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Abstract 

In this research study, we aim to approximate a solution for the mathematical model of the 

Human Immunodeficiency Virus (HIV) infection of CD4+T-cells. An operational matrix method 

based on Chebyshev orthogonal polynomials has been adapted to obtain numerical solutions for 

the model of HIV infection of CD4+T-cells. The proposed numerical scheme is built on a system 

of a nonlinear algebraic equation, including coefficients of a finite Chebyshev series that represent 

the approximate solutions of the model. Results are compared to existing methods to verify the 

accuracy of the numerical scheme. 

Keywords: Model of the HIV infection; CD4+T cells; Operational matrix method; 

Chebyshev polynomials; Nonlinear system of differential equations. 

CD4+T Hücrelerindeki HIV Enfeksiyonunun Yayılım Modelinin Chebyshev 

Operasyonel Matris Metodu ile bir Nümerik Uygulaması  
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Öz 

Bu çalışma, CD4+T hücrelerinde HIV virüsünün matematiksel yayılım modeli için 

yaklaşık çözümler elde etmeyi amaçlamaktadır. Nümerik çözümler Chebyshev polinomları ile 

operasyonel matris metodunun CD4+T hücrelerinde HIV virüsünün matematiksel yayılım 

modeline uygulanması ile elde edilecektir. Önerilen method modele ait nümerik çözümlerin bir 

Chebyshev serisi formunda yazılarak, Chebyhev serisi içindeki bilinmeyen katsayıları içeren 

lineer olmayan bir denklem sistemi inşa atmeyi amaçlar. Yöntemin doğruluğunu kontrol etmek 

için nümerik sonuçlar var olan nümerik yöntemlerle karşılaştırılmıştır. 

Anahtar Kelimeler: HIV Enfenksiyon Modeli; CD4+T hücreleri; Operasyonel matris 

metot; Chebyshev polinomları; Lineer olmayan diferansiyel denklem sistemleri. 

 

1. Introduction 

Applied mathematics is modeled to interpret natural events. These models and their 

numerical solutions obtain valuable information about those events. For example, a crucial event 

for public health is the dynamics of HIV infection of CD4+T-cells. Firstly, Perelson developed a 

system of nonlinear differential equations to describe HIV infection of CD4+T-cells in 1989 [1-

5]. Nowadays, humanity spends millions of dollars on the treatment of this disease.  

The mathematical model of infection of HIV of CD4+T cells is given by [6-9] 

kVT
T
ITrTTq

dt
dT

-
+

-+-= )1(
max

a  

       IkVT
dt
dI b-=                                                                             (1) 

         VI
dt
dV gµb -=  

with the conditions 

1)0( rT = ,  2)0( rI = , 3)0( rV =                                              (2) 

where )(tT  is denoted as the concentration of healthy CD4+ T cells, )(tI  infected CD4+ T cells, 

)(tV and free H.I.V. at a time t  in blood. In addition, q  is the source term for uninfected CD4+ 
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T cells, a  is the natural death rate of the CD4+ T cell concentration, r  is the growth rate of 

CD4+ T cells, k  is the rate at which CD4+ T cells become infected with a virus, b is the total 

death rate of infected CD4+ T cells, µ  is the number of virions produced by infected CD4+ T 

cells.g  is the death rate of the free virus. 0>k  indicates the infection rate, and kVT indicates 

the infection rate of healthy CD4+ T cells. The termination T max , in the denominator of the 

logistic term in the equation for healthy T4 cell density, indicates the total T4 cell density that can 

be found stably in the blood; in other words, the carrying capacity of the blood for T4 cells. It will 

be assumed that each infected CD4+T cell produces. This model's global stability and a periodic 

solution are achieved in [10].  

