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Abstract 

Cylindrical panels are one of the most essential structural members of engineering structures, with mechanical, 
civil, aeronautical, and marine engineering applications. They are subjected to a wide range of vibrational loads. 
This article presents a novel higher-order porosity distribution and a free vibration analysis for porous orthotropic 
cylindrical panels resting on elastic foundations under higher-order shear deformation theory. It is assumed that 
cylindrical panels are composed of porous materials with uniformly and non-uniformly distributed pores. The 
porous panels' material properties are distributed in the thickness direction using specific functions. The equations 
of motion are derived using Hamilton's principle based on trigonometrical shear deformation theory and solved 
by performing the Galerkin solution procedure with simply supported edge conditions. The accuracy of the 
obtained natural frequency equation is confirmed by comparing the results to those of previously published in 
literature. Under comprehensive parametric studies, the influence of porosity coefficient, porosity distribution 
patterns, radius-to-curve length ratio, orthotropy, and stiffness of elastic foundation parameters on the free 
vibration response of porous orthotropic cylindrical panels are discussed in detail.  

Keywords: Porous panel, vibration, shear deformation, elastic foundation, porosity. 

1. Introduction 

The investigation of structural components resting on elastic foundations has attracted much 
attention from researchers because of their application in various engineering fields, such as 
footings in building construction, pavements in roadways, and aeronautical engineering. A way 
to solve the above problems is to incorporate the elastic behavior of foundations in the equations 
of motion of structural components. Winkler and Pasternak's foundations are the two elastic 
foundation approaches considered commonly in the literature. A Winkler foundation called a 
one-parameter elastic foundation is represented as a separate spring. Pasternak added a shear 
layer over the springs to improve the assumption [1].  

The mechanical behavior of structural members is analyzed using classical plate (or shell) 
theory, first-order shear deformation theory, and higher-order shear deformation theory. After 
developing these theories, many parametric studies have been carried out on the vibration 
problems of plates and shells resting on elastic foundations. Zamani et al. [2] analyzed the free 
vibration response of laminated viscoelastic composite plates resting on a Pasternak viscoelastic 
medium. The composite plate comprises a linear viscoelastic matrix and isotropic elastic fibers. 
Duc et al. [3] investigated the nonlinear dynamic and vibration problems of spherical shells 
made of FG material placed on an elastic foundation in the thermal environment. Material 
properties are graded along the thickness using a sigmoid law. Zenkour and Radwan [4] studied 
the free vibration of sandwich plates resting on Pasternak foundations based on hyperbolic shear 
deformation theory. Using Reddy's third-order shear deformation theory, Quan and Duc [5] 
presented the nonlinear vibration behavior of imperfect FG double-curved shells resting on an 
elastic foundation. They modeled the temperature-dependent material properties through the 
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thickness via a power-law rule. Park and Kim [6] analyzed the natural frequencies of FG 
cylindrical fluid-filled shells. They assumed the shells partially rested on a Pasternak elastic 
foundation and material properties vary along the thickness. Ninh and Bich [7] studied the 
nonlinear vibration characteristics of toroidal shell segments with a ceramic-FG-metal layer 
surrounded by an elastic foundation based on classical shell theory. Jung et al. [8] proposed a 
refined-higher-order shear deformation theory for analyzing the free and forced vibration of FG 
plates on elastic foundations. Depending on two power-law distributions, they graded the 
material properties in the thickness direction. Kim [9] investigated the free vibration behavior 
of FG cylindrical shell partially rested on elastic foundations with an oblique edge using first-
order shear deformation theory. The material properties are modeled across the thickness via a 
four-parameter power-law. Asanjarani et al. [10] presented the influence of geometric 
parameters and elastic foundations on the free vibration of two-dimensional FG truncated 
conical shells based on the first-order shear deformation theory. The material properties are 
graded in the thickness and length directions using a power-law distribution. Ahmed [11] 
analyzed the free vibration characteristics of a non-homogeneous orthotropic elliptical 
cylindrical shell resting on a non-uniform Winkler foundation. Bich et al. [12] studied the 
nonlinear dynamic and vibration responses of imperfect eccentrically stiffened FG double-
curved shells placed on elastic foundation using first-order shear deformation theory. Thai et 
al. [13] proposed a simple refined shear deformation theory for analyzing the bending, buckling, 
and vibration behaviors of thick plates resting on the Pasternak foundation. Sobhy [14] focused 
on the buckling and vibration of exponentially graded sandwich plates on an elastic foundation. 
The sandwich plate is modeled as a fully ceramic core and exponentially graded face sheets.  

Porous materials play a significant role in many fields, such as energy management, vibration 
control, thermal insulation, and sound absorption. Porous materials such as porous metals, 
ceramics, and polymer foams favor various engineering applications Kamranfard et al. [15]. 
These superior properties of porous materials have attracted the attention of researchers. Static 
and dynamic behaviors of structural components made of porous materials have been studied 
in recent years. Turan [16] studied the free vibration response of porous orthotropic laminated 
plates with trigonometric porosity distribution via higher-order shear deformation theory.  
Wang [17] analyzed the electro-mechanical vibration of FG porous plates with porosity 
distribution in the thickness direction. Porous FG material properties are graded using a 
modified power-law rule containing the porosity effects. Rezaei and Saidi [18] presented an 
exact analytical approach based on the first-order shear deformation theory for free vibration 
analysis of fluid-saturated porous annular sector plates. They graded the material properties in 
the thickness direction using a cosine function. Kamranfard et al. [15] investigated the effects 
of porosity and geometrical parameters on the critical buckling loads and natural frequencies of 
moderately thick annular plates. Based on the refined shear deformation theory, Barati and 
Zenkour [19] studied the electro-thermoelastic vibration of FG piezoelectric porous plates. The 
material properties are varied along the thickness direction depending on the modified power-
law rule. Using first-order shear deformation theory, Barati [20] analyzed the natural 
frequencies of FG porous nanoshells with porosities evenly and unevenly distributed in the 
thickness direction. Wang and Wu [21] presented the free vibration response of FG porous 
cylindrical shell under sinusoidal shear deformation theory. They considered two types of 
graded porosity distribution patterns across thickness. Shojaeefard et al. [22] analyzed the 
influence of porosity and gradation index on the free vibration and thermal buckling behavior 
of micro temperature-dependent FG porous plates based on the first-order shear deformation 
theory. Akbaş [23] investigated FG porous plates' static and vibration analysis under first-order 
shear deformation theory. Porosity-dependent material properties are graded in the thickness 
direction via a power-law model with porosities. Rezaei and Saidi [24] discussed the porosity 
effect on the thick plates' free vibration response using Reddy's third-order shear deformation 
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theory. Material properties of porous plates are determined in the thickness direction using a 
cosine function.  

