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Abstract: The effect of ultrasonic treatment on liquid-state production and the characteristic features of 
synthesized powder were studied in liquid-state conditions. In sonochemical synthesis, the operation 
parameters of mole ratio, reaction temperature, and time were optimized. The synthesis was achieved in 
moderate conditions such as mole ratio of copper: sodium: boron (Cu: Na: B) 1:2:1, 70°C and 2.5 minutes. 
The prepared samples were identified as copper borate (Cu(BO2)2) with the powder diffraction file number 

"00-001-0472". The reaction yields were also increased from 50% to 71.5% with the modification of the 
experimental procedure. The specific FT-IR peaks were observed at 1090, 985, 872, 781 and 731 cm-1 
band values. In the morphological analyses, the agglomerations of multi-angular particles were seen. The 
results showed the affirmative effects of the possible use of the ultrasonic treatment on both the practical 

synthesis and the increase of characteristics. 
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1. INTRODUCTION  
 
Metal borates are defined as compounds including 
metal atoms, boron, oxygen, and hydrogen, if any. 
Commonly, three coordinated trigonal and four 

coordinated tetragonal groups of boron and oxygen 
are bonded to metal atoms. The metal borates can 
be defined according to the metal atom in structure 
(1). As a member of the borate family, copper 
borates occur from the different combinations of 
copper and boron atoms such as CuBO2, Cu(BO2)2, 

Cu3B2O6, and 3CuO·2B2O3·6H2O (2). The fabrication 

of copper borates draws attention because of their 
unique crystallographic structures, and they exhibit 
electrical, magnetic, and optical features (3). 
Among the delafossite group compounds, copper 
borates have the largest band gap (4,5). Copper 
borates are mostly utilized in linear and non-linear 

optical devices, hydrogen generation systems, and 
photocatalytic reactions. Also, this type of borate 
has applications in fire retardants, wood 
preservation, the design of ion exchange materials, 

and lubricant additives (6–9). These characteristics 
make their synthesis important. Different 
procedures were experimented with to synthesize 
the copper borate at different compositions and 
characteristics, such as supercritical, hydrothermal, 

solvothermal, and solid-state (10–12). With the 
optimization of reaction conditions, the modified 
particle fabrication of copper borates could be 
probable (13,14). 
 
Alp et al. indicated the effects of pH on the 

colorimetric features of synthesized powder, and 

the darker samples were prepared in alkaline 
conditions (2). Pisarev et al. characterized the 
piezoelectric form of copper borate in tetragonal 
lattice (6). Kahalili et al. studied the catalytic 
activities of boron-containing copper complexes in 
organic reactions (15). Kipcak et al. studied the 

effect of copper and boron sources on the prepared 
sample using a traditional hydrothermal method 
(16). 
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The studies on copper borate clarified the 

importance of optimizing the parameters to obtain 
the sample at the highest reaction yield and 

crystallinity. As a developing technology, ultrasound 
treatment can be used to increase contact of raw 
material in liquid-state conditions. With the use of 
ultrasound treatment in the synthesis procedure, 

the required reaction time and temperature can be 
decreased, whereas the reaction yield and 
crystallinity of the sample can be increased (17). In 
this paper, it is aimed to investigate the suitability 
of sonochemical synthesis for copper borate 
fabrication without using any modification agent. 
Also, the effect of reaction conditions on the 

characteristics of prepared copper borate was 
studied by using the techniques of X-ray diffraction 
(XRD), Fourier Transform Infrared Spectroscopy 
(FT-IR), and Scanning Electron Microscope (SEM). 
 
2. EXPERIMENTAL SECTION  

 

2.1. Materials  
The copper source used in the experiments was 
copper sulphate pentahydrate (CuSO4·5H2O) 
purchased from Sigma Aldrich at a minimum purity 

of %98. Boron source of boric acid (H3BO3), with a 

minimum purity of %99, was provided by Eti Mine 
Boron Works in the region of Bandirma, Turkey. 

