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ABSTRACT An analysis of discrete-time predator-prey systems is presented in this paper by determining
the minimum amount of prey consumed before predators reproduce, as well as by analyzing the system’s
stability and bifurcation. In order to investigate the local stability of the interior equilibrium point of the proposed
model, discrete dynamics system theory is employed first. Moreover, the characteristic equation is analyzed to
determine the Neimark-Sacker (NS) bifurcation of the system. The normal form and bifurcation theory are
used to investigate the NS bifurcation around the interior equilibrium point. Based on its analysis, the system
exhibits Neimark-Sacker bifurcation when positive parameters are present and non-negative conditions are
met. The region of stability of chaotic behavior can be discovered by developing a feedback control strategy.
By utilizing the maximum Lyapunov exponent, the effect of initial conditions on developed systems is further
explored. Finally, a computer simulation illustrates the results of the analysis.
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INTRODUCTION

It is widely known that predators and prey interact dynamically in
nature, which helps to link complex food chains and food networks.
The biological functions of predator-prey system dynamics have
been explained by several predator-prey models. Predator-prey
models are widely regarded as being one of the best, Lotka-Volterra
is receiving increasing attention in recent years (R. M. Eide 2018;
Pan 2013). Many studies have sought to understand the dynamical
properties of the Lotka-Volterra model, since it plays an important
role in ecosystem studies. These properties include dynamical
behavior, stability, persistence, and antiperiodic, periodic, and
near periodic solutions (Z. L. Luo 2016; X. W. Jiang 2021).

Natural interactions between predators and prey are fascinat-
ing puzzles. Ecology’s fascination with ecosystems comes from
the intimate interconnections between species. When chaos and
bifurcation are introduced into this intricate dance, figuring out
the dynamics becomes even more difficult. A chaotic environment
characterized by sudden shifts and unpredictability complicates
predator-prey relationships. An environment such as this is con-
ducive to the development of novel patterns, unexpected results,
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as well as a better understanding of the nature of life. The purpose
of this study is to shed light on predator-prey interactions within
chaotic and bifurcating environments, as well as their mechanisms,
effects, and ecological implications. To understand these systems
and reveal hidden connections, we will utilize chaos theory, math-
ematical modeling, and ecological studies (Zu et al. 2018; Q. 2015;
Hu Z. 2011; Ibrahim and Touafek 2014; L. Men 2015).

In this exploration, we will draw on innovative research and
seminal studies on predator-prey interactions. By examining the
works of ecological pioneers like Lotka and Volterra, our scientific
investigation will weave a rich tapestry. It is our goal to examine
predator-prey relationships in environments that challenge con-
ventional wisdom and our understanding of the natural world.
This investigation will help us unravel the enigmatic language of
life, which is enigmatic.

When it comes to population dynamical models, difference
equation-based models and differential equation-based models
can be distinguished from each other. Recent years have seen
an increase in the popularity of discrete-time population models
(Q. 2015; L. Men 2015). For the following reasons, discrete-time
models are more appropriate than continuous-time models when
populations have non-overlapping generations and small numbers
of populations. The second reason is that discrete-time simulation
results are more accurate. Moreover, continuous-time models can
be numerically simulated by discretising and transforming them
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into its discrete counterpart . As a result, discrete-time models
exhibit rich dynamical behaviors. In a study entitled Periodic Solu-
tion of Predator-Prey Models, (Fazly and Hesaaraki 2007; X. Zhang
2016), (Zhang C.H 2010) performed studies on periodic solutions
to determine their stability, permanence, and existence. In discrete
dynamical systems, properties such as periodicity, local and global
stability, persistence, uniqueness of equilibrium, and boundedness
of solutions are taken into account (Garic Demirovic M. 2009; Q.
2015; Kalabusic S. 2011; Ibrahim and Touafek 2014). Numerous
articles also investigated the possibility of bifurcation and chaos
when using discrete-time models (Hu Z. 2011; Sen M 2012; Chen
and Changming 2008; Gakkhar and Singh 2012; Joydip Dhar 2015).