Furthermore, the literature has reported static and dynamic analysis of porous structural 
components on elastic foundations in recent years. Structural members on the elastic foundation 
are modeled depending on the Winkler and Pasternak interactions. Demir and Turan [25] 
investigated the critical buckling load of porous orthotropic cylindrical panels resting on the 
Winkler foundation. The porosity distribution is modeled in the thickness direction using a 
cosine function. Kumar et al. [26] analyzed the effect of porosity parameters, porosity 
distribution, and elastic foundation parameters on the natural frequencies of FG porous plates 
with variable thickness based on first-order shear deformation theory. The porosity-dependent 
material properties are graded using power-law, exponential-law, and sigmoid-law rules. Tran 
et al. [27] analyzed the static and free vibration behavior of FG porous nanoshell resting on an 
elastic foundation under extended four-unknown higher-order shear deformation theory. They 
graded the porous FG material using uneven porosity and logarithmic-uneven porosity 
distributions. Balak et al. [28] studied the free vibration response of an elliptical sandwich 
microplate made of a saturated porous core and two piezoelectric face sheets. The microplate 
is on the elastic foundation, and governing equations of the problem are derived using first-
order shear deformation theory. Pham et al. [29] focused on the static bending and hygro-
thermo-mechanical vibration behavior of porous FG sandwich double-curved shells on the 
elastic foundation via the four-unknown shear deformation theory. The shells comprised a full 
ceramic core and two porous face layers with uneven porosity distribution. Shahverdi and Barati 
[30] proposed a general nonlocal elasticity model to analyze the vibration of porous nanoplates 
resting on the elastic foundation. Material properties are modeled via a modified power-law and 
Mori-Tanaka models containing the porosity effects.  

By reviewing the above literature, the free vibration problem of porous orthotropic cylindrical 
panels resting on elastic foundations has not yet been investigated. Therefore, it is of great 
significance to fill the gaps in the study. Based on the trigonometrical shear deformation theory, 
this paper focuses on the natural frequencies of porous orthotropic cylindrical panels resting on 
the Pasternak foundation. Porous material properties such as Young's modulus, shear modulus, 
and mass density vary across the thickness via trigonometric functions. The governing 
equations of the problem are obtained using higher-order shear deformation theory and solved 
via the Galerkin solution procedure. The numerical results calculated by the present frequency 
equation indicate good convergence and accuracy by comparing with the literature results. The 
effect of porosity coefficients, porosity distribution patterns, geometrical parameters, 
orthotropy, and elastic foundation parameters on the free vibration response of porous 
orthotropic cylindrical panels are discussed in detail. 

2. Theoretical Formulations 

Fig. 1 shows the configuration of the porous orthotropic cylindrical panel with geometrical 
parameters: 𝑅 is the curvature radius; 𝑠, 𝑎 are the length of the curve and length in the 𝑦 
direction, respectively; ℎ is the thickness. The cylindrical panel resting on the elastic foundation 
(EF) consists of two parameters (𝑘', 𝑘(). In which 𝑘' is Pasternak stiffness, and 𝑘( is Winkler 
stiffness. 
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Fig. 1. Configuration of porous cylindrical panel resting on an EF 

2.1. Determination of the Material Properties of the Porous Panel 

This paper focuses on a non-uniform symmetric, a non-uniform asymmetric, and a uniform 
porosity distribution. The non-uniform symmetric porosity distribution is denoted by ND1, the 
non-uniform symmetric porosity distribution is abbreviated ND2, and UD indicates the uniform 
porosity distribution. The porosity-dependent material properties of the porous panel, including 
Young’s modulus 𝐸, shear modulus 𝐺, and mass density 𝜌 are varied continuously from the top 
surface (𝑧 = −0.5ℎ) to the bottom (𝑧 = +0.5ℎ) surface. The corresponding variations of 
material properties are given by Eqs (1)-(3) for the NDs and UD. 

ND1: 

3𝐸4, 𝐺6, 𝜌7 = 3𝐸84, 𝐺86, 𝜌87(1 − [𝜂8, 𝜂8, 𝜂8∗])
3.45
𝜋 𝑠𝑖𝑛E F

𝜋𝑧
ℎ G , 𝑖 = 1,2; 𝑗 = 12, 13, 23 (1a) 

ND2: 

3𝐸4, 𝐺6, 𝜌7 = 3𝐸84, 𝐺86, 𝜌87(1 − [𝜂8, 𝜂8, 𝜂8∗])
3.45
𝜋 𝑠𝑖𝑛 F

𝜋𝑧
ℎ G , 𝑖 = 1,2; 𝑗 = 12, 13, 23 (1b) 

UD: 

3𝐸4, 𝐺6, 𝜌7 = 3𝐸84, 𝐺86, 𝜌87[𝜂̂8, 𝜂̂8, 𝜂̂8∗], 𝑖 = 1,2; 𝑗 = 12, 13, 23 (1c) 

where 0 ≤ η8, 𝜂̂8, 𝜂8∗, 𝜂̂8∗ < 1 is the porosity coefficients and E8, G8 and ρ8 are corresponding 
values of the material with no porosity (𝜂8 = 0). The porous panel's Poisson ratio (𝜈SE) is 
assumed to be constant along the panel thickness. Fig. 2 presents the difference between the 
non-uniform symmetric porosity distribution (ND1) with the non-uniform asymmetric 
distribution (ND2).  

The typical mechanical properties of porous material in terms of mass density can be given as 
follows [31] 

𝐸TUV/𝐸T4X = (𝜌TUV/𝜌T4X)E (2) 

According to η8 = 1 − 𝐸4/𝐸84 and 𝜂8∗ = 1 − 𝜌/𝜌8, the following relation can be obtained using 
Eq. (2):  

𝜂8∗ = 1 − Y1 − 𝜂8, 𝜂̂8∗ = Y𝜂̂8 (3a) 
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Without loss of generality, the 𝑈𝐷 and 𝑁𝐷S porous panels’ masses are set to be equal, and the 
relationship between  𝜂̂8 and 𝜂8 can be estimated using the following equation: 

𝜂̂8 = −2.7379𝜂8_ + 6.9529𝜂8a − 7.0465𝜂8b + 3.5157𝜂8c − 0.9543𝜂8E − 0.4356𝜂8
+ 0.9949 (3b) 

 
(a) 
 

 
(b) 

Fig. 2. (a) Three types of the porosity distribution patterns of porous material, (b) variation of 
Young’s modulus (ES) of the non-uniform symmetric and non-uniform asymmetric porosity 

distributions along the thickness direction 

2.2. Kinematic Relations 

This section contains the derivation of the cylindrical panel's kinematic relations. A cylindrical 
panel's displacement fields can be expressed based on the higher-order shear deformable plate 
theory as follows: 

𝑢V(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢S(𝑥, 𝑦, 𝑡) − 𝑧𝑢c,V + 𝜙(𝑧)𝛤V(𝑥, 𝑦, 𝑡)
𝑢i(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢E(𝑥, 𝑦, 𝑡) − 𝑧𝑢c,i + 𝜙(𝑧)𝛤i(𝑥, 𝑦, 𝑡)
𝑢j(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢c(𝑥, 𝑦, 𝑡)

 (4) 

where uS and uE are longitudinal and transverse displacements of the mid-surface, respectively; 
𝑢c is the deflection through the 𝑧-axis. Γm and Γn are the rotations of the cross-section about the 
y- and x-axis, respectively. ϕ(z) represents the shape function of shear deformation theory. The 
following equation defines the nonzero strains of the panel: 
 

𝜀VV = 𝜀VV8 − 𝑧𝜀VVS + 𝜙(𝑧)𝜀VVE , 𝜀ii = 𝜀ii8 − 𝑧𝜀iiS + 𝜙(𝑧)𝜀iiE  (5) 
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𝛾Vi = 𝛾Vi8 − 𝑧𝛾ViS + 𝜙(𝑧)𝛾ViE , 𝛾Vj = 𝜑(𝑧)𝛤V(𝑥, 𝑦, 𝑡), 𝛾ij = 𝜑(𝑧)𝛤i(𝑥, 𝑦, 𝑡)	 

where 

𝜀VV8 = 𝑢S,V − 𝑢c𝑅w, 𝜀ii8 = 𝑢E,i, 𝛾Vi8 = 𝑢S,i + 𝑢E,V
𝜀VVS = 𝑢c,VV, 𝜀iiS = 𝑢c,ii, 𝜀ViS = 2𝑢c,Vi	
𝜀VVE = 𝛤V,V, 𝜀iiE = 𝛤i,i, 𝜀ViE = 𝛤V,i + 𝛤i,V
𝜑(𝑧) = 𝜙,j(𝑧), 𝑅w = 1/𝑅	