Sodium hydroxide (NaOH) was obtained from Merck 
Chemicals at the minimum purity of %97.   
 
2.2. Synthesis  

In liquid-state conditions, the probable reaction can 
be seen in Eq. 1, and the experimental design is 
presented in Figure 1. The experimental procedure 
could be explained in two steps. In the first step, 
the starting materials were dissolved in distilled 
water and reacted with the effect of ultrasound at 
80°C for 5 minutes. For the sonochemical synthesis, 

an ultrasonic probe of Bandelin was employed. The 
determined molar ratios of CuSO4·5H2O: NaOH: 
H3BO3 were 1:2:0.8, 1:2:1, 1:2:1.33, 1:2:2, and 
1:2:4. In the second step of the synthesis, the effect 
of temperature and time were examined. The 
samples were prepared at the reaction 

temperatures of 70, 80, and 90°C for the reaction 

times of 2.5, 5, 10, and 15 minutes. After the 
reaction was completed, the solutions were washed, 
filtered, and dried in an Ecocell incubator.  
 

 
𝐶𝑢𝑆𝑂4 ∙ 5𝐻2𝑂(𝑎𝑞) + 2𝑁𝑎𝑂𝐻(𝑎𝑞) + 2𝐻3𝐵𝑂3 (𝑎𝑞) + 𝑥𝐻2𝑂(𝑙) → 𝐶𝑢𝐵2𝑂4(𝑎𝑞) + 𝑁𝑎2𝑆𝑂4 (𝑎𝑞) + (9 + 𝑥)𝐻2𝑂(𝑙)  (Eq. 1) 

 

 
Figure 1: The experimental design for the sonochemical synthesis of copper borates 

 
2.3. Characterization of the Synthesized 
Samples 
The prepared powders underwent X-ray diffraction 
analysis for the identification of obtained phases by 

using a PANalytical Xpert Pro X-Ray Diffractometer 
at the operating conditions of 45 kV, 40 mA, and in 
the 2θ range of 10 - 70°. In the characterization of 
functional groups of structure, the samples were 
subjected to Fourier Transform Infrared (FT-IR) 
Spectroscopy by using a Jasco 6000 Fourier 
Transform Infrared Spectrometer. For the 

morphological characterization, the Scanning 
Electron Microscope of Tescan Vega 3 (SEM) was 
used at the operating conditions of 15 kV and 
magnification values of 400 X.  

 
In estimating reaction yields, CuSO4·5H2O was 
identified as the key component in the experiments. 
Typically, the product moles at the last stage, NP, 

were divided by the consumed moles of the key 
reactant, A, to calculate the overall yield, Y. The 
moles of A that were consumed were determined by 
using the reactant's final (NA) and initial (NA0) 
moles. For a batch system, the calculation of 
reaction yield was given in Eq. 2 (18).  

                                              (Eq. 2) 
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3. RESULTS AND DISCUSSION 

 
3.1. XRD Results  

In the XRD analyses, the obtained phases matched 
Cu(BO2)2 with the powder diffraction file number 
"00-001-0472". XRD patterns of the mole ratio 
experiments are shown in Figure 2. XRD patterns 

indicated the lower peaks formation of crystalline 

phase in the mole ratio (Cu: Na:B) of 1:2:0.8. At 

the 1:2:1 ratio, the characteristic peaks were 
observed at the 2θ values of 13.82°, 16.71°, 

22.90°, 28.13°, 33.67°, 35.74° and 52.89°. Counts 
of the obtained peaks were in decline at the higher 
ratios of boric acid, and the sample was identified 
as amorphous at the ratio of 1:2:4.  

 

 
Figure 2: XRD patterns of the mole ratio experiments (a) 1:2:0.8, (b) 1:2:1, (c) 1:2:1.33, (d) 1:2:2, 

and (e) 1:2:4. 

 
At the mole ratio of 1:2:1, the XRD scores of the 
samples at different temperatures and times are 
given in Table 1. According to the XRD results, the 
optimum reaction conditions were determined to be 
70°C and 2.5 minutes. Compared with the 

traditional hydrothermal synthesis procedure, 
ultrasonic treatment in the experimental procedure 
positively affected the formation and decreased the 
reaction time (16). 

