

Prevalence of Listeria monocytogenes in dairy products in Turkey: A meta-analysis

Berna Yanmaz¹

Department of Public Health, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye

ABSTRACT

Key Words: cheese dairy *Listeria monocytogenes* milk prevalence

Received : 06.09.2023 Accepted : 06.12.2023 Published Online : 31.12.2023 Article Code : 1356384

Correspondence: B. YANMAZ (bernayanmaz@gmail.com)

ORCID B. YANMAZ : 0000-0002-4176-9487

INTRODUCTION

Listeriosis is a severe and significant food-borne disease caused by the bacterium Listeria monocytogenes (Ulusoy and Chirkena, 2019). This organism can contaminate food at various stages of production before it is consumed. Upon ingestion, the pathogen traverses the intestinal barrier and disseminates through the bloodstream and lymphatic system, ultimately reaching the liver and spleen, where it can proliferate (Andersson et al., 2015). L. monocytogenes is an opportunistic human pathogen that can cause meningitis or septicaemia, with a higher risk for pregnant women, the eldexxxxxrly, and individuals with compromised immune systems. Immunocompromised individuals are particularly susceptible to this intracellular pathogen (Ramaswarmy et al., 2007). In pregnant women, L. monocytogenes can lead to severe infection in the fetus through vertical transmission via the placenta (Cossart, 2011). According to the World Health Organization report (2018), pregnant women are approximately 20 times more likely to contract *Listeriosis* compared to healthy adults, as the disease can result in miscarriage or stillbirth. Furthermore, individuals with HIV/AIDS are at least 300 times more susceptible to the infection compared to those with a normal immune system.

In Turkey, the dairy industry stands out as a highly dynamic sector within the farming industry (Akin et al., 2022). Turkey is recognized as the 10th largest milk producer globally, according to Yonar et al. (2022). As of 2021, Turkey's annual milk production amounts to approximately 23.2 million tonnes,

practices, enhancing monitoring systems, and promoting collaborative efforts between industry and regulatory bodies, the dairy sector in Turkey can effectively mitigate the risks associated with L. monocytogenes and maintain high standards of food safety. ant food-borne disease *mocytogenes* (Ulusoy and a contaminate food at it is consumed. Upon e intestinal barrier and

This study was aimed to conduct a meta-analysis to determine the prevalence of Listeria mo-

nocytogenes in dairy products in Turkey. A systematic literature search was conducted using the

Medline/PubMed, Science Direct, Web of Science, and Scopus databases to identify studies re-

porting the prevalence of L. monocytogenes in dairy products. The search was conducted using the following keywords: ("ice cream" or "curd" or "cream" or "cheese" or "butter" or "yoghurt" or "dairy" or "milk") and ("Listeriosis" or "Listeria monocytogenes" or "Listeria") and ("Turki-

ye" or "Turkey") and ("seropositivity" or "seroprevalence" or "prevalence"). A comprehensive

meta-analysis included a total of 4615 dairy products from the 26 studies. The overall molecular

prevalence of L. monocytogenes in dairy products in Turkey was estimated to be 4.3% (95% confidence interval [CI]: 3.7-4.9%). The I2 value of 87.4% (CI95%82.8–90.8) suggested high heterogeneity, with a τ 2 of -0.6227 (CI95%-4.6556–3.4102), and an X2 statistic of 199.0 (P <

0.0001). In conclusion, this meta-analysis reveals a significant prevalence of L. monocytogenes in

dairy products in Turkey. The findings highlight the need for improved control measures to mi-

nimize the risk of contamination and ensure consumer safety. By implementing rigorous hygiene

and Gulel, 2016).

Meta-analysis is a statistical technique widely employed in the field of food science and nutrition to amalgamate and analyze data from multiple independent studies (Bouras et al., 2019). One primary advantage is that meta-analysis allows researchers to obtain a more precise estimate of the effect of a specific food or dietary pattern on health outcomes (Kelley and Kelley, 2019). By pooling data from multiple studies, meta-analysis enhances the statistical power of the analysis and mitigates the impact of random variation in individual studies, thereby yielding a more accurate estimation of the true effect size (Lee, 2019). Furthermore, meta-analysis facilitates the identification of sources of heterogeneity or inconsistency among studies, enabling exploration of potential biases or confounding factors. Consequently, meta-analysis provides a robust and comprehensive evaluation of the evidence base in food-related studies, informing future research directions and shaping public health policies (Nardi et al., 2020).