 (6) 

In this paper, the following shape function is considered by Ebrahimi et al. [32]: 

𝜙(𝑧) =
ℎ𝑒j

ℎE + 𝜋E
y𝜋𝑠𝑖𝑛 F

𝜋𝑧
ℎ G

+ ℎ𝑐𝑜𝑠 F
𝜋𝑧
ℎ G

| −
ℎE

ℎE + 𝜋E
 (7) 

2.3. Equations of Motion 

Here, Hamilton’s principle can be performed to reach the Euler–Lagrange equations of a porous 
orthotropic cylindrical panel. This principle can be defined in the following form: 

}3𝛿𝑢' + 𝛿𝑢� − 𝛿𝑢�7𝑑𝑡

��

��

= 0 (8) 

where 𝛿𝑢', 𝛿𝑢� and 𝛿𝑢� are strain energy, elastic foundation’s potential energy, and kinetic 
energy, respectively. The variation of strain energy can be expressed as 

𝛿𝑢' = }3𝜎VV𝛿𝜀VV + 𝜎ii𝛿𝜀ii + 𝜏Vi𝛿𝛾Vi + 𝜏Vj𝛿𝛾Vj + 𝜏ij𝛿𝛾ij7𝑑𝑉
8

�

= }}y
𝑁VV𝛿𝜀VV8 + 𝑁ii𝛿𝜀ii8 + 𝑁Vi𝛿𝛾Vi8 + 𝑀VV𝛿𝜀VVS + 𝑀ii𝛿𝜀iiS + 𝑀Vi𝛿𝛾ViS

+𝑃VV𝛿𝜀VVE + 𝑃ii𝛿𝜀iiE + 𝑃Vi𝛿𝛾ViE + 𝑁Vj𝜀VVE + 𝑁ij𝜀iiE
|

�

8

𝑑𝑥𝑑𝑦
U

8

 (9) 

 
In Eq. (9), the axial forces, bending moments, higher-order moments, and shear forces can be 
defined as: 

(𝑁4,𝑀4, 𝑃4) = } (1, 𝑧, 𝜙(𝑧))𝜎4

8.a�

�8.a�

, 𝑖 = 𝑥𝑥, 𝑦𝑦,	 

3𝑁6,𝑀6, 𝑃67 = } (1, 𝑧, 𝜙(𝑧))𝜏6

8.a�

�8.a�

, 𝑗 = 𝑥𝑦,	 

(10) 
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𝑁� = } 𝜑(𝑧)𝜏�

8.a�

�8.a�

, 𝑘 = 𝑥𝑧, 𝑦𝑧 

The variation of the elastic foundation’s potential energy can be determined as: 

𝛿𝑢� = }}F𝑘(𝑢c − 𝑘'3𝑢c,VV + 𝑢c,ii7G 𝛿𝑢c

�

8

𝑑𝑥𝑑𝑦
U

8

 (11) 

The first variation of kinetic energy can be expressed as: 

𝛿𝑢� = }𝜌3𝑢̇V𝛿𝑢̇V + 𝑢̇i𝛿𝑢̇i + 𝑢̇j𝛿𝑢̇j7
�

𝑑𝑉

= 𝐼8 }}(𝑢̇S𝛿𝑢̇S + 𝑢̇E𝛿𝑢̇E + 𝑢̇c𝛿𝑢̇c)𝑑𝑥𝑑𝑦
�

8

U

8

+ 𝐼S }}3𝑢̇c,V𝛿𝑢̇c,V + 𝑢̇c,i𝛿𝑢̇c,i7𝑑𝑥𝑑𝑦
�

8

U

8

+𝐼E }}3𝛤̇V,V𝛿𝛤̇V,V + 𝛤̇i,i𝛿𝛤̇i,i7𝑑𝑥𝑑𝑦
�

8

U

8

 (12) 

In all the equations, the dot-superscript denotes the differentiation with respect to time, and the 
mass inertias used in the above equations are given in the following form: 

(𝐼8, 𝐼S, 𝐼E) = } 𝜌(1, 𝑧E, [𝜙(𝑧)]E)𝑑𝑧
8.a�

�8.a�

 (13) 

By substituting Eqs. (9), (11), and (12) into Eq. (8) and setting the coefficients of 𝛿𝑢S, 𝛿𝑢E, 
𝛿𝑢c, 𝛿ΓV, and 𝛿Γi to zero, the Euler–Lagrange equations of porous orthotropic cylindrical 
panels can be obtained as: 

𝑁VV,V + 𝑁Vi,i = 𝐼8𝑢̈S (14a) 

𝑁Vi,V + 𝑁ii,i = 𝐼8𝑢̈E (14b) 

𝑅w𝑁VV + 𝑀VV,VV + 2𝑀Vi,Vi + 𝑀ii,ii − 𝑘(𝑢c + 𝑘'3𝑢c,VV + 𝑢c,ii7

= 𝐼8𝑢̈c − 𝐼S3𝑢̈c,VV + 𝑢̈c,ii7 (14c) 

𝑃VV,V + 𝑃Vi,i − 𝑁Vj = 𝐼2𝛤̈V (14d) 

𝑃Vi,V + 𝑃ii,i − 𝑁ij = 𝐼2𝛤̈i (14e) 

The inertial forces 𝐼8𝑢̈S and 𝐼8𝑢̈Eare assumed to be negligible in light of the assumption of 
(𝑢S, 𝑢E) ≪ 𝑢c. By deriving Eqs. (14a) and (14d) with respect to 𝑥, and Eqs. (14b) and (14e) 
with respect to 𝑦 gives us: 
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𝑁VV,VV + 𝑁Vi,Vi = 0 (15a) 

𝑁Vi,Vi + 𝑁ii,ii = 0 (15b) 

𝑅w𝑁VV + 𝑀VV,VV + 2𝑀Vi,Vi + 𝑀ii,ii − 𝑘(𝑢c + 𝑘'3𝑢c,VV + 𝑢c,ii7

= 𝐼8𝑢̈c − 𝐼S3𝑢̈c,VV + 𝑢̈c,ii7 (15c) 

𝑃VV,VV + 𝑃Vi,Vi − 𝑁Vj,V = 𝐼E𝛤̈V,V (15d) 

𝑃Vi,Vi + 𝑃ii,ii − 𝑁ij,i = 𝐼E𝛤̈i,i (15e) 

2.4. Stress-Strain Relations 

The stress-strain relations of a porous orthotropic cylindrical panel can be written as the 
following equation using Hooke’s law.  

