. The surface F−1,1,−1,2,−1,1 given by the equation

−2x2
0x2 − 2x0x1x2 − 2x0x1x3 + 2x0x

2
2 − 2x0x2x3 + 3x2

1x2 + 3x2
1x3 − x1x

2
2 + x1x2x3 + 2x1x

2
3 = 0
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is smooth over C. The polynomial

g−1,1,−1,2,−1,1 = −6µ3 + 10µ2 − 16µ+ 16

is irreducible over Q. Hence, the surface F−1,1,−1,2,−1,1 has exactly 9 lines over Q. The polynomial
g−1,1,−1,2,−1,1 has one real and two complex roots. Therefore, by Theorem 3.4, it has exactly 15 lines
over R and 27 over C.

Example 4.2. Over F5, the cubic surface F2,1,4,2,4,1 given by the equation

3x2
0x2 + 3x2

1x2 + 3x2
1x3 + x0x

2
2 + 4x1x

2
2 + 2x1x

2
3 + 4x0x1x2 + 3x0x1x3 + 4x0x2x3 + x1x2x3 = 0

is smooth. Since the polynomial

g2,1,4,2,4,1 = 2µ3 + 3µ2 + 4µ+ 3

is reducible into (µ+ 1) and (2µ2 +µ+ 3) over F5, the surface F2,1,4,2,4,1 has exactly 15 lines over this
field by Theorem 3.4.

Let τ ∈ F25 satisfy the equation τ2 + τ + 2 = 0. The polynomial

g2,1,4,2,4,1 = 2µ3 + 3µ2 + 4µ+ 3

= (µ+ 1)(2µ2 + µ+ 3)

= (µ+ 1)(µ+ 4τ + 1)(µ+ τ + 2)

is reducible into three linear factors over F25. Therefore, by Theorem 3.4, the surface F2,1,4,2,4,1 has
exactly 27 lines over this field.

Example 4.3. Over F5, the cubic surface F4,1,4,2,4,1 given by the equation

3x2
0x2 + 3x2

1x2 + 3x2
1x3 + 2x0x

2
2 + 4x1x

2
2 + 2x1x

2
3 + 3x0x1x2 + 3x0x1x3 + 3x0x2x3 + x1x2x3 = 0

is smooth. Since the polynomial
g4,1,4,2,4,1 = 3µ3 + 3µ+ 2

is irreducible over F5, the surface F4,1,4,2,4,1 has exactly 9 lines over this field by Theorem 3.4. Over
F25, this polynomial is also irreducible. Therefore, the cubic surface F4,1,4,2,4,1 has exactly 9 lines over
this field.

Let ψ ∈ F125 satisfy the equation ψ3 + ψ2 + 2 = 0. The polynomial

g4,1,4,2,4,1 = 3µ3 + 3µ+ 2

= (µ+ 4ψ2 + 3ψ + 3)(µ+ 4ψ2 + 2ψ + 1)(µ+ 2ψ2 + 1)

is reducible into three linear factors over F125. Therefore, the surface F4,1,4,2,4,1 has exactly 27 lines
over this field by Theorem 3.4.

5. Rational Parametrization of the New Form

This section provides a parametrization of the rational points at lines of the cubic surface Fa,b,c,d,f,g

given in Section 3. The proof of the following theorem is based on the birational map between the
cubic surface and a plane. In Subsection 4.2 of [11], rational parametrization of a smooth cubic surface
with 15 lines is given explicitly. The proof here and the remarks are similar to the proof of Theorem
8 and its following remarks in [11] but for the cubic surface with at least 9 lines Fa,b,c,d,f,g.
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Theorem 5.1. Let F be a field with at least 4 elements. Let Fa,b,c,d,f,g be the variety given in
Theorem 3.4. Assume that Fa,b,c,d,f,g is smooth. Let P = P(x0, x1, x2, x3) be a point on Fa,b,c,d,f,g

and Q = P(y0, y1, y2) be a point in a plane so that P and Q are the images of each other under a
birational map

Φa,b,c,d,f,g : Fa,b,c,d,f,g → PG(2,F)

P(x0, x1, x2, x3) 7→ P(y0, y1, y2)