Smith et. al. (Smith 1968) introduced the following predator-
prey model where Un and Vn represent the prey and predator
population sizes, respectively.

Un+1 =
(

R − Un(R−1)
UE

− CVn

)
Un

Vn+1 = r
UE

UnVn

 (1)

Where, UE represents the equilibrium density of preys in the
absence of predator. R and r denote the maximum reproductive
rates of the prey and predator respectively, C is a constant. Unfor-
tunately, (Smith 1968) was unable to find the bifurcation parameter
of the system (1) as well as the equilibrium point where the bifur-
cation exists. A modification to the predator-prey model is made
by (Khan 2016) and is presented as follows:

sn+1 = ρ (1 − sn)sn − sntn,

tn+1 = 1
Υ sntn

 (2)

where sn and tn represent the number of preys and predators,
respectively. The initial values s0, t0 are positive real numbers
while ρ, Υ are parameters. In contrast to (Smith 1968), (Khan 2016)
did not find out numerically the results of the Neimark-Sacker
bifurcation for model (2) but discussed in an understandable man-
ner all the theoretical aspects of the Neimark-Sacker bifurcation
that has become an important topic.

In dynamical systems theory, Neimark-Sacker bifurcations are
named after Russian mathematician L. A. Neimark and Amer-
ican mathematician A.F Shilnikov. Dynamic systems are char-
acterized by the point at which a stable periodic orbit turns into
chaos. As a result of this bifurcation, the system exhibits a complex,
non-repeating behavior. Natural and engineered systems, such as
weather patterns and electricity circuits, exhibit Neimark-Sacker
bifurcations, which are fundamental to understanding chaos.

Based on (Smith 1968), we have developed a modified discrete
predator-prey model that follows:

xn+1 = (1 − A)x2
n + xn(A − yn)

yn+1 = 1
B xnyn

 (3)

Biological description of parameters are mentioned in Table 1
Considering its structure, this paper can be separated into the

following sections. In Section-2, we discuss how equilibria exists
and how they are stable locally in R+

2 for the system (3). Further-
more, our discussion focuses on the specific parametric conditions
required for the existance of a Neimark-Sacker bifurcation. As

a bifurcation parameter A is used in Section-3 to study bifurca-
tion (NS). By using feedback control methods, a stable region
is achieved in section-4. The numerical simulations presented
in Section-5 support the theoretical discussion. By showing the
Maximum Laypnuov exponent in section-6, the fluctuation of the
system is discussed according to its initial condition. Finally, we
present a brief conclusion in Section-7.

EQUILIBRIUM POINTS AND THEIR STABILITY

The purpose of this section is to examine the existence of fixed
points in discrete systems and analyses their stability. By using the
formula given below, we can determine the fixed points of system
(3) which satisfy

xn = xn+1 = x∗,

yn = yn+1 = y∗


When we use it in the model (3), we get the following result:

x∗ = (1 − A)(x∗)2 + x∗(A − y∗),

y∗ = 1
B x∗y∗

 (a*)

Framework (a∗) clearly describes the fixed points of model (1).
(i) The system (3) has always a Extinction equilibrium point

E1 = (0, 0).

(ii) The system (3) has Extinction and Exclusion equilibrium
points
E1 = (0, 0) and E2 = (1, 0) for B < 1.

(iii) There is a unique equilibrium point for the system (3) that
is E3 = (B, A + (1 − A)B − 1) for A < 1, B > 1.

Our discussion now turns to the dynamics of model (1) about
these equilibrium points. Linearized system (1) about fixed points
(x, y) can be described by the Jacobian matrix

J(Ei) =

 A + 2(1 − A)x − y −x

y
B

x
B


as a result, the Jacobian matrix J of the linearized system (3) over
the unique positive equilibrium (B, A + (1 − A)B − 1) is defined
by

λ2 + rλ + s = 0 (a**)

where, r = AB − B − 2 , s = A − 2AB + 2B
Additionally, As can be seen from the equation above, all eigen-

values of the Jacobian of (3) evaluated at the unique positive equi-
librium (B, /A + (1 − A)B − 1) are calculated as follows:

λ1,2 =
1
2
(2 + B − AB ±

√
∆)

where,

∆ = r2 − 4rs
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■ Table 1 Description of the parameters

Parameter Role in the Model

xn Prey population size at a particular time step.

yn Predator population size at a particular time.