in its dairy products (Cetinkaya and Soyutemiz, 2007; Kevenk

To the best of author knowledge, no previous meta-analysis

has specifically focused on the prevalence of *L. monocytogenes* in dairy products in Turkey. Therefore, the aim of this study was to conduct a meta-analysis to determine the prevalence of *L. monocytogenes* in dairy products in Turkey and provide insights into the potential public health risks associated with the consumption of contaminated dairy products. Furthermore, the study has the potential to guide the implementation of effective preventive measures, ultimately reducing the risk of *L. monocytogenes* transmission to humans.

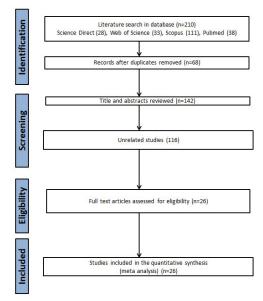
MATERIALS and METHODS

Literature search and study selection

The systematic review and meta-analysis adhered to the guidelines set forth by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009). A thorough literature search was conducted across multiple databases, including Medline/PubMed, Science Direct, Web of Science, and Scopus, to identify relevant studies reporting on the prevalence of *L. monocytogenes* in dairy samples. The search was conducted using the following keywords: ("ice cream" or "curd" or "cream" or "cheese" or "butter" or "yoğurt" or "dairy" or "Listeria") and ("Listeriosis" or "Listeria monocytogenes" or "Listeria") and ("Seropositivity" or "seroprevalence" or "prevalence"). The search was confined to studies published in the English language within the timeframe of January 2000 to July 2023.

Inclusion criteria

In order to identify any additional pertinent studies, a manual search of the reference lists of the identified studies was conducted. The full texts of potentially eligible studies were carefully reviewed to assess their compliance with the inclusion criteria. To be considered eligible for inclusion, studies had to meet the following criteria: (1) report on the prevalence of *L. monocytogenes* in dairy samples, (2) provide adequate data for calculating the prevalence estimate and its confidence interval, and (3) be original studies rather than review articles.

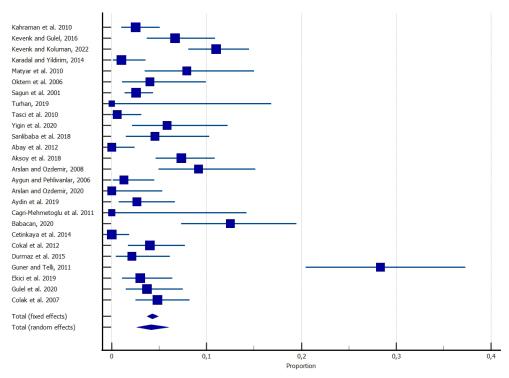

Data extraction and meta-analysis

A standardized form was used to extract data from eligible studies. This form included the following information: author, year of publication, study area, period of study, kind of dairy product, number of dairy products tested, number of positive samples, prevalence, and confidence interval.

The meta-analysis conducted in this study utilized the prevalence of L. monocytogenes detected in dairy products as the dependent variable, serving as the effect size for the analysis. The methodology employed in this meta-analysis followed the previous approach outlined by Wang (2018). Initially, the heterogeneity among the included studies was assessed using Cochran's Q (X^2) test, which examines the null hypothesis of homogeneity. Additionally, the degree of heterogeneity was quantified using the Higgins' I² statistic proposed by Borenstein et al. (2021). Considering the observed high level of heterogeneity, a random-effects model was employed to estimate the overall weighted prevalence of L. monocytogenes. This model accounted for both within-study variance (sampling error) and between-studies variance (τ^2). The results of the meta-analysis, including the corresponding 95% confidence interval (CI)s, were presented using forest plots. To investigate the possibility of publication bias for studies with low or high effect sizes, Egger's test was utilized (Egger et al., 1997). All statistical analysis were performed using commercial software (Med-Calc; version 20.110; MedCalc Software Ltd).