 
Table 1: XRD scores of the samples at different temperatures and times. 

 

Temperature (°C) Time (min) XRD Score 

90 

2.5 38 

5.0 * 

10 25 

15 * 

80 

2.5 30 

5.0 13 

10 25 

15 40 

70 

2.5 41 

5.0 27 

10 * 

15 * 
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3.2. The Results of Reaction Yields  

The plots of reaction yield percentages with the 
changing reaction parameters, such as mole ratios, 

reaction time, and temperature, can be seen in 
Figure 3. The effect of the mole ratio of the sources 
can be seen in the reaction yield as well as 
crystallinity (Figure 3 (a)). The calculated reaction 

yield percentages were in the range of 50 – 71.5%. 
Among the different mole ratios, the highest 
reaction yield percentage was obtained at the ratio 
of 1:2:1. In Figure 3 (b), minor increases were 
obtained with increasing temperature and time. The 
highest reaction yield was estimated to be 71.5% at 
the reaction temperature of 90°C and 15 mins. 

3.3. FT-IR results 

The characteristic band values observed in the IR 
range of the prepared sample at 70°C and 2.5 

minutes were presented in Figure 4. According to 
the FT-IR results, the peaks between 1090 and 985 
cm-1 are related to the asymmetrical stretching of 
four-coordinate boron to oxygen bands [υas(B(4)-

O)]. The stretching observed at 872 cm-1 can be 
explained by the symmetrical stretching of three-
coordinate boron to oxygen bands [υs(B(3)-O)]. The 
characteristic band values in the range of 781 and 
731 cm-1 indicated the symmetrical stretching of 
four-coordinate boron to oxygen bands [υs(B(4)-O)].  

 
(a)         (b) 

Figure 3: Reaction yields at (a) different mole ratios (1:2:0.8, 1:2:1, 1:2:1.33, 1:2:2, and 1:2:4) and 
(b) different reaction temperatures and times (70, 80, and 90°C; 2.5, 5, 10, and 15 minutes). 

 

 
Figure 4: FT-IR spectrum of the prepared sample at 70°C and 2.5 minutes. 
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From the spectral results obtained, it is seen that 

the specific boron to oxygen bands were achieved in 
the preparation and that these B to O bands are in 

good agreement with Zheng et al. and Yongzhong 
et al. (14, 19).  
 
3.4. SEM results 

The morphology of the prepared sample at 70°C and 

2.5 minutes was given in Figure 5. With the effect 
of intramolecular hydrogen bonding, the 

agglomeration of sub-micron scale particles could 
be seen in the SEM results. The multi-angular 
particle formation could explain the morphology of 
the sample. 

 
 

 
Figure 5: Morphology of the prepared sample at 70°C and 2.5 minutes. 

 

The obtained morphology was in good agreement 
with the previous studies. Compared with the 
traditional liquid-state synthesis method, 

homogeneity in the surface was observed (16). 
 
4. CONCLUSION 
 
The copper borate (CuBO2)2) was successfully 
synthesized in moderate liquid-state conditions with 
the help of ultrasonic treatment. The reaction 

conditions were optimized for the modified 
experimental procedure, and the possible reaction 
mechanism was estimated. The optimum reaction 
parameters can be summarized as the mole ratio 
(Cu:Na:B) of 1:2:8, the reaction temperature of 
70°C, and a reaction time of 2.5 minutes. The 

experimental results indicated the beneficial effects 

of ultrasonic treatment on the characteristic 
features of the prepared sample. The temperature 
also increased the reaction yield; however, the 
crystallinity decreased. This situation can be 
interpreted as being temperature-sensitive to the 
obtained phases. The reaction time was decreased, 

and the fabricated powder's crystallinity was 
increased with the help of ultrasonic treatment. The 
obtained characteristic band values of FT-IR were in 
good agreement with the previous studies.  
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