A Represents prey population intrinsic growth rate, which determines
the reproduction rate of preys.

B Measuring predator productivity in converting prey. When predators
successfully consume their prey.

∆ = −4(A + 2B − 2AB) + (−2 − B + AB)2

As a means of analyzing how stable the fixed points of the
model (3) are, here is the following definition:
Definition 1:
A fixed point (P, Q) is called

(i) a sink if |λ1| < 1 and |λ2| < 1, it is locally asymptotically
stable.

(ii) when |λ1| > 1 and |λ2| > 1, the source is unstable.
(iii) if |λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2| < 1), it is

saddle.
(iv) if either |λ1| = 1 or |λ2| = 1, it is not hyperbolic. Using

the definition above, we will derive the lemma (2.1) from the
topological classification of the fixed points within the model (3). If
we evaluate the dynamical map in (3) at any point (x, y), Jacobian
matrix is calculated as follows:

J(E1) =

 A 0

0 0



J(E2) =

 2 − A −1

0 1
B



J(E3) =

 1 + B − AB −B

−1+A+B−AB
B 1


Having discussed the models’ fixed points (3), we will now

discuss their topological classification. From (a ∗ ∗) we have:
Lemma 1: The following topological classification holds for the

fixed point E1(0, 0)
(i) When A < 1 the point E1 becomes sink .
(ii) When A > 1 the point E1 is saddle .
(iii) When A = 1 the point E1 is non-hyperbolic.
Lemma 2:
The following topological classification holds for the fixed point

E2(1, 0)
(i) If A > 1 and B > 1 then E2(1, 0) is a sink .
(ii) If A < 1 and B > 1 then E2(1, 0) is a saddle .
(iii) If A = 1 or B = 1 then E2(1, 0) will be non-hyperbolic .
Lemma 3:
The following topological classification holds for the fixed point

E3 = (B, A + (1 − A)B − 1) f or A < 1, B > 1

(i) Among the following parametric conditions, E3 is a sink if
one of the following parametric conditions holds:

(i.a) r ≥ 4s and 0 < A < 1
(i.b) r < 4s and A < ( B−2

B )2

(ii) It is possible for E3 to be a source if one of the following
parametric conditions holds:

(ii.a) r ≥ 4s and A > 1
(ii.b) r < 4s and A > ( B−2

B )2

(iii) When one parametric condition is satisfied, E3 will not be
hyperbolic if one of the following parametric conditions holds:

(iii.a) r ≥ 4s and A = 1
(iii.b) r < 4s and A = ( B−2

B )2

NEIMARK-SACKER BIFURCATION AT E3

Using Lemma(2.3), E3 cannot be hyperbolic when A = 1. The
Neimark-Sacker bifurcation in the system (3) can therefore be
studied by choosing A as the bifurcation parameter near the point
E3. In this context, non-hyperbolic parameters are denoted as

Hk = { (A, B); ∆ < 0, A = (
B − 2

B
)2, B > 1, A, B > 0 }

Here’s a description of the system (3) with arbitrary parameters
(α, β) ∈ Hk

xn+1 = (1 − α)x2
n + xn(α − yn),

yn+1 = 1
β xnyn

 (4)

One can easily found that the point (β, α + (1 − α)β − 1) is the
unique positive equilibrium point for the system (4) when β > 1 ,
α < 1. The following perturbations would be made to model (4)

xn+1 = (1 − (α + α1))x2
n + xn((α + α1)− yn),

yn+1 = 1
β xnyn

 (5)

where |α1| << 1, which is small parameter. Using (5) as a
linearized system and P1(β, α + (1 − α)β − 1), as a unique point
of positive equilibrium, the Jacobian matrix has the following
characteristic equation:

ς2 + r(α1)ς + s(α1) = 0
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where,

r(α1) = (α + α1)β − β − 2 , s(α1) = (α + α1)− 2αβ + 2β

The characteristic equation, as well as the roots of the charac-
teristic equation, change when α varies in a small radius around
0,

ς1,2 =
−r(α1)±

√
r2(α1)−4s(α1)
2

ς1,2 =
(α+α1)β−β−2±

√
((α+α1)β−β−2)2−4((α+α1)−2αβ+2β)

2

ς1,2 =
(α+α1)β−β−2±ι

√
−((α+α1)β−β−2)2+4((α+α1)−2αβ+2β)

2

For α1 <
2((s(α1))

1
2 +1)+β(1−α)

β there are two complex conjugate
roots.

Also, we have

trJ(P1) ̸= 0,−1

,
d | ς1,2 |

dα1 |α1

= 4(αβ2 − (β + 1)2) > 0

After simplification we get ςi
1,2 ̸= 1 for i = 1, ..., 4, is satisfied.

A method for transforming the equilibrium point P1(β, α +
(1 − α)β − 1) of the system (5) into its origin, we take un = xn −
β, vn = yn − α − (1 − α)β + 1. After calculation we get,

un+1 = (1 − (α + α1))(un + β)2 + (un + β)((α + α1)−
(vn + α + (1 − α)β − 1))

vn+1 =
1
β
(un + β)(vn + α + (1 − α)β − 1)


(6)

We examine system (5) in its normal form when α1 = 0 in the
following way. The Taylor series at (un, vn) = (0, 0) is as follows:

un+1 = b11un + b12vn + b13u2
n + b14unvn + b15,

vn+1 = b21un + b22vn + b23unvn + b24

 (7)

Where,

b11 = 1 − β − αβ, b12 = −β, b13 = −α, b14 = −1, b15 = 1 + β − β2

b21 =
(1 − α)(β − 1)

β
, b22 = 1, b23 =

1
β

, b24 = (1 − α)(β − 1)

The linear part of (7) is transformed into a canonical form by
the matrix T

T =

 b12 0

µ − b11 −η


 Xn

Yn


where,

µ =
(α + α1)β − β − 2

2
,

and

η =

√
((α + α1)β − β − 2)2 − 4((α + α1)− 2αβ + 2β)

2
.

In this way, the system (7) can be expressed as follows:

Xn+1 = µXn − ηYn + H̃(Xn, Yn)

Yn+1 = ηXn + µYn + K̃(Xn, Yn)

 (8)

where

H̃(Xn, Yn) = m11X2
n + m12XnYn + m13

K̃(Xn, Yn) = m21X2
n + m22XnYn + m23

 (9)

and

m11 = b12b13 + (µ − b11)b14, m12 = −b14η, m13 = b15

m21 = b12b23(µ − η), m22 = −b12b23η, m23 = b24

Furthermore,

H̃Xn Xn |(0,0)= 2m11, H̃XnYn |(0,0)= m12, H̃YnYn |(0,0)= 0

H̃Xn Xn Xn |(0,0)= H̃Xn XnYn |(0,0)= H̃XnYnYn |(0,0)= H̃YnYnYn |(0,0)= 0

and

K̃Xn Xn |(0,0)= 2m21, K̃XnYn |(0,0)= m22, K̃YnYn |(0,0)= 0

K̃Xn Xn Xn |(0,0)= K̃Xn XnYn |(0,0)= K̃XnYnYn |(0,0)= K̃YnYnYn |(0,0)= 0

For (8) to experience the Neimark-Sacker bifurcation, the fol-
lowing relation must be nonzero (Singh and Deolia 2020)

Ω = −Re[
(1 − 2λ̄)λ̄2

1 − λ
ζ11ζ20]−

1
2
∥ ζ11 ∥2 − ∥ ζ02 ∥2 +Re(λ̄ ζ21)