RESULTS

After conducting an initial search, a total of 210 articles were identified. Among them, 26 articles were deemed suitable based on the inclusion criteria. The study selection process is outlined in Figure 1, while the characteristics of the selected


Figure 1. PRISMA flow diagram depicting the study selection process for the meta-analysis investigating the prevalence and source analysis of Listeria monocytogenes in dairy products.

studies can be found in Table 1. These studies were carried out in six distinct geographical regions of Turkey: the Marmara region (7 studies), Black Sea region (5 studies), Central Anatolian region (4 studies), Mediterranean region (3 studies), Eastern Anatolian region (1 study), and Southeastern Anatolian region (4 studies). Moreover, the geographical categorization of one study remained unspecified, while one study encompassed more than two distinct geographical regions. These studies were published between 2001 and 2020. A comprehensive meta-analysis included a total of 4615 dairy products from the 26 studies (Table 1). The median size of eligible studies was 6, and out of the total 4615 samples, 231 were diagnosed as positive by serologic methods. The overall molecular prevalence of *L. mono-cytogenes* in dairy products in Turkey was estimated to be 4.3% (CI_{95} %: 3.7-4.9%). The *I*² value of 87.4% (CI_{95} %82.8–90.8) suggested high heterogeneity, with a τ^2 of -0.6227 (CI_{95} %-4.6556–3.4102), and an *X*² statistic of 199.0 (*P* < 0.0001). The overall meta-analysis is shown in a forest plot (Figure 2). The meta-analysis showed no significant evidence of publication bias based on Egger's test (*P* = 0.7527).

Table 1. Characteristics and main results of the eligible studies ordered by Prevalence of Listeria monocytogenes in dairy products in Turkey.

Author and Year	Geographical	Period of study	Dairy product	Ns	Ps	Proportion
	region					(95% CI)
Kahraman et al. 2010	Marmara	2007-2008	Cheese	280	7	2.5 (1.0-5.1)
Kevenk and Gulel, 2016	Black Sea	2011-2012	Butter, cheese, cokelek, ice cream, kuymak	210	14	6.7 (3.7-10.9)
Kevenk and Koluman, 2022	Central Anatolian	2020-2021	Cheese	400	44	11.0 (8.1-14.5)
Karadal and Yildirim, 2014	Central Anatolian	2011	Cheese	200	2	1.0 (0.1-3.6)
Matyar et al. 2010	Mediterranean	2008	Cheese, ice cream, milk	101	8	7.9 (3.5-15.0)
Oktem et al. 2006	Central Anatolian	2001-2002	Cheese	100	4	4.0 (1.1-9.9)
Sagun et al. 2001	Eastern Anatolian	ND	Cheese, milk	504	13	2.6 (1.4-4.4)
Turhan, 2019	Mediterranean	ND	Cheese	20	0	0.0 (0.0-16.8)
Tasci et al. 2010	Mediterranean	2007-2008	Milk	175	1	0.6 (0.0-3.1)
Yigin et al. 2020	Southeastern Anatolian	ND	Cheese	103	6	5.8 (2.2-12.2)
Sanlibaba et al. 2018	Central Anatolian	2017	Cheese, milk	110	5	4.5 (1.5-10.3)
Abay et al. 2012	ND	2008-2009	Milk	150	0	0.0 (0.0-2.4)
Aksoy et al. 2018	Southeastern Anatolian	2012-2013	Butter, cheese, milk	300	22	7.3 (4.6-10.9)
Arslan and Ozdemir, 2008	Black Sea	ND	Cheese	142	13	9.2 (5.0-15.1)
Aygun and Pehlivanlar, 2006	Southeastern Anatolian	ND	Butter, cheese, milk, yoghurt	157	2	1.3 (0.2-4.5)
Arslan and Ozdemir, 2020	Black Sea	2016	Cheese, ice cream	67	0	0.0 (0.0-5.4)
Aydin et al. 2019	Marmara	ND	Milk	150	4	2.7 (0.7-6.7)
Cagri-Mehmetoglu et al. 2011	Marmara	2008-2010	Cheese, milk	24	0	0.0 (0.0-14.2)
Babacan, 2020	Black Sea	2013-2017	Cream cake, ice cream	128	16	12.5 (7.3-19.5)
Cetinkaya et al. 2014	Marmara	2009-2010	Butter, cheese, ice cre- am, milk, yoghurt	196	0	0.0 (0.0-1.9)
Cokal et al. 2012	Marmara	2010-2011	Cheese, dessert	200	8	4.0 (1.7-7.7)
Durmaz et al. 2015	Southeastern Anatolian	ND	Milk	140	3	2.1 (0.4-6.1)
Guner and Telli, 2011	Mediterranean, Eastern and Central Anatolian	ND	Cheese	120	34	28.3 (20.5-37.3)
Ekici et al. 2019	Marmara	ND	Cheese, cream	200	6	3.0 (1.1-6.4)
Gulel et al. 2020	Black Sea	2012-2013	Cheese, cream, milk	188	7	3.7 (1.5-7.5)
Colak et al. 2007	Marmara	2004-2005	Cheese	250	12	4.8 (2.5-8.2)
Total				4615	231	4.3 (3.7-4.9)