𝜎VV = 𝑒SS𝜀VV + 𝑒SE𝜀ii;	𝜎ii = 𝑒SE𝜀VV + 𝑒EE𝜀ii;	𝜏ij = 𝑒bb𝛾ij;	𝜏Vj = 𝑒aa𝛾Vj; 

𝜏Vi = 𝑒__𝛾Vi (16) 

where 

𝑒SS =
𝐸S

1 − 𝜈SE𝜈ES
, 𝑒SE =

𝜈ES𝐸S
1 − 𝜈SE𝜈ES

, 𝑒EE =
𝐸E

1 − 𝜈SE𝜈ES
, 𝑒bb = 𝐺Ec, 𝑒aa = 𝐺Sc, 

𝑒__ = 𝐺SE	 
(17) 

Substituting Eqs. (5), (6), and (16) into Eq. (10) gives the following equation:  
𝑁VV = 𝐴SS𝑢S,V + 𝐴SE𝑢E,i − 𝐵SS𝑢c,VV − 𝐵SE𝑢c,ii +	𝐶SS𝛤V,V + 𝐶SE𝛤i,i
𝑁ii = 𝐴SE𝑢S,V + 𝐴EE𝑢E,i − 𝐵SE𝑢c,VV − 𝐵EE𝑢c,ii +	𝐶SE𝛤V,V + 𝐶EE𝛤i,i
𝑁Vi = 𝐴__𝑢S,i + 𝐴__𝑢E,V − 2𝐵__𝑢c,Vi +	𝐶__𝛤V,i + 𝐶__𝛤i,V

 (18a) 

𝑀VV = 𝐵SS𝑢S,V + 𝐵SE𝑢E,i − 𝐷SS𝑢c,VV − 𝐷SE𝑢c,ii +	𝐸SS𝛤V,V + 𝐸SE𝛤i,i
𝑀ii = 𝐵SE𝑢S,V + 𝐵EE𝑢E,i − 𝐷SE𝑢c,VV − 𝐷EE𝑢c,ii +	𝐸SE𝛤V,V + 𝐸EE𝛤i,i
𝑀Vi = 𝐵__𝑢S,i + 𝐵__𝑢E,V − 2𝐷__𝑢c,Vi +	𝐸__𝛤V,i + 𝐸__𝛤i,V

 (18b) 

𝑃VV = 𝐶SS𝑢S,V + 𝐶SE𝑢E,i − 𝐸SS𝑢c,VV − 𝐸SE𝑢c,ii +	𝐹SS𝛤V,V + 𝐹SE𝛤i,i
𝑃ii = 𝐶SE𝑢S,V + 𝐶EE𝑢E,i − 𝐸SE𝑢c,VV − 𝐸EE𝑢c,ii +	𝐹SE𝛤V,V + 𝐹EE𝛤i,i
𝑃Vi = 𝐶__𝑢S,i + 𝐶__𝑢E,V − 2𝐸__𝑢c,Vi +	𝐹__𝛤V,i + 𝐹__𝛤i,V

 (18c) 

𝑁Vj = 	𝐷aa𝛤V
𝑁ij = 	𝐷bb𝛤i

 (18d) 

in which 

[𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸4, 𝐹4] = } [1, 𝑧, 𝜙(𝑧), 𝑧E, 𝑧𝜙(𝑧), [𝜙(𝑧)]E]𝑒4𝑑𝑧
8.a�

�8.a�

, 𝑖 = 11,12,22,66 (19) 
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�𝐷6� = } [𝜑(𝑧)]E𝑒6𝑑𝑧
8.a�

�8.a�

, 𝑗 = 44,55 

2.5. Governing Equations 

The inertial forces caused by ΓV and Γi rotations in Eqs. (15d) and (15e) are minimal, so they 
are negligible. Substituting Eq. (18) into Eq. (15) gives the following partial differential 
governing equations:  

𝐴SS𝑢S,VVV + 𝐴__𝑢S,Vii + (𝐴SE + 𝐴__)𝑢E,VVi − 𝐵SS𝑢c,VVVV − (𝐵SE + 2𝐵__)𝑢c,VVii
+ 𝐶SS𝛤V,VVV + 𝐶__𝛤V,Vii + (𝐶SE + 𝐶__)𝛤i,VVi = 0 

(20a) 

(𝐴SE + 𝐴__)𝑢S,Vii + 𝐴EE𝑢E,iii + 𝐴__𝑢E,VVi − (𝐵SE + 2𝐵__)𝑢c,VVii − 𝐵EE𝑢c,iiii
+ (𝐶SE + 𝐶__)𝛤V,Vii + 𝐶EE𝛤i,iii + 𝐶__𝛤i,VVi = 0 (20b) 

𝐵SS𝑢S,VVV + (𝐵SE + 2𝐵__)3𝑢S,Vii + 𝑢E,VVi7 + 𝐵EE𝑢E,iii − 𝐷SS𝑢c,VVVV
− 2(𝐷SE + 2𝐷__)𝑢c,VVii − 𝐷EE𝑢c,iiii + 𝐸SS𝛤V,VVV

+ (𝐸SE + 2𝐸__)3𝛤V,Vii + 𝛤i,VVi7 + 𝐸EE𝛤i,iii

+ 𝑅w3𝐴SS𝑢S,V + 𝐴SE𝑢E,i − 𝐵SS𝑢c,VV − 𝐵SE𝑢c,ii + 𝐶SS𝛤V,V + 𝐶SE𝛤i,i7

− 𝑘(𝑢c + 𝑘'3𝑢c,VV + 𝑢c,ii7 − 𝐼8𝑢̈c + 𝐼S3𝑢̈c,VV + 𝑢̈c,ii7 = 0 

(20c) 

𝐶SS𝑢S,VVV + 𝐶__𝑢S,Vii + (𝐶SE + 𝐶__)𝑢E,VVi − 𝐸SS𝑢c,VVVV − (𝐸SE + 2𝐸__)𝑢c,VVii
+ 𝐹SS𝛤V,VVV + 𝐹__𝛤V,Vii + (𝐹SE + 𝐹__)𝛤i,VVi − 𝐷aa𝛤V,V = 0 (20d) 

(𝐶SE + 𝐶__)𝑢S,Vii + 𝐶EE𝑢E,iii + 𝐶__𝑢E,VVi − (𝐸SE + 2𝐸__)𝑢c,VVii − 𝐸EE𝑢c,iiii
+ (𝐹SE + 𝐹__)𝛤V,Vii + 𝐹EE𝛤i,iii + 𝐹__𝛤i,VVi − 𝐷bb𝛤i,i = 0 (20e) 

3. Solution Technique 

Here, an analytical solution of the governing equations for free vibration of a porous orthotropic 
cylindrical panel with simply supported edges is presented. The boundary conditions for simply 
supported edges are given as follows: 

𝑢c = 𝑀VV = 𝛤i = 0		𝑎𝑡		𝑥 = 0, 𝑎
𝑢c = 𝑀ii = 𝛤V = 0		𝑎𝑡		𝑦 = 0, 𝑏 (21) 

The displacement fields are presented in the following form to satisfy the above boundary 
conditions: 

𝑢S = 𝑢SS𝑐𝑜 𝑠(𝜆S𝑥) 𝑠𝑖 𝑛(𝜆E𝑦) 𝑒4��, 𝑢E = 𝑢EE𝑠𝑖𝑛	(𝜆S𝑥)𝑐𝑜𝑠	(𝜆E𝑦)𝑒4��	 

𝑢c = 𝑢cc𝑠𝑖 𝑛(𝜆S𝑥) 𝑠𝑖 𝑛(𝜆E𝑦) 𝑒4��, 𝛤V = 𝑢bb𝑐𝑜𝑠	(𝜆S𝑥)𝑠𝑖𝑛	(𝜆E𝑦)𝑒4�� 
(22) 
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𝛤i = 𝑢aa𝑠𝑖𝑛	(𝜆S𝑥)𝑐𝑜𝑠	(𝜆E𝑦)𝑒4�� 

where (uSS, uEE, ucc, ubb, uaa) are the unknown coefficients (𝜆S = 𝑚𝜋/𝑠, 𝜆E = 𝑛𝜋/𝑎). 
Substituting Eq. (22) into Eq. (20) and then utilizing the Galerkin solution procedure leads to:  