In this paper, we will take the numerical data as 1.0=q , 02.0=a , 3=r  3.0=b , 

0027.0=k , 4.2=g , 10=µ , 1500max =T  and initial conditions data 1.01 =r , 02 =r , 

1.03 =r . Since the mathematical model of H.I.V. infection HIV CD4+T cells (1) are nonlinear 

differential equations with three terms, the exact solution to this problem cannot be obtainable or 

nonexistent. A resolution to this problem is needed to analyze its epidemiology and stability and 

to predict advances in AIDS treatment. In this stage, numerical solution methods become crucial 

to solve Eq. (1) with the conditions. Many numerical methods for approximating H.I.V. in CD4+ 

T cells have been improved over the last twenty years. Ghoreishi [11] presents the homotopy 

analysis method for H.I.V. infection of CD4+T-cells. The homotopy analysis method accepts the 

solution as an infinite series with auxiliary parameters. All calculations are investigated in six 

terms in this method. Ongun [12] implement the Laplace Adomain Decomposition Method to get 

numerical results for H.I.V. infection of CD4+T-cells. To obtain approximate solutions to the 

H.I.V. infection of the CD4+ T cells model, Merdan [13] applied the variational iteration method. 

Yüzbaşı [14] developed a Bessel collocation method for finding numerical solutions of this 

model. Beler [15] analyzed to find approximate solutions of the proposed model by using 

Laguerre wavelets. In addition, we have access to more numerical papers to obtain such a class 

of nonlinear ordinary differential equation systems [16-29]. 

In this study, we have obtained the approximate solutions of the mathematical model (1) 

by developing the Chebyshev operational matrix method (COMM). Chebyshev polynomial is the 

cornerstone of numerical analysis. Those polynomials adapted almost all numerical methods. For 

example, in [30-32], Chebyshev polynomials combined the operational matrix method to solve 

the linear Fredholm-Volterra integro-differential [33], Lane-Emden equations [34-35], for 

fractional differential equations involving non-singular Mittag-Leffler kernel [36], fractional 

differential equations [37], mixed Volterra-Fredholm delay integro differential equations [38]. 
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2. Materials and Methods 

2.1. Shifted Chebyshev polynomials of the first kind 

Chebyshev polynomials mainly admit to the approximation of continuous functions. 

Chebyshev polynomials have crucial properties to perform nearly all numerical methods [26]. We 

have four kinds of Chebyshev polynomials, which are defined in interval ]1,1[- . If we choose the 

interval ]1,0[ , they called shifted Chebyshev polynomials [30]. While readers can find the 

definition of Chebyhev polynomials in many books [30-32], we want to take the recurrence 

relation 

)()()12(2)( *
2

*
1

* tTtTttT nnn -- --=  

with the following initial conditions 

1)(*0 =tT , 12)(*1 -= ttT  

Those polynomials have the following property [30-32] 
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and the orthogonality condition is  
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0 tTtTtTtT n!  is an orthogonal basis of -n

dimensional polynomial space nP , for kj ¹ , 0)(),( ** =
wkj tTtT , for kj = , 

0)(),( ** >
wkj tTtT . In addition, if kk Pp Î , for nk < , then 0)(),( * =

wnk tTtp  for all kn >  

[30-32]. 

Any given function ]1,0[)( 2Lty Î  can be approximated as a sum of shifted Chebyshev 

polynomials in the following way [30-32]: 
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Our study aims to achieve the approximate solution of Eq. (1) as a truncated shifted Chebyshev 

series defined by: 
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where is used to denote the first kind of Chebyshev polynomials, j
ra  are referred to as unknown 

Chebyshev coefficients, and are chosen to be any positive integer.  

3. Relations and Methods 

3.1. Matrix relations 

In this part, we shall obtain the matrix-vector form of Eq. (1). For this purpose, let us 

consider the truncated Chebyshev polynomials )(tTN , )(tI N  and )(tVN  are the numerical 

solutions of the Eq. (1) and so those solutions can be written like this: 

å
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The matrix-vector shape of the numerical solution polynomials can be written as: 

AT )()( * ttTN =                                                         (8) 

 BT )()( * ttI N =                                                         (9) 

CT )()( * ttVN =                                                       (10) 
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where
    

)](...)()([)( **
1

*
0

* tTtTtTt N=T  

T
Naaa ]...