ND: Not determined, Ns: Number of samples, Ps: Positive samples

Figure 2. Forest plot illustrating the results of the meta-analysis evaluating the prevalence of Listeria monocytogenes in dairy products. The plot includes data from twenty-seven studies that met the inclusion criteria outlined in the meta-analysis.

DISCUSSION

The present study aimed to investigate the prevalence of *L.* monocytogenes in dairy products in Turkey through a comprehensive meta-analysis. The findings provide valuable insights into the prevalence and potential risks associated with *L. monocyto*genes contamination in the dairy industry, highlighting the need for effective control measures. The meta-analysis revealed an overall prevalence rate of 4.3% (CI₉₅% 3.7-4.9) across the included studies. This indicates a significant presence of *L. monocytogenes* in dairy products in Turkey. The high prevalence rate emphasizes the importance of implementing stringent quality control measures throughout the dairy production chain to minimize the risk of contamination.

Several factors contribute to the observed prevalence rates of *L. monocytogenes* in dairy products. One crucial factor is the contamination of raw milk, which serves as the primary source of *L. monocytogenes* ocytogenes in dairy production. Studies have shown that *L. monocytogenes* can colonize the udder and persist in raw milk, leading to subsequent contamination of dairy products during processing and packaging (Jiang et al., 2022). Inadequate hygiene practices during various stages of dairy production can also facilitate *L. monocytogenes* transmission. Contaminated equipment, unclean surfaces, and improper temperature control are all potential factors contributing to the survival and growth of *L. monocytogenes* in the production environment (Mazaheri et al., 2021).

The diversity of dairy products included in this meta-analysis is worth noting, as it reflects the wide range of products consumed in Turkey. The analysis encompassed milk, cheese, yogurt, and butter, among others. Interestingly, our findings indicate that certain types of dairy products especially cheese had high prevalence rate. This finding is consistent with previous studies that have identified cheese as a potential source of *L. monocytogenes* contamination due to its favorable pH and moisture conditions for bacterial growth (Falardeau et al., 2021).

Despite the valuable insights gained from this meta-analysis, several limitations should be acknowledged. The included studies varied in sample size, geographic location, and detection methods, which may introduce heterogeneity into the analysis. Publication bias is another potential limitation, as studies reporting higher prevalence rates may be more likely to be published. Future research should focus on standardizing sampling methods, laboratory techniques, and reporting criteria to enhance the comparability of data.

To mitigate the risks associated with *L. monocytogenes* in dairy products, a multifaceted approach involving industry and regulatory bodies is necessary. Dairy producers should prioritize regular monitoring of their production facilities, implement strict hygiene practices, and invest in advanced technologies for rapid detection and elimination of the pathogen (Ntuli et al., 2023). Additionally, regulatory authorities should enforce stringent food safety regulations, conduct regular inspections, and provide educational programs to raise awareness among dairy industry professionals about the importance of *L. monocytogenes* control (Ricci et al., 2018).

CONCLUSION

In conclusion, this meta-analysis reveals a significant prevalence of *L. monocytogenes* in dairy products in Turkey. The findings highlight the need for improved control measures to minimize the risk of contamination and ensure consumer safety. By implementing rigorous hygiene practices, enhancing monitoring systems, and promoting collaborative efforts between industry and regulatory bodies, the dairy sector in Turkey can effectively mitigate the risks associated with *L. monocytogenes* and maintain high standards of food safety.

DECLARATIONS

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no coflict of interest

Author contribution

Idea, concept and design: BY

Data collection and analysis: BY

Drafting of the manuscript: BY

Critical review: BY

Acknowledgements

Not applicable.