Where,

ζ02 =
1
8
[H̃Xn Xn − H̃YnYn + 2K̃XnYn + ι(K̃Xn Xn − K̃YnYn + 2H̃XnYn )] |(0,0),

ζ11 =
1
4
[H̃Xn Xn − H̃YnYn + ι(K̃Xn Xn + K̃YnYn)

] |(0,0),
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ζ20 =
1
8
[H̃Xn Xn − H̃YnYn + 2K̃YnYn + 2K̃XnYn + ι(K̃Xn Xn − K̃YnYn − 2H̃XnYn )] |(0,0),

ζ21 = 1
16 [H̃Xn Xn Xn + H̃XnYnYn + K̃Xn XnYn + K̃YnYnYn +

. ι(K̃Xn Xn Xn + K̃XnYnYn − H̃Xn XnYn − H̃Xn XnYn )] |(0,0)

After calculation , we get

ζ02 =
1
4
[m11 + m22 + ι(m21 + m12)],

ζ11 =
1
2
[m11 + ιm21],

ζ20 =
1
4
[m11 + m22 + ι(m21 − m12)],

ζ21 = 0,

CHAOS CONTROL

The whole point of this section is to explore chaos control via state
feedback control (Singh and Deolia 2020; Salman SM 2016; Alaydi
1996; Rana et al. 2017; Abarbanel 1996). To ensure that this section
is comprehensive, we will first give an explanation of marginal
stability.
Definition 2: Marginally stable refers to systems or processes that
are neither stable nor unstable, but exist at the boundary between
stability and instability. This indicates the possibility of an unstable
system occurring when a small perturbation occurs.

In this case, we have a discrete biological model (3) that is as
follows:

xn+1 = (1 − A)x2
n + xn(A − yn) + wn

yn+1 = 1
B xnyn

 (10)

Control is added by the addition of wn = −p (xn − B)− q (yn −
(A + (1 − A)B − 1)), with p, q indicating feedback gains. At the
interior fixed point P of the controlled system (10), the variational
matrix VP is evaluated according to the map below:

(F, G) 7−→ (xn+1, yn+1) (11)

Where

F : = (1 − A)x2
n + xn(A − yn)− p (xn − B)−

q (yn − (A + (1 − A)B − 1))

G : =
1
B

xnyn


(12)

VP =

 A − p + 2(1 − A)x − y −q − x

y
B

x
B


If characteristic root corresponding to VP is represented by

Λ1, Λ2 at P, then

Λ1 + Λ2 = 2 + B − AB − p (13)

Λ1Λ2 = A + 2B − 2AB − p − (−1 + A)(−1 + B) q
B

(14)

Solving equations (13) and (14) brings out the lines of marginal
stability under the following conditions ( Λ1 = ±1 and Λ1Λ2 = 1).
The presence of these conditions guarantees that the moduli of the
eigenvalues are less than 1.

When Λ1Λ2 = 1 , then from (14), we can get

M1 : A + 2B − 2AB − p − (−1 + A)(−1 + B) q
B

− 1 = 0 (15)

When Λ1 = 1 , then from (13) and (14), we can get

M2 :
(−1 + A) (−1 + B) (B + q)

B
= 0 (16)

When Λ1 = −1 , then from (13) and (14), we can get

M3 : 3AB + 2p +
(−1 + A) (−1 + B)q

B
− 3 − A − 3B = 0 (17)

By taking (15), (16) and (17) in conjunction, we obtain the
triangular region, which further reveals the fact that |Λ1,2| < 1.

20 10 0 10 20

20

10

0

10

20

Region of 

Stable Eigen 

values

M3

M2

M1

x-axis: p

y-axis: q

Figure 1 Region of stability where |Λ1,2| < 1

NUMERICAL SIMULATION

As a follow-up to our theoretical results, here we will provide
some numerical simulations to support the dynamical behavior
of the system (3). Our results would not be hyperbolic if B = 0.5.
According to Lemma 2.3, if A = 2.5, the bifurcation parameter will
be stable. It is however not possible to have a stable bifurcation
parameter if A < 2.5, as then attracting close curves will emerge
from a positive equilibrium. Based on Figures 14 and 25, the local
stability of the unique positive equilibrium is ensured. Based on