Then, (x0, x1, x2, x3) can be expressed as

x0 = −g(a+ b)κ3y
2
0y1 + ga(b+ 1)κ3y

2
0y2 − (1 + d)fκ4y0y

2
1 − fc(1 + d)κ4y0y1y2

x1 = abgκ3y0y1y2 − cdfκ4y
2
1y2 − bgκ3y

2
0y1 − fκ1κ4y0y

2
1

x2 = abgκ3y0y
2
2 − cdfκ4y1y

2
2 − bgκ3y

2
0y2 − fκ1κ4y0y1y2

x3 = gbκ3y
2
0y2 + agκ3y

2
2y0 − cfκ4y

2
2y1 + d012y0y1y2 − (1 + d)fκ4y

2
1y2

(3)

and (y0, y1, y2) can be expressed as 
y0 = x0x2

y1 = x1x2 + x1x3

y2 = x2
2 + x2x3

(4)

up to a nonzero scalar multiple.

Proof.
No generality is lost by picking the plane as v(x3), and the two skew lines b1 and b2 of Fa,b,c,d,f,g

b1 = L

 1 0 0 0

0 0 0 1

 and b2 = L

 0 1 0 0

0 0 −1 1


Let P = P(x0, x1, x2, x3) be a point on Fa,b,c,d,f,g but neither on b1 nor on b2. To find the image Q of
P under Φa,b,c,d,f,g, first we compute the transversal line ℓ of b1 and b2 through P . Then, we find the
unique point Q where ℓ meets v(x3) as follows:

ℓ = L

 x0 0 0 x2 + x3

x0x2 x1x2 + x1x3 x2
2 + x2x3 0


and

Φa,b,c,d,f,g(P(x0, x1, x2, x3)) = P(y0, y1, y2) = P(x0x2, x1x2 + x1x3, x
2
2 + x2x3)

whose coordinates are given in System 4.

Conversely, let Q = P(y0, y1, y2, 0) be a point in the plane v(x3). To find the image Q of P under
Φ−1

a,b,c,d,f,g, first we compute the transversal line ℓ′ of b1 and b2 through Q as follows:

ℓ′ = L

 y0 0 0 y2

y0 y1 y2 0


Then, we find the three intersection points where ℓ′ meets Fa,b,c,d,f,g by substituting the point

P(y0, 0, 0, y2) + t · P(y0, y1, y2, 0)
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of ℓ′ into the equation of Fa,b,c,d,f,g. This gives a polynomial of degree three in t, for some t ∈ F.
Solving this polynomial in t gives 3 solutions as follows:

t1 = 0

t2 = −1

and
t3 = abgκ3y0y2 − cdfκ4y1y2 − bgκ3y

2
0 − fκ1κ4y0y1

gbκ3y2
0 + agκ3y2y0 − cfκ4y2y1 + d012y0y1 − (1 + d)fκ4y2

1

The point P(y0, 0, 0, y2) arising from t1 is the point where ℓ′ meets the line b1. The point P(0,−y1,−y2, y2)
arising from t2 is the point where ℓ′ meets the line b2. Let P = P(x0, x1, x2, x3) be the third point of
intersection of ℓ′ with Fa,b,c,d,f,g. Hence,

x0 = y0 + t3 · y0

x1 = t3 · y1

x2 = t3 · y2

and
x3 = y2

as in System 3. Then,
Φ−1

a,b,c,d,f,g(P(y0, y1, y2)) = P(x0, x1x2, x3)

Remark 5.2. Let Fa,b,c,d,f,g be the smooth cubic surface over the field F as described in Theorem
3.4, and Φa,b,c,d,f,g be the birational map from Fa,b,c,d,f,g to the plane embedded in PG(3,F) as the
hyperplane v(x3), described in Theorem 5.1. Consider the lines a1, a2, and a3 of Fa,b,c,d,f,g. The map
Φa,b,c,d,f,g sends the line a1 to the point P(1, 0, 0), the line a2 to the point P(0, 1, 0), and the line a3

to the point P(0, 0, 1).