REFERENCES

Abay, S., Aydin, F., & Sumerkan, A. B. (2012). Molecular typing of *Listeria* spp. isolated from different sources. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 59(3), 183-190.

Akin, A. C., Arikan, M. S., Polat, M., Mat, B., Cevrimli, M. B., Demirsöz, M., & Tekindal, M. A. (2022). Examining the production amount of milk and dairy products using network analysis in Turkey. Food Science and Technology, 42, e125821. https://doi.org/10.1590/fst.125821

Aksoy, A., Sezer, Ç., Vatansever, L., & Gülbaz, G. (2018). Presence and antibiotic resistance of *Listeria monocytogenes* in raw milk and dairy products. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24(3), 415-421. https://doi.org/10.9775/ kvfd.2017.19081

Andersson, C., Gripenland, J., & Johansson, J. (2015). Using the chicken embryo to assess virulence of *Listeria monocytogenes* and to model other microbial infections. Nature Protocols, 10: 1155–1164. https://doi.org/10.1038/nprot.2015.073

Arslan, S., & Ozdemir, F. (2020). Prevalence and antimicrobial resistance of Listeria species and molecular characterization of *Listeria monocytogenes* isolated from retail ready-to-eat foods. FEMS Microbiology Letters, 367(4), fnaa006. https:// doi.org/10.1093/femsle/fnaa006

Arslan, S., & Ozdemir, F. (2008). Prevalence and antimicrobial resistance of *Listeria* spp. in homemade white cheese. Food control, 19(4), 360-363. https://doi.org/10.1016/j. foodcont.2007.04.009.

Aydın, R., Gökmen, M., Kara, R., Önen, A., & Ektik, N. (2019). The prevalence and molecular characterization of *Listeria monocytogenes* in corn silage, feces and bulk tank milk samples in dairy cattle farms in Balikesir, Turkey. Israel Journal of Veterinary Medicine, 74(4): 184-189.

Aygun, O., & Pehlivanlar, S. (2006). *Listeria* spp. in the raw milk and dairy products in Antakya, Turkey. Food Control, 17(8), 676-679. https://doi.org/10.1016/j.food-cont.2005.09.014.

Babacan, O. (2020). Antibiotic susceptibility and phylogenetic analyses for the origins and serotypes of *Listeria monocytogenes* strains isolated from ice cream and cream cakes. Turkish Journal of Veterinary & Animal Sciences, 44(5), 1100-1109. https://doi.org/10.3906/vet-2003-116

Bor, Ö. (2014). Economics of Dairy Farming in Turkey, International Journal of Food and Agricultural Economics, 2: 49-62. https://doi.org/10.22004/ag.econ.190811.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). Introduction to meta-analysis. John Wiley & Sons.

Bouras, E., Tsilidis, K. K., Pounis, G., & Haidich, A. B. (2019). Meta-analysis of nutrition studies. Analysis in nutrition research, 163-196. https://doi.org/10.1016/B978-0-12-814556-2.00007-5

Cagri-Mehmetoglu, A., Yaldirak, G., Bodur, T., Simsek, M., Bozkir, H., & Eren, N. M. (2011). Incidence of *Listeria monocytogenes* and *Escherichia coli* O157: H7 in two Kasar Cheese processing environments. Food Control, 22(5), 762-766. https:// doi.org/10.1016/j.foodcont.2010.11.011

Cetinkaya, F, Elal Mus, T., Yibar, A., Guclu, N., Tavsanli, H., & Cibik, R. (2014). Prevalence, serotype identification by multiplex polymerase chain reaction and antimicrobial resistance patterns of *Listeria monocytogenes* isolated from retail foods. Journal of food safety, 34(1), 42-49. https://doi. org/10.1111/jfs.12093

Cetinkaya, F., & Soyutemiz, G. E. (2007). Evaluation of *Listeria monocytogenes* populations during the manufacture and vacuum-packaged storage of kashar cheese. Acta Veterinaria Brno, 76(1), 143-148. https://doi.org/10.2754/avb200776010143

Cokal, Y., Dagdelen, A., Cenet, O., & Gunsen, U. (2012). Presence of L. monocytogenes and some bacterial pathogens in two Turkish traditional foods, Mihalic cheese and Hosmerim dessert. Food Control, 26(2), 337-340. https://doi. org/10.1016/j.foodcont.2012.01.058