𝐾SS𝑢SS + 𝐾SE𝑢EE + 𝐾Sc𝑢cc + 𝐾Sb𝑢bb + 𝐾Sa𝑢aa = 0
𝐾ES𝑢SS + 𝐾EE𝑢EE + 𝐾Ec𝑢cc + 𝐾Eb𝑢bb + 𝐾Ea𝑢aa = 0
𝐾cS𝑢SS + 𝐾cE𝑢EE + 𝐾cc𝑢cc + 𝐾cb𝑢bb + 𝐾ca𝑢aa − 𝐾�cc𝜔E𝑢cc = 0
𝐾bS𝑢SS + 𝐾bE𝑢EE + 𝐾bc𝑢cc + 𝐾bb𝑢bb + 𝐾ba𝑢aa = 0
𝐾aS𝑢SS + 𝐾aE𝑢EE + 𝐾ac𝑢cc + 𝐾ab𝑢bb + 𝐾aa𝑢aa = 0

 (23) 

where 
𝐾SS =

𝑠𝑎
4
(𝜆Sc𝐴SS + 𝜆S𝜆EE𝐴__);	𝐾SE =

𝑠𝑎
4 𝜆S

E𝜆E(𝐴SE + 𝐴__); 

𝐾Sc = −
𝑠𝑎
4 3𝜆S

b𝐵SS + 𝜆SE𝜆EE(𝐵SE + 2𝐵__)7;	𝐾Sb =
𝑠𝑎
4
(𝜆Sc𝐶SS + 𝜆S𝜆EE𝐶__);	 

𝐾Sa =
𝑠𝑎
4 𝜆S

E𝜆E(𝐶SE + 𝐶__);	𝐾ES =
𝑠𝑎
4 𝜆S𝜆E

E(𝐴SE + 𝐴__); 

	𝐾EE =
𝑠𝑎
4
(𝜆SE𝜆E𝐴__ + 𝜆Ec𝐴EE);	𝐾Ec = −

𝑠𝑎
4
(𝜆SE𝜆EE(𝐵SE + 2𝐵__) + 𝜆Eb𝐵EE); 

	𝐾Eb =
𝑠𝑎
4 𝜆S𝜆E

E(𝐶SE + 𝐶__);	𝐾Ea =
𝑠𝑎
4
(𝜆SE𝜆E𝐶__ + 𝜆Ec𝐶EE); 

	𝐾cS =
𝑠𝑎
4 3𝜆S

c𝐵SS + 𝜆S𝜆EE(𝐵SE + 2𝐵__) − 𝜆S𝐴SS𝑅w7;	 

𝐾cE =
𝑠𝑎
4 3𝜆S

E𝜆E(𝐵SE + 2𝐵__) + 𝜆Ec𝐵EE − 𝜆E𝐴SE𝑅w7; 

	𝐾cc = −
𝑠𝑎
4 F𝜆S

b𝐷SS + 2𝜆SE𝜆EE(𝐷SE + 2𝐷__) + 𝜆Eb𝐷EE − (𝜆SE𝐵SS + 𝜆EE𝐵SE)𝑅w + 𝑘(

+ 𝑘'(𝜆SE + 𝜆EE)G ;	𝐾cb =
𝑠𝑎
4 3𝜆S

c𝐸SS + 𝜆S𝜆EE(𝐸SE + 2𝐸__) − 𝜆S𝐶SS𝑅w7; 

	𝐾ca =
𝑠𝑎
4 3𝜆S

E𝜆E(𝐸SE + 2𝐸__) + 𝜆Ec𝐸EE − 𝜆E𝐶SE𝑅w7; 

	𝐾�cc = −
𝑠𝑎
4 3𝐼8 + 𝐼S

(𝜆SE + 𝜆EE)7;	𝐾bS =
𝑠𝑎
4
(𝜆Sc𝐶SS + 𝜆S𝜆EE𝐶__);	 

𝐾bE =
𝑠𝑎
4 𝜆S

E𝜆E(𝐶SE + 𝐶__);	𝐾bc = −
𝑠𝑎
4 3𝜆S

b𝐸SS + 𝜆SE𝜆EE(𝐸SE + 2𝐸__)7; 

𝐾bb =
𝑠𝑎
4
(𝜆Sc𝐹SS + 𝜆S𝜆EE𝐹__ + 𝜆S𝐷aa);	𝐾ba =

𝑠𝑎
4 𝜆S

E𝜆E(𝐹SE + 𝐹__); 

	𝐾aS =
𝑠𝑎
4 𝜆S𝜆E

E(𝐶SE + 𝐶__);	𝐾aE =
𝑠𝑎
4
(𝜆SE𝜆E𝐶__ + 𝜆Ec𝐶EE); 

	𝐾ac = −
𝑠𝑎
4
(𝜆SE𝜆EE(𝐸SE + 2𝐸__) + 𝜆Eb𝐸EE);	𝐾ab =

𝑠𝑎
4 𝜆S𝜆E

E(𝐹SE + 𝐹__); 

	𝐾aa =
𝑠𝑎
4
(𝜆SE𝜆E𝐹__ + 𝜆Ec𝐹EE + 𝜆E𝐷bb)	 

(24) 

By obtaining the determinant of the coefficient matrix of the following equation and setting this 
multinomial to zero, we can obtain Eq. (26): 
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⎣
⎢
⎢
⎢
⎡
𝐾SS 𝐾SE 𝐾Sc 𝐾Sb 𝐾Sa
𝐾ES 𝐾EE 𝐾Ec 𝐾Eb 𝐾Ea
𝐾cS 𝐾cE 𝐾cc − 𝜔E𝐾�cc 𝐾cb 𝐾ca
𝐾bS 𝐾bE 𝐾bc 𝐾bb 𝐾ba
𝐾aS 𝐾aE 𝐾ac 𝐾ab 𝐾aa⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑢SS
𝑢EE
𝑢cc
𝑢bb
𝑢aa⎭

⎪
⎬

⎪
⎫

= 0 (25) 

𝐾cS𝛼cS + 𝐾cE𝛼cE + 3𝐾cc − 𝜔E𝐾�cc7𝛼cc + 𝐾cb𝛼cb + 𝐾ca𝛼ca = 0 (26) 

where 𝛼c­(𝑗 = 1,2, . . ,5) are cofactors of the matrix in Eq. (25) and are presented in Appendix 
A. The porous orthotropic cylindrical panel’s natural frequency can be obtained as follows: 

𝜔 = ®(𝐾cS𝛼cS + 𝐾cE𝛼cE + 𝐾cc𝛼cc + 𝐾cb𝛼cb + 𝐾ca𝛼ca)/𝐾�cc𝛼cc (27) 

4. Numerical Results and Discussions 

In this section, the results are validated by comparing the obtained results with those of isotropic 
plates resting on the Pasternak foundation reported by Akhavan et al. [33] in Table 1 and those 
of porous isotropic cylindrical panel presented by Talebizadehsardari et al. [34] in Table 2. 
Then, the effect of porosity coefficients, porosity distribution patterns, orthotropy, geometrical 
parameters, and EF stiffness on the natural frequencies of porous orthotropic cylindrical panels 
resting on EF will be investigated. The non-dimensional parameters can be given as the relation 
in Eq. (28): 

𝜔̄ = 𝜔𝑠EY𝜌8ℎ/𝐷8;	𝐷8 = 𝐸Sℎc/12(1 − 𝜈SE𝜈ES);	𝑘w( = 𝑘(𝑠b/𝐷8;	𝑘w' = 𝑘'𝑠E/𝐷8 (28) 

By studying Tables 1-2, it is found that the non-dimensional natural frequencies obtained in the 
present study are in good agreement with the results reported in the literature and thus validate 
the proposed solution method. 
 