2
1[ 10=A T

Nbbb ]...
2
1[ 10=B T

Nccc ]...
2
1[ 10=C  

and where the dimension of A ,B ,Cmatrices are 1)1( ´+N , dimension of the )(t*T  matrix is

)1(1 N+´ . 

The property Eq. (3) permits us to write the below essential relation 
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Moreover, D  is an invertible square matrix with )1()1( +´+ NN dimensional and the 

dimension of )(tX  is )1(1 +´ N . 

From Eq. (11), we obtain the following matrix relation 

                                                    Ttt ))(()( 1* -= DXT                                                      (12) 

and  

Ttt ))(())(( 1)1()1(* -= DXT  
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So, the basic matrix-vector forms of the differential of approximate solutions of Eq. (1) are 

ADYX 1)1( )()()( -= T
N ttT                                                     (13) 

 BDYX 1)1( )()()( -= T
N ttI                                                      (14) 

CDYX 1)1( )()()( -= T
N ttV                                                      (15) 

where 

YXX )()()1( tt =                                                         (16) 
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3.2. Solution method 

The numerical scheme is constructed to find the unknown coefficients in Eqs. (5-7) to 

obtain the numerical result of Eq. (1). To constitute the numerical scheme, firstly, Eq. (1) and 

initial conditions are turned into a matrix-vector form with shifted Chebyshev series. Using the 

matrix relations in Section 3, Eq. (1) can be written in matrix form: 

[ ] [ ]
qttk

ttt
T
rtrt

TT

TTTTT

=+

++-+

--

-----

)))(()())(((

))(())(()))((())(()()(

11
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11

ADXCDX

BDXADXADXADXADYX a
 

0))(()))(()())((()()( 1111 =+- ---- BDXADXCDXBDYX TTTT tttkt b                          (17) 

 0))(())(()()( 111 =+- --- CDXBDXCDYX TTT ttt gµb     
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The residuals )(tRi  for 3,2,1=i  form can be written as 

[ ] [ ]
qttk

ttt
T
rtrttR

TT

TTTTT
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++-+»

--

-----
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11
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BDXADXCDXBDYX 1111
2 ))(()))(()())((()()()( ---- +-» TTTT tttkttR b                  (19) 

CDXBDXCDYX 111
3 ))(())(()()()( --- +-» TTT ttttR gµb                                              (20) 

N´3 -times nonlinear systems of the equation are obtained by applying the operational matrix 

method in the following form, for 3,2,1=i  

ò ==
1

0

** 0)()()(),( dttTtRtTtR nini , 1,,1,0 -= Nn !                  (21) 

The initial conditions Eq. (2) give us three equations: 

[ ] [ ]11))(0()0( rT T == - ADX  

          [ ] [ ]21))(0()0( rI T == - BDX                                                (22) 

[ ] [ ]31))(0()0( rV T == - CDX  

As a result, we get the )1(3 +´ N  sets of nonlinear equation systems with )1(3 +´ N unknowns 

by Eqs. (21-22). Then, finally, those systems are puzzled out by the mathematical program Maple 

13, and Eqs. (5-7) coefficients are achieved. 

4. Numerical Results 

	 In this part, we applied this proposed method (PM) to the given numerical data for the 

proposed method N=.7. Numerical solutions are obtained by the proposed method; other 

numerical methods are given in Table 1 for the uninfected population T , Table 2 for infected 

CD+4 T-cell concentration I , and Table 3 for the concentration of free H.I.V. virus V . All tables 

show that PM agrees well with the solutions of other numerical results. Figures 1-2 show the 

uninfected population T , infected CD+4 T-cell concentration I  , and concentration of free 

H.I.V. virus V  versus time. As time increases, the uninfected population T increases, the 

infected CD+4 T-cells concentration I  increases, and the concentration of free H.I.V. virus 
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decreases. The amount of infected CD+4 T-cells concentration I  is slower to increase than the 

uninfected population T , and H.I.V. infection disease may end at any t time. In Figures 3-5, we 

compare the numerical results by obtained Adomian Decomposition Method, Pade 

approximation, Inverse Laplace transformation method, and present method. All results nearly 

resemble each other. 