Colak, H., Hampikyan, H., Bingol, E. B., & Ulusoy, B. (2007). Prevalence of L. monocytogenes and Salmonella spp. in tulum cheese. Food Control, 18(5), 576-579. https://doi. org/10.1016/j.foodcont.2006.02.004

Cossart, P. (2011). Illuminating the landscape of hostpathogen interactions with the bacterium *Listeria monocytogenes*. Proceedings of the National Academy of Sciences, United States of America, 108(49), 19484–19491. https://doi. org/10.1073/pnas.1112371108 Durmaz, H., Avci, M., & Aygün, O. (2015). The presence of Listeria species in corn silage and raw milk produced in Southeast Region of Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21(1), 41-44. https://doi.org/10.9775/ kvfd.2014.11664

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997) Bias in meta- analysis detected by a simple, graphical test. BMJ, 315(7109), pp. 629-634. https://doi.org/10.1136/bmj.315.7109.629

Ekici, G., Dümen, E., Bayrakal, G. M., & Ergin, S. (2019). Molecular identification of *Listeria monocytogenes* and *Escherichia coli* O157: H7 isolated from fresh kashar cheese and milk creme. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 25(2), 215-219. https://doi.org/10.9775/kvfd.2018.20702

Falardeau, J., Trmčić, A., & Wang, S. (2021). The occurrence, growth, and biocontrol of *Listeria monocytogenes* in fresh and surface ripened soft and semisoft cheeses. Comprehensive Reviews in Food Science and Food Safety, 20(4), 4019-4048. https://doi.org/10.1111/1541-4337.12768

Gulel, G. T., Gucukoglu, A., Cadirci, O., Saka, E., & Alisarli, M. (2020). Serotyping and antibiotic resistance of *Listeria mono-cytogenes* isolated from raw water buffalo milk and milk products. Journal of Food Science, 85(9), 2889-2895. https://doi. org/10.1111/1750-3841.15376

Guner, A., & Telli, N. (2011). A survey on the presence of *Listeria monocytogenes* in various semi-hard cheeses from different regions of Turkey. Journal of Animal and Veterinary Advances, 10(14), 1890-4. https://doi.org/10.3923/ja-vaa.2011.1890.1894

Jiang, X., Jiang, C., Yu, T., Jiang, X., Kang, R., Ren, S., Chen, H., Zhang, Y., Li, Y., Meng, H., & Wang, H. (2022). Phenyllactic acid application to control *Listeria monocytogenes* biofilms and its growth in milk and spiced beef. International Journal of Food Microbiology, 381, 109910. https://doi.org/10.1016/j. ijfoodmicro.2022.109910

Kahraman, T., Ozmen, G., Ozinan, B., & Omer Goksoy, E. (2010). Prevalence of Salmonella spp. and *Listeria monocytogenes* in different cheese types produced in Turkey. British Food Journal, 112(11), 1230-1236. https://doi. org/10.1108/00070701011088214

Karadal, F., & Yildirim, Y. (2014). Antimicrobial susceptibility and serotype distribution of *Listeria monocytogenes* isolates obtained from raw milk cheese samples sold in Nigde. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 61(4), 255-260. https://doi.org/10.1501/Vetfak_0000002639

Kelley, G. A., & Kelley, K. S. (2019). Systematic reviews and meta-analysis in nutrition research. British Journal of Nutrition, 122(11), 1279-1294. https://doi.org/10.1017/ S0007114519002241

Kevenk, T. O., & Gulel, G. T. (2016). Prevalence, antimicrobial resistance and serotype distribution of *Listeria monocytogenes* isolated from raw milk and dairy products. Journal of Food Safety, 36(1), 11-18. https://doi.org/10.1111/jfs.12208 Kevenk, T. O., & Koluman, A. (2022). Seasonal effect on L. monocytogenes prevalence in meat and dairy products assessed by VIDAS LMO2 and ISO 11290: 1 methods. International Food Research Journal 29(4), 929 – 936. https://dx.doi. org/10.47836/ifrj.29.4.20

Lee, Y. H. (2019). Strengths and limitations of meta-analysis. The Korean Journal of Medicine, 94(5), 391-395. https://doi.org/10.3904/kjm.2019.94.5.391

Matyar, F., Guzeldag, G., & Mercimek, H. A. (2010). Multiple antibiotic resistance among *Listeria monocytogenes* in retail foods, in Adana, Turkey. Italian Journal of Food Science, 22(4), 467-472.