Table 1. The fundamental frequency 𝜔̄ for isotropic (𝜈SE = 𝜈ES = 0.3) square plate (𝑅w → 0). 
 𝑘w(, 𝑘w' 
 Akhavan et al. [33] Present 

𝑠/ℎ (0,0) (10E, 10S) (10c, 10E) (0,0) (10E, 10S) (10c, 10E) 
5 17.5055 24.3074 56.0359 17.1126 23.9139 55.5262 
10 18.0840 25.6368 57.3969 19.0415 25.5961 57.3444 
1000 19.7391 26.2112 57.9961 19.7426 26.2138 57.9973 

 
Table 2. The fundamental natural frequency 𝜔± = (𝜔𝑎E ℎ⁄ )Y𝜌/𝐸 for the UD cylindrical panels (𝐸 =
70	𝐺𝑃𝑎, 𝜈 = 0.3, 𝜌 = 2702𝑘𝑔 𝑚c⁄ , ℎ = 0.2	𝑚, 𝑅 = 1.93	𝑚, 𝑠 = 1.011	𝑚, 𝑎 = 1	𝑚). 
𝜂8 Talebizadehsardari et al. [34] Present 
0 5.3650 5.3598 
0.2 5.1815 5.2104 
0.4 4.9651 5.0314 

4.1. Natural Vibration Analysis 
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The following study analyzes the natural vibration of the porous orthotropic cylindrical panel 
with three porosity distribution patterns. The material properties of the orthotropic cylindrical 
panel are selected as 𝐸8S = 53.78	𝐺𝑃𝑎, 𝐸8E = 17.93	𝐺𝑃𝑎, 𝐺8SE = 𝐺8Sc = 8.96	𝐺𝑃𝑎, 𝐺8Ec =
3.45	𝐺𝑃𝑎, 𝜈SE = 0.25, 𝜌8 = 1900	𝑘𝑔𝑚�c.  

Table 3 and Fig. 4 report the non-dimensional fundamental natural frequencies of porous 
orthotropic cylindrical panels with various porosity coefficients, EF stiffness, and porosity 
distribution patterns at 𝑠/ℎ = 50, 𝑠/𝑎 = 1, 𝑅/𝑠 = 5. The fundamental natural frequency 
decreases with increasing porosity coefficient for all porosity distribution patterns. The 
enormous and minor frequencies are obtained for ND2 and ND1 patterns. The most significant 
porosity effect is obtained in ND1 cylindrical panels. With increasing porosity coefficient from 
0 to 0.9, the ND1 pattern effect on the fundamental natural frequencies increases as (27%), 
(16%), and (7.5%) for no foundation, Winkler foundation, and Pasternak foundation, 
respectively. With an increasing porosity coefficient from 0 to 0.9 at no foundation case, the 
ND1 pattern effect on the fundamental natural frequencies increases (12%) and (16%) compared 
to the UD and ND2 patterns.  

 
Table 3. Variation of cylindrical panel's non-dimensional fundamental natural frequency with different 
foundation parameters, porosity coefficient, and distribution patterns. 

 𝑘w(, 𝑘w'         
 0,0   60,0   60,4   

𝜂8 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 
0 17.904 17.904 17.904 19.507 19.507 19.507 21.434 21.434 21.434 
0.1 17.651 17.453 17.964 19.320 19.139 19.562 21.318 21.154 21.484 
0.2 17.383 16.977 17.935 19.125 18.758 19.535 21.201 20.872 21.460 
0.3 17.095 16.471 17.816 18.921 18.362 19.426 21.085 20.588 21.361 
0.4 16.786 15.932 17.606 18.708 17.952 19.233 20.970 20.306 21.185 
0.5 16.447 15.355 17.300 18.481 17.528 18.954 20.858 20.032 20.932 
0.6 16.070 14.735 16.895 18.240 17.096 18.585 20.751 19.777 20.599 
0.7 15.644 14.067 16.382 17.980 16.663 18.120 20.655 19.561 20.180 
0.8 15.131 13.352 15.750 17.689 16.260 17.550 20.576 19.434 19.670 
0.9 14.415 12.626 14.984 17.329 15.983 16.867 20.543 19.540 19.063 

 

 
Fig. 4. Variation of non-dimensional fundamental frequency versus porosity coefficients for 

various elastic foundation stiffness 

In the same case, the most significant ND2 pattern effect is (5.2%) compared to the UD pattern 
at  𝜂8 = 0.5. Depending on the rising porosity coefficient from 0 to 0.9, the Winkler foundation 
effect on the fundamental natural frequencies increases (11.3%), (17.6%), and (3.6%) for UD, 
ND1, and ND2 patterns, respectively. In the same case, the influence of the Pasternak foundation 
increases (22.8%), (35%), and (7.5%) for UD, ND1, and ND2 patterns, respectively.  
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Figs. 5 and 6 indicate the variation of the dimensionless fundamental natural frequency of 
porous orthotropic cylindrical panel resting on the Winkler and Pasternak foundations for 
different porosity coefficients and three porosity distributions at (𝑠/ℎ = 50, 𝑠/𝑎 = 1, 𝑅/𝑠 =
5). It is known that the growth of Winkler and Pasternak stiffness leads to increasing in 
dimensionless fundamental frequency for all porosity coefficients. Moreover, it is found that 
the effect of porosity on fundamental frequencies is more considerable with no elastic 
foundation. In other words, the influence of porosity decreases with increasing foundation 
stiffness. With an increasing Winkler foundation stiffness  from 0 to 150 at 𝜂8 = 0.6, the 
porosity effect diminishes as (7.4%), (10.5%), and (1.4%) for UD, ND1, and ND2 patterns, 
respectively. With an increasing Pasternak foundation stiffness from 0 to 15 at 𝜂8 = 0.8, the 
porosity effect decreases as (6.8%), (17.2%), and (4.7%) for UD, ND1, and ND2 patterns, 
respectively. With an increasing Pasternak foundation stiffness from 0 to 15 at 𝜂8 = 0.8, the 
ND1 pattern effect on the fundamental natural frequencies diminishes as (6%) compared to the 
UD pattern. It decreases by (8.5%) and then increases by (6.6%) compared to the ND2 pattern. 
Depending on the increase in the foundation stiffness, the effect of the elastic foundation on the 
dimensional fundamental frequencies increases as expected. 
 