CHAOS Theory and Applications 211



Figures 15 and 17, one can immediately see from Figure 16 and
Figure 18 an attractor of the system (3). As a result, Figure 2 to
Figure 13 represent the local stability of the system (3), whereas
Figure 14 to Figure 25 illustrate the global asymptotic stability
of the unique positive equilibrium. As shown in Figure 20 to
Figure 24, the unique positive equilibrium is unstable for different
parameter choices when B < 0.5, whereas an attracting invariant
closed curve bifurcates from the positive equilibrium. Figure 26
and Figure 27 show the Neimark-Sackar bifurcation of the system
(3). The state feedback control method is then used to stabilize
the chaos in the discrete biological model (3). We now proceed to
Section (4) to verify the validity of the results obtained. Suppose
A = 3.2 and B = 1.5, then (15), (16) and (17) can be obtained
based on these values

M1 : − 4.4 − p − 0.733333q = 0 (18)

M2 : 0.733333(1.5 + q) = 0 (19)

M3 : 3.7 + 2p + 0.733333q = 0 (20)

The lines found in (18), (19) and (20) form a triangle that repre-
sents the region encompassing |Λ1,2| < 1 (see Figure 1). Figure 28
and Figure 29 show that the system (3) is sensitive to their initial
conditions, which is a useful indicator of the system’s sensitivity.
Last but not least, numerical verification was performed to confirm
the theoretical results. In different aspects of biology, especially in
the field of ecology, this research can provide a theoretical basis for
research.

2000 4000 6000 8000 10000
n

0.40

0.45

0.50

0.55

0.60

x(n)

Figure 2 Shows behavior of solution of xn, when A = 2.3, B =
0.499, x0 = 0.6, y0 = 0.7
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Figure 3 Shows behavior of solution of yn, when A = 2.98, B =
0.45, x0 = 0.4, y0 = 0.5
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Figure 4 Shows behavior of solution of xn, when A = 2, B =
0.48, x0 = 0.2, y0 = 0.3
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Figure 5 Shows behavior of solution of xn, when A = 3.51, B =
0.81, x0 = 0.003, y0 = 0.004
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Figure 6 Shows behavior of solution of yn, when A = 3.51, B =
0.81, x0 = 0.03, y0 = 0.04
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Figure 7 Shows behavior of solution of xn, when A = 3.76, B =
0.79, x0 = 0.2, y0 = 0.4
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Figure 8 Shows behavior of solution of yn, when A = 3.76, B =
0.79, x0 = 0.2, y0 = 0.4
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Figure 9 Shows behavior of solution of xn, when A = 2.5, B =
0.5, x(0) = 0.4, y0 = 0.3
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Figure 10 Shows behavior of solution of yn, when A = 2.5, B =
0.5, x0 = 0.4, y0 = 0.3
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Figure 11 Shows behavior of solution of yn, when A = 3.5, B =
0.5, x0 = 0.04, y0 = 0.03
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Figure 12 Shows behavior of solution of xn, when A = 3.51, B =
0.81, x0 = 0.003, y0 = 0.004
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Figure 13 Shows behavior of solution of yn, when A = 2.5, B =
0.5, x0 = 0.4, y0 = 0.3
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Figure 14 Shows phase portrait in (x, y) plane, when A =
1.81, B = 0.51, x0 = 0.03, y0 = 0.05, of system (3)
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Figure 15 Shows phase portrait in (x, y) plane, when A =
2.33, B = 0.5, x0 = 0.003, y0 = 0.005, of system (3)
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Figure 16 Shows phase portrait in (x, y) plane, when A =
1.83, B = 0.55, x0 = 0.04, y0 = 0.05, of system (3)
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Figure 17 Shows phase portrait in (x, y) plane, when A =
1.876, B = 0.59, x0 = 0.09, y0 = 0.03, of system (3)
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Figure 18 Shows phase portrait in (x, y) plane, when A =
1.073, B = 0.637, x0 = 0.04, y0 = 0.005, of system (3)
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Figure 19 Shows phase portrait in (x, y) plane, when A =
2.43, B = 0.44, x0 = 0.0035, y0 = 0.041, of system (3)
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Figure 20 Shows phase portrait in (x, y) plane, when A =
2.87, B = 0.49, x0 = 0.7, y0 = 0.8, of system (3)
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Figure 21 Shows phase portrait in (x, y) plane, when A = 2, B =
0.48, x0 = 0.2, y0 = 0.3, of system (3)
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Figure 22 Shows phase portrait in (x, y) plane, when A =
2.3, B = 0.499, x0 = 0.6, y0 = 0.7, of system (3)
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Figure 23 Shows phase portrait in (x, y) plane, when A =
2.25, B = 0.49, x0 = 0.5, y0 = 0.6, of system (3)
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Figure 24 Shows phase portrait in (x, y) plane, when A =
1.96, B = 0.39, x0 = 0.4, y0 = 0.5, of system (3)
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Figure 25 Shows phase portrait in (x, y) plane, when A =
1.96, B = 0.39, x0 = 0.4, y0 = 0.5, of system (3)
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Figure 26 Neimark-Sacker bifurcation diagram of system (3) in
(A, xn) plane
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Figure 27 Neimark-Sacker bifurcation diagram of system (3) in
(A, yn) plane