 

Table 1: Numerical results for T  PM and other numerical methods. 

t The method in 
[13] 

The method in 
[11] 

The method in 
[12] 

The method in 
[17] 

PM 
N=5 

PM 
N=7 

0.0 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.2038616561 0.2088072731 0.2088073214 0.2088080849 0.208458510 0.2088072279 
0.4 0.3803309335 0.4061052652 0.4061346587 0.4062405440 0.406339373 0.4062410095 
0.6 0.6954623767 0.7611467713 0.7624530350 0.7644239007 0.764734581 0.7644229384 
0.8 1.2759624442 1.3773198590 1.3978805880 1.4140468559 1.413686781 1.4140470895 
1.0 2.382277428 2.3291697610 2.5067466690 2.5915948594 2.591645820 2.5915948594 

	

Table 2: Numerical results for I  PM and other numerical methods. 

t The method in 
[13] 

The method in 
[11] 

The method in 
[12] 

The method in 
[17] 

PM 
N=5 

PM 
N=7 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.2 0.624787210E-5 0.60327072E-5 0.603263436E-5 0.603270226E-5 0.6034893E-5 0.63517134E-5 
0.4 0.129355222E-4 0.13159114E-4 0.131487854E-4 0.131583409E-4 0.1315659E-4 0.12751088E-4 
0.6 0.203526718E-4 0.21268368E-4 0.210141719E-4 0.212237855E-4 0.2122560E-4 0.21636848E-4 
0.8 0.283730212E-4 0.30069186E-4 0.279513045E-4 0.301778550E-4 0.3017857E-4 0.29847613E-4 
1.0 0.369084236E-4 0.39873654E-4 0.243156231E-4 0.400378145E-4 0.4003936E-4 0.37812697E-4 

 

Table 3: Numerical results for V  PM and other numerical methods. 

t The method in 
[13] 

The method in 
[11] 

The method in 
[12] 

The method in 
[17] 

PM 
N=5 

PM 
N=7 

0.0 0.1 0.1 0.1 0.1 0.1 0.1 
0.2 0.06187991856 0.06187996025 0.06187995314 0.06187984322 0.061874446 0.0618798985 
0.4 0.03829493490 0.03831324883 0.03830820126 0.03829488777 0.038298806 0.0382948388 
0.6 0.02370431860 0.02439174349 0.02392029257 0.02370455004 0.023706103 0.0237045399 
0.8 0.01467956982 0.00996721893 0.01621704553 0.01468036368 0.014675339 0.0148040545 
1.0 0.02370431861 0.00033050764 0.01608418711 0.00910084499 0.009100830 0.0091000845 
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Figure 1: Comparison of the numerical results for N=5.  

	

Figure 2: Comparison of the numerical results for N=7. 
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Figure 3: Comparison of numerical method solution of T  

	

	

Figure 4: Comparison of numerical method solution of I   
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Figure 5: Comparison of numerical method solution of V  

5. Conclusion 

This paper uses the Chebyshev operational matrix method to solve the mathematical model 

of HIV infection of CD4+ T-cells. The uninfected population T infected CD+4 T-cell 

concentration I , and free H.I.V. virus values concentration are compared with other methods in 

Table 1, Table 2, and Table 3, respectively. Also, with figures, the efficiency and accuracy of the 

method are demonstrated. The proposed method has a lower operation, so cumulative errors are 

minor. Moreover, the solution code of the method is easily written in Maple. The results show 

that the present method is accurate compared to Bessel collocation, the Adomian decomposition, 

the Pade approximation, and the inverse Laplace transformation with five and seven terms. 
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