Mazaheri, T., Cervantes-Huamán, B. R., Bermúdez-Capdevila, M., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2021). *Listeria monocytogenes* biofilms in the food industry: is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms, 9(1), 181. https://doi. org/10.3390/microorganisms9010181

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the Prisma statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Nardi, V. A. M., Teixeira, R., Ladeira, W. J., & de Oliveira Santini, F. (2020). A meta-analytic review of food safety risk perception. Food Control, 112, 107089. https://doi. org/10.1016/j.foodcont.2020.107089

Ntuli, V., Sibanda, T., Elegbeleye, J. A., Mugadza, D. T., Seifu, E., & Buys, E. M. (2023). Dairy production: microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety (pp. 439-454). Academic Press.

Oktem, A. B., Bayram, G., Ceylan, A. E., & Yentur, G. (2006). Prevalence of *Listeria monocytogenes* in some Turkish foodstuffs. Journal of food quality, 29(1), 76-86. https://doi. org/10.1111/j.1745-4557.2006.00057.x

Ramaswarmy, V., Cresence, V. M., Rejitha, J. S., Lekshmi, M. U., Dharsana, K. S., Prasad, S. P. & Vijila, H. M. (2007). *Listeria*–review of epidemiology and pathogenesis. Journal of Microbiology Immunology and Infection, 40(1), 4–13.

Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernández Escámez, P.S., Girones, R., Herman, L., Koutsoumanis, K., Nørrung, B., Robertson, L., Ru, G., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J.,... Lindqvist, R. (2018) *Listeria monocytogenes* contamination of ready-to-eat foods and the risk for human health in the EU. EFSA Panel on Biological Hazards (Biohaz). EFSA Journal, 16:1–173. https://doi.org/10.2903/j. efsa.2018.5134

Sagun, E., Sancak, Y. C., İsleyici, Ö., & Ekici, K. (2001). The presence and prevalence of Listeria species in milk and herby cheese in and around Van. Turkish Journal of Veterinary & Animal Sciences, 25(1), 15-19.

Sanlıbaba, P., Tezel, B. U., & Cakmak, G. A. (2018). Detection of *Listeria* spp. in raw milk and dairy products retailed in Ankara. Gıda, 43(2), 273-282. https://doi.org/10.15237/gida. GD17107

Tasci, F., Turutoglu, H., & Ogutcu, H. (2010). Investigations of Listeria species in milk and silage produced in Burdur province. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16: 93-97.

Turhan, U. E. (2019). The presence of pathogenic bacteria in traditional cheese sold in local market in Hatay province, Turkey. Applied Ecology and Environmental Research, 17(3), 7135-45. http://dx.doi.org/10.15666/aeer/1703_71357145

Türkiye İstatistik Kurumu. Hayvancılık İstatistikleri Veri Tabanı (2022). Çiğ süt üretim istatistikleri. https:// data.tuik.gov.tr/Bulten/Index?p=Cig-Sut-Uretim-Istatistikleri-2020-2021-45861.

Ulusoy, B. H., & Chirkena, K. (2019). Two perspectives of *Listeria monocytogenes* hazards in dairy products: the prevalence and the antibiotic resistance, Food Quality and Safety, 3(4), 233–241. https://doi.org/10.1093/fqsafe/fyz035

Wang, N. (2018). Conducting meta-analyses of proportions in R. Research Gate: College Station, TX, USA.

World health Organization, WHO. (2018). Listeriosis, 20 February, 2018. https://www.who.int/news-room/fact-sheets/detail/listeriosis (Accessed 26 June 2023).

Yonar, H., Yonar, A., Mishra, P., Abotaleb, M., Al Khatib, A. M. G., Makarovskikh, T., & Cam, M. (2022). Modeling and forecasting of milk production in different breeds in Turkey. Indian Journal of Animal Sciences, 92(1), 105-111.

Yigin, A., Kılıc Altun, S., Demirci, M., Eser, N., & Yoldas, A. (2020). Utilization of real-time PCR method for identification of *Listeria* spp. from homemade white cheese originating from Southeast of Turkey. Applied Ecology and Environmental Research, 18(4), 5673-5682. http://dx.doi.org/10.15666/ aeer/1804_56735682