MAXIMUM LYAPUNOV EXPONENT

The Lyapunov exponent is a concept derived from chaos theory
and dynamical systems. The aim of this measurement is to deter-
mine how sensitive chaotic systems are to their initial conditions.
When calculating adjacent trajectory divergences in phase space,
one can use the Lyapunov exponent (Abarbanel 1996).

Positive Lyapunov exponents cause the trajectory of a system
to diverge exponentially, leading to it being classified as chaotic.
When Lyapunov exponents are above zero, the system outcomes
are highly sensitive to conditions at the start, indicating even small
changes could have major impacts. Alternatively, a negative Lya-
punov exponent indicates that nearby trajectories are convergent,
which indicates a predictable and stable system. From a mathe-
matical perspective, it is defined as:

Definition 3: For the map

Θ : R 7→ R

The Lyapunov exponent is defined as:

L̃ = lim
n→∞

ln | d
dx

Θn(x = x0) |
1
n (21)
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Figure 28 Maximum Lyapunov Exponent of the model (3)
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Figure 29 Maximum Lyapunov Exponent of the model (3)

CONCLUSION AND DISCUSSION

Previous research has demonstrated that population models de-
scribed by difference equations have a crucial role in population
dynamics and mathematical ecology. In this study, we examine
the qualitative and dynamic properties of discrete predator-prey
models. Based on bifurcation theory, we determined the stability
conditions for a unique steady state. In this paper, we demon-
strate that the model (3) undergoes NS bifurcation. Moreover,
we present some numerical simulations including the behavior of
solution of prey xn and predator yn over time (n), phase portraits
of system by taking different initial conditions and the values of
parameters and the bifurcation diagram determining the range of
the bifurcation parameter (3 < A < 4). All this numerical study
has been conducted by using "Mathematica" program which verify
our theoretical results.

In this paper, we demonstrate that the stability of the unique
fixed point (3) occurs at a critical bifurcation value when the bifur-
cation parameter (A) reaches this critical value. Neimark-Sacker
bifurcation follows. A more complex dynamics is also visible in
certain regions in the model (3) when the parameter values are
changed. We can conclude that parameter (A) is highly important
for the stability of model (3). Additionally, under the influence
of the Neimark-Sacker bifurcation, invariant closed curves are dy-
namically unstable. Model (3) is an interaction between predators
and prey that can be viewed from the perspective of biology. As a
result, both prey and predator populations are capable of oscillat-
ing around some mean values under suitable conditions since NS
bifurcation exists in the model (3). In addition, the chaotic behav-
ior of the model (3) can be controlled by using feedback control
techniques. Besides showing the MLE, the article concludes that
the system fluctuates within the chaotic region.
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