Remark 5.3. The exceptional locus of Φa,b,c,d,f,g on the surface consists of 3 lines of Fa,b,c,d,f,g which
are b1, b2, and c12. The exceptional locus on the plane can be found explicitly by applying Φ−1

a,b,c,d,f,g

to P(x0, x1, x2, x3) and then by applying Φa,b,c,d,f,g to P(y0, y1, y2). It consists of one line and two
conics in the plane, which are the line L′ through P(1, 0, 0) and P(0, 1, 0) and two conics

D1 = abgκ3y0y2 − cdfκ4y1y2 − bgκ3y
2
0 − fκ1κ4y0y1

and
D2 = −f(1 + d)κ4y

2
1 + ag(b+ 1)κ3y0y2 − cf(1 + d)κ4y1y2 + (−fκ1κ4 + d012)y0y1

The points of the lines b1 and b2 are mapped to the points of the conics D1 and D2 and the points of
c12 are mapped to the points of L′ under Φa,b,c,d,f,g.

Theorem 5.4. The cubic surface Fa,b,c,d,f,g = v(fa,b,c,d,f,g) as described in Theorem 3.4 is non-singular
over F if and only if the certain four sextic curves in (2,F) never intersect at a point of Fa,b,c,d,f,g.

Proof.
The idea of the proof is similar to the proof of Theorem 9 in [11] but for Fa,b,c,d,f,g. The partial
derivatives of fa,b,c,d,f,g as follows:

∂fa,b,c,d,f,g

∂x0
= 2d002x0x2 + d012x1x2 + d013x1x3 + d022x

2
2 + d023x2x3
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∂fa,b,c,d,f,g

∂x1
= d012x0x2 + d013x0x3 + 2d112x1x2 + 2d113x1x3 + d122x

2
2 + d123x2x3 + d133x

2
3

∂fa,b,c,d,f,g

∂x2
= d002x

2
0 + d012x0x1 + 2d022x0x2 + d023x0x3 + d112x

2
1 + 2d122x1x2 + d123x1x3

and
∂fa,b,c,d,f,g

∂x3
= d013x0x1 + d023x0x2 + d113x

2
1 + d123x1x2 + 2d133x1x3

Let P = P(x0, x1, x2, x3) be a point of Fa,b,c,d,f,g. By substituting the coordinates of the point
P(y0, y1, y2) as given in Theorem 5.1 into the four partial derivatives of fa,b,c,d,f,g, we get four poly-
nomials S1, S2, S3, and S4 of degree 6 in three variables y0, y1, and y2. We did not present these
polynomials explicitly here so that they do not take up much space. The zeros of these polynomi-
als form curves S1,S2,S3, and S4 of degree six in PG(2,F). The point P = P(x0, x1, x2, x3) is a
singular point if and only if it appears on all the partial derivatives of fa,b,c,d,f,g if and only if the
curves S1,S2,S3, and S4 intersect at P . Therefore, the surface is non singular if and only if the curves
S1,S2,S3, and S4 never intersect in a point of Fa,b,c,d,f,g.

6. Conclusion

In this paper, the theorems are proved with a computer-free proof. However, at the beginning of the
work, computers are used to produce data. Then, the data is analyzed to make a conjecture. To
follow this experimental approach, one needs to have good data. To have good data, one must have
the right computer software for computations. We use Orbiter [16], which is an open source. The idea
behind that paper has been found this way. This paper shows the uniqueness of the line intersection
graph of smooth cubic surfaces with 9 lines. The properties of line intersections are defined. A new
form of smooth cubic surfaces Fa,b,c,d,f,g with at least 9 lines is created. The conditions specify when
the surface has 9, when 15, and when 27 lines. This form is exemplified over several fields. Besides,
the rational parametrization of points and lines of Fa,b,c,d,f,g.

The Remarks 3.6 and 3.7 will be considered as a continuation of this work. All possible smooth cubic
surfaces with 9 lines can be created by considering Remark 3.6 and 3.7. Studying the sub-configuration
of Eckardt points of smooth cubic surfaces with 9 lines and investigating which cases are not covered
by the form in this paper are worth reaching that aim. Moreover, the solution can be found for
the other cases to generalize. Regarding Remark 3.7, the points P14, P15, and P18 need to be reset.
Maple can be used to construct another form, covering all possible cases. Once these two remarks are
considered, the classification problem of smooth cubic surfaces with 9 lines over the small finite fields
can be considered. Therefore, the result herein can be verified by the enumerative formula of Das [15]
using the Orbit Stabilizer Theorem. Besides, one may generalize certain cases and find a family over
Q.

Even though it was a popular topic in the 19th century, it still maintains its current and interesting
nature. For recent related studies, see [23,24].
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