 
Fig. 5. Variation of non-dimensional fundamental frequency versus Winkler elastic 

foundation stiffness for various porosity coefficients 
 

 
Fig. 6. Variation of non-dimensional fundamental frequency versus Pasternak elastic 

foundation stiffness for various porosity coefficients 

Fig. 7 and Table 4 show the influence of in-plane orthotropy on the free vibration behavior of 
porous orthotropic cylindrical panel resting on elastic foundation with respect to three porosity 
distributions at (𝑠/ℎ = 50, 𝑠/𝑎 = 1, 𝑅/𝑠 = 5). With an increasing orthotropy ratio from 5 to 
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60 at no foundation case, the porosity effect increases by (2.4%) and (5.4%) for ND1 and ND2 
patterns, respectively. It remains constant at (8%) for the UD pattern. With an increasing 
orthotropy ratio from 5 to 60 at the Pasternak foundation case, the porosity effect diminishes 
by (1.6%) and (3.6%) for UD and ND1 patterns, respectively. It increases by (1.7%) for the ND2 
pattern. With an increasing orthotropy ratio from 5 to 60 at the Pasternak foundation case, the 
ND1 pattern effect on the fundamental natural frequencies diminishes by (1.5%) compared to 
the UD pattern. It decreases by (3.3%) and then increases by (2%) compared to the ND2 pattern. 
Depending on the rising orthotropy ratio from 5 to 60, the Pasternak foundation effect on the 
fundamental natural frequencies increases (28%), (34.5%), and (28%) for UD, ND1, and ND2 
patterns, respectively.  
 
Table 4. The effect of orthotropy on the cylindrical panel's non-dimensional fundamental natural 
frequency with different foundation parameters, porosity coefficient, and distribution patterns. 

 𝜂8 = 0 𝜂8 = 0.5 
 𝑘w(, 𝑘w' 
 0,0 100,0.4 0,0 100,0.4 

𝐸S 𝐸E⁄  𝑈𝐷 𝑈𝐷 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 
5 15.360 18.540 14.110 13.095 14.625 18.079 17.320 17.936 
10 12.963 16.609 11.908 10.936 12.087 16.419 15.751 15.935 
15 12.011 15.877 11.033 10.071 11.071 15.796 15.163 15.179 
20 11.490 15.487 10.555 9.597 10.514 15.465 14.853 14.777 
25 11.156 15.241 10.248 9.295 10.157 15.258 14.659 14.526 
30 10.922 15.070 10.033 9.084 9.907 15.114 14.526 14.352 
35 10.746 14.943 9.871 8.927 9.721 15.007 14.429 14.224 
40 10.607 14.844 9.744 8.804 9.575 14.924 14.353 14.125 
45 10.494 14.763 9.640 8.706 9.458 14.856 14.293 14.045 
50 10.400 14.696 9.553 8.624 9.360 14.800 14.243 13.980 
55 10.319 14.639 9.479 8.555 9.277 14.752 14.201 13.924 
60 10.248 14.589 9.414 8.495 9.205 14.710 14.165 13.877 

 

 
Fig. 7. Variation of non-dimensional fundamental frequency versus in-plane orthotropy ratios 

To indicate the effects of the radius-to-curve length ratio on the dimensional fundamental 
frequency of porous orthotropic cylindrical panel resting on a Pasternak foundation for three 
porosity patterns, Fig. 8 and Table 5 present the fundamental frequencies versus the radius-to-
curve length ratio for both perfect (𝜂8 = 0) and porous (𝜂8 = 0.8) panels. It is seen that 
dimensional fundamental frequencies diminish depending on the increasing radius-to-curve 
length ratios. The difference between NDs and UD patterns’ frequency values increases with 
an increase in the radius-to-curve length ratio for the Pasternak foundation case. Also, the 
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difference between ND1 and ND2 patterns’ frequencies increases depending on the increasing 
radius-to-curve length ratio for both no foundation and Pasternak foundation cases. With an 
increasing radius-to-curve length ratio from 0.5 to 5 at no foundation case, the porosity effect 
increases by (9%) and (13.5%) for ND1 and ND2 patterns, respectively. It remains constant at 
(15.5%) for the UD pattern. With an increasing radius-to-curve length ratio from 0.5 to 5 at the 
Pasternak foundation case, the porosity effect decreases by (3.5%) and (0.5%) for UD and ND1 
patterns, respectively. It increases by (6.3%) for the ND2 pattern. With an increasing radius-to-
curve length ratio from 0.5 to 5 at the Pasternak foundation case, the ND1 pattern effect on the 
fundamental natural frequencies increases by (11%) and (4%) compared to the UD and ND2 
patterns, respectively. Depending on the rising radius-to-curve length ratio from 0.5 to 5, the 
Pasternak foundation effect on the fundamental natural frequencies increases (17%), (36%), 
and (23%) for UD, ND1, and ND2 patterns, respectively.  

 
Table 5. The effect of 𝑅/𝑠 ratio on the cylindrical panel's non-dimensional fundamental natural 
frequency with different foundation parameters, porosity coefficient, and distribution patterns. 

 𝜂8 = 0 𝜂8 = 0.8 
 𝑘w(, 𝑘w'        
 0,0 75,0.5 0,0 75,0.5 

𝑅/𝑠 𝑈𝐷 𝑈𝐷 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 𝑈𝐷 𝑁𝐷S 𝑁𝐷E 
0.5 13.141 15.907 11.105 9.930 11.932 15.357 14.638 14.924 
1.0 11.232 14.370 9.492 7.813 9.372 14.234 13.293 12.968 
1.5 10.842 14.067 9.162 7.355 8.749 14.016 13.029 12.526 
2.0 10.702 13.960 9.044 7.187 8.497 13.939 12.935 12.351 
2.5 10.636 13.910 8.989 7.108 8.366 13.903 12.892 12.261 
3.0 10.601 13.882 8.959 7.065 8.289 13.884 12.868 12.209 
3.5 10.579 13.866 8.940 7.039 8.238 13.872 12.854 12.174 
4.0 10.565 13.855 8.929 7.022 8.203 13.864 12.844 12.150 
4.5 10.556 13.848 8.920 7.010 8.177 13.859 12.838 12.133 
5.0 10.549 13.843 8.915 7.002 8.157 13.855 12.833 12.119 

 

 
Fig. 8. Variation of non-dimensional fundamental frequency versus radius-to-curve length 

ratios 

5. Conclusions 

The paper studies the free vibration of porous orthotropic cylindrical panels resting on an elastic 
foundation within the higher-order shear deformation theory. Three types of porosity 
distributions are considered. Mechanical properties of the porous panel are modeled in the 
thickness direction based on specific functions. The equations of motion are derived by using 
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Hamilton’s principle. The Galerkin solution method is used to solve governing partial 
differential equations. It is indicated that the vibration responses of porous orthotropic 
cylindrical panels are significantly affected by various parameters such as elastic foundation 
stiffness, porosity coefficients, porosity distribution patterns, and geometrical parameters.  

This subject is a less-explored area in vibration analysis, and including porosity introduces 
complexities related to structure-foundation interactions. Incorporating an elastic foundation 
beneath the panels adds a layer of realism to the analysis. The interaction between the panel 
and the foundation significantly influences the panel's vibration response, making the study 
relevant for practical engineering applications. The utilization of shear deformation theory is a 
distinctive approach. This theory considers the effects of transverse shear deformation, which 
is particularly important for thin and composite structures like cylindrical panels. Its integration 
adds precision to the results compared to classical plate theories. This subject bridges structural 
mechanics, soil-structure interaction, and material science concepts. The novelty lies in 
combining these diverse fields to analyze a complex system's behavior comprehensively. The 
outcomes of this study can have implications for various engineering fields, such as aerospace, 
civil engineering, and mechanical engineering. Optimizing the design of structures with these 
characteristics could lead to improved performance and efficiency. 

Numerical results show that: 
• The ND2 cylindrical panels’ dimensional fundamental frequencies are more significant 

than the ND1 ones. 
• The effect of the ND1 pattern on the fundamental frequencies is more significant than the 

other patterns.  
• The elastic foundation effect on the fundamental frequencies increases with the rising 

porosity coefficient.   
• The influence of porosity on the dimensionless frequencies decreases with increasing 

elastic foundation stiffness.  
• The effect of porosity on the fundamental frequencies of cylindrical panels resting on the 

Pasternak foundation decreases with increasing orthotropy and radius-to-curve length 
ratios for UD and ND1 patterns. It increases for the ND2 pattern. 

• The influence of porosity on the fundamental frequencies of cylindrical panels with no 
foundation increases with increasing orthotropy and radius-to-curve length ratios for 
ND1 and ND2 patterns. It remains constant for the UD pattern. 

• The difference between ND1 and ND2 cylindrical panels’ frequencies increases 
depending on the increasing radius-to-curve length ratio. 

Appendix A 
 
𝛼cS = 𝐾SE𝐾Ec(𝐾bb𝐾aa − 𝐾ba𝐾ab) + 𝐾SE𝐾bc(𝐾Ea𝐾ab − 𝐾Eb𝐾aa) + 𝐾SE𝐾ac(𝐾Eb𝐾ba − 𝐾Ea𝐾bb)
+𝐾Sc𝐾ba(𝐾EE𝐾ab − 𝐾Eb𝐾aE) + 𝐾Sc𝐾bb(𝐾Ea𝐾aE − 𝐾EE𝐾aa) + 𝐾Sc𝐾bE(𝐾Eb𝐾aa − 𝐾Ea𝐾ab)
+𝐾Sb𝐾Ec(𝐾ba𝐾aE − 𝐾bE𝐾aa) + 𝐾Sb𝐾EE(𝐾bc𝐾aa − 𝐾ba𝐾ac) + 𝐾Sb𝐾Ea(𝐾bE𝐾ac − 𝐾bc𝐾aE)
+𝐾Sa𝐾ac(𝐾EE𝐾bb − 𝐾Eb𝐾bE) + 𝐾Sa𝐾bc(𝐾Eb𝐾aE − 𝐾EE𝐾ab) + 𝐾Sa𝐾Ec(𝐾bE𝐾ab − 𝐾bb𝐾aE)
 (A1) 
𝛼cE = −𝐾SS𝐾Ec(𝐾bb𝐾aa − 𝐾ba𝐾ab) − 𝐾SS𝐾bc(𝐾Ea𝐾ab − 𝐾Eb𝐾aa) − 𝐾SS𝐾ac(𝐾Eb𝐾ba − 𝐾Ea𝐾bb)
−𝐾Sc𝐾ba(𝐾ES𝐾ab − 𝐾Eb𝐾aS) − 𝐾Sc𝐾bb(𝐾Ea𝐾aS − 𝐾ES𝐾aa) − 𝐾Sc𝐾bS(𝐾Eb𝐾aa − 𝐾Ea𝐾ab)
−𝐾Sb𝐾Ec(𝐾ba𝐾aS − 𝐾bS𝐾aa) − 𝐾Sb𝐾ES(𝐾bc𝐾aa − 𝐾ba𝐾ac) − 𝐾Sb𝐾Ea(𝐾bS𝐾ac − 𝐾bc𝐾aS)
−𝐾Sa𝐾ES(𝐾bb𝐾ac − 𝐾bc𝐾ab) − 𝐾Sa𝐾bS(𝐾Ec𝐾ab − 𝐾Eb𝐾ac) − 𝐾Sa𝐾aS(𝐾Eb𝐾bc − 𝐾Ec𝐾bb)

(A2) 
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𝛼cc = 𝐾SS𝐾EE(𝐾bb𝐾aa − 𝐾ba𝐾ab) + 𝐾SS𝐾bE(𝐾Ea𝐾ab − 𝐾Eb𝐾aa) + 𝐾SS𝐾aE(𝐾Eb𝐾ba − 𝐾Ea𝐾bb)
+𝐾SE𝐾ES(𝐾ba𝐾ab − 𝐾bb𝐾aa) + 𝐾SE𝐾Eb(𝐾bS𝐾aa − 𝐾ba𝐾aS) + 𝐾SE𝐾Ea(𝐾bb𝐾aS − 𝐾bS𝐾ab)
+𝐾Sb𝐾bS(𝐾Ea𝐾aE − 𝐾EE𝐾aa) + 𝐾Sb𝐾ES(𝐾bE𝐾aa − 𝐾ba𝐾aE) + 𝐾Sb𝐾aS(𝐾EE𝐾ba − 𝐾Ea𝐾bE)
+𝐾Sa𝐾bS(𝐾EE𝐾ab − 𝐾Eb𝐾aE) + 𝐾Sa𝐾ES(𝐾bb𝐾aE − 𝐾bE𝐾ab) + 𝐾Sa𝐾aS(𝐾Eb𝐾bE − 𝐾EE𝐾bb)
 (A3) 
𝛼cb = −𝐾SS𝐾bE(𝐾Ea𝐾ac − 𝐾Ec𝐾aa) − 𝐾SS𝐾EE(𝐾bc𝐾aa − 𝐾ba𝐾ac) − 𝐾SS𝐾aE(𝐾Ec𝐾ba − 𝐾Ea𝐾bc)
−𝐾SE𝐾ES(𝐾ba𝐾ac − 𝐾bc𝐾aa) − 𝐾SE𝐾aS(𝐾Ea𝐾bc − 𝐾Ec𝐾ba) − 𝐾SE𝐾bS(𝐾Ec𝐾aa − 𝐾Ea𝐾ac)
−𝐾Sc𝐾bS(𝐾Ea𝐾aE − 𝐾EE𝐾aa) − 𝐾Sc𝐾ES(𝐾bE𝐾aa − 𝐾ba𝐾aE) − 𝐾Sc𝐾aS(𝐾EE𝐾ba − 𝐾Ea𝐾bE)
−𝐾Sa𝐾ES(𝐾bc𝐾aE − 𝐾bE𝐾ac) − 𝐾Sa𝐾aS(𝐾Ec𝐾bE − 𝐾EE𝐾bc) − 𝐾Sa𝐾bS(𝐾EE𝐾ac − 𝐾Ec𝐾aE)

(A4) 
𝛼ca = 𝐾SS𝐾EE(𝐾bc𝐾ab − 𝐾bb𝐾ac) + 𝐾SS𝐾bE(𝐾Eb𝐾ac − 𝐾Ec𝐾ab) + 𝐾SS𝐾aE(𝐾Ec𝐾bb − 𝐾Eb𝐾bc)
+𝐾SE𝐾bS(𝐾Ec𝐾ab − 𝐾Eb𝐾ac) + 𝐾SE𝐾ES(𝐾bb𝐾ac − 𝐾bc𝐾ab) + 𝐾SE𝐾aS(𝐾Eb𝐾bc − 𝐾Ec𝐾bb)
+𝐾Sc𝐾aS(𝐾EE𝐾bb − 𝐾Eb𝐾bE) + 𝐾Sc𝐾ES(𝐾bE𝐾ab − 𝐾bb𝐾aE) + 𝐾Sc𝐾bS(𝐾Eb𝐾aE − 𝐾EE𝐾ab)
+𝐾Sb𝐾bS(𝐾EE𝐾ac − 𝐾Ec𝐾aE) + 𝐾Sb𝐾ES(𝐾bc𝐾aE − 𝐾bE𝐾ac) + 𝐾Sb𝐾aS(𝐾Ec𝐾bE − 𝐾EE𝐾bc)
 (A5) 
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