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Öz

COVID-19, yüksek yayılım hızına ve Akut Solunum Sıkıntısı Sendromuna (ARDS) neden bir pandemidir. Enfekte bireylerde gelişen 
şiddetli pnömoni, çok fazla hastanın Yoğun Bakım Ünitesine (ICU) kabul edilmesine neden olmuştur. Bu da, sağlık sistemlerinde 
kapasitelerin aşılarak benzeri görülmemiş bir baskı meydana getirmiştir. Sağlık sistemlerinin aktif kalabilmesi ve ICU’ya yatması 
gereken hastaların durumlarının kritikleşmemesi için bu hastalığın prognozunun belirlenmesi oldukça önemlidir. Bu çalışmada, ICU’ya 
kabul edilen (COVID-19 SEVERITY ) ve COVID-19 nedeni ile ölen  (COVID-19 MORTALITY ) hastaların bilgilerini içeren 
veri setleri, Makine Öğrenmesi (ML) yöntemleri kullanılarak COVID-19 prognoz tespiti yapılmıştır. Veri setlerinde bulunan eksik 
veriler K-En Yakın Komşu (KNN) ile tamamlanmış ve Min-Max normalizasyonu yapılmıştır. Veri setleri, eğitim ve test setleri olarak 
bölünmüş ve veriler Sentetik Azınlık Aşırı Örnekleme Tekniği (SMOTE) ile dengelenmiştir. Ardından, Kolektif Öğrenme (EL) 
yöntemleri kullanılarak sınıflandırma gerçekleştirilmiştir. COVID-19 SEVERITY ve COVID-19 MORTALITY için Adaboost 
sınıflandırıcısı ile sırasıyla %89.54 ve %97.25 başarı elde edilmiştir. ML yöntemleri ile COVID-19 prognozunun başarılı ve hızlı bir 
şekilde tespit edilmesi, ICU’yu daha verimli kullanmaya ve sağlık sistemlerinin üzerindeki baskıyı hafifletmeye yardımcı olacaktır.

Anahtar Kelimeler: Hematolojik parametreler, makine öğrenmesi, sınıflandırma modelleri

Abstract

COVID-19 is a pandemic that causes a high rate of spread and Acute Respiratory Distress Syndrome (ARDS). Severe pneumonia in 
infected individuals has resulted in too many patients being admitted to the Intensive Care Unit (ICU). This has placed unprecedented 
pressure on health systems by exceeding capacities. It is essential to detect the prognosis of this disease so that the health systems 
can remain active and the conditions of the patients who need to be hospitalized in the ICU do not become critical. In this study, 
COVID-19 prognosis was detected by using ICU admission (COVID-19 SEVERITY) and COVID-19 related death (COVID-
19 MORTALITY) datasets with Machine Learning (ML) methods. The missing data of the datasets were filled with K-Nearest 
Neighbor (KNN), and Min-Max normalization was performed. Datasets were divided three times into training and test sets, and 
the data were balanced with the Synthetic Minority Oversampling Technique (SMOTE). Then, classification was carried out using 
Ensemble Learning (EL) methods. For COVID-19 SEVERITY and COVID-19 MORTALITY, 89.54% and 97.25% accuracy were 
achieved with the Adaboost classifier, respectively. Successful and rapid COVID-19 prognosis detection with ML methods will help 
to use the ICU more efficiently and relieve the pressure on health systems.
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1. Introduction
COVID-19 is the new viral respiratory disease that causes 
ARDS. Since its first appearance in 2019, it has been de-
tected in more than 200 countries in the world within 4 
months and has taken the world under its influence (Brinati 
et al. 2020). Because of this global epidemic, this disease 
has been defined as a pandemic. COVID-19 has caused se-
vere effects on people with chronic conditions such as dia-
betes, cancer, and heart disease, causing permanent illness 
and even death (WHO 2020, WHO 2022). Serious illness 
occurred in about 15% of infected patients, and about 6% of 
them reached critical levels (Wang et al. 2020). Too many 
people were admitted to the ICU due to severe pneumonia 
and ARDS (Pasquier et al. 2021). In this pandemic situation 
where emergency departments and ICUs are overcrowded, 
early detection of patients who need intensive care is very 
important for the proper functioning of health systems 
(Negant et al. 2020). In addition, one of the most important 
epidemiological criteria to be detected in infectious diseas-
es is the mortality of the disease (Ghani et al. 2005). De-
tecting the mortality of COVID-19, which has such a high 
contagiousness and ICU admission rate, makes it easier to 
determine the prognosis of the patients and to follow the 
pandemic surveillance. 

In addition to biasing individual health, COVID-19 has also 
affected countries in terms of economic, social, and health 
infrastructure systems (Dey et al. 2020, Fong et al. 2020). For 
example, in northern Italy, with 1,381 patients admitted to 
the ICU in the first wave of COVID-19, healthcare systems 
have experienced unprecedented pressure, exceeding 133% 
of capacities (Grasselli et al. 2020). For this reason, artificial 
intelligence-based studies have been carried out to support 
healthcare professionals in many tasks to slow down this ep-
idemic and control infrastructure systems (Chen et al. 2020, 
Erol Doğan and Uzbaş 2023, Kumar et al. 2023, Yang et 
al. 2020). While many studies have been conducted for the 
diagnosis of COVID-19-infected individuals, the develop-
ment of prognostic models for ICU admission and mortal-
ity estimation has lagged (Cabitza et al. 2021; Wynants et 
al. 2020). However, health systems in many countries have 
come under a great burden with COVID-19. In addition, 
critically ill patients admitted to the ICU have been found 
to have a higher mortality rate than normal COVID-19 
patients (Moore and June 2020, Willyard 2020). Therefore, 
early diagnosis of the prognosis and lethality of this dis-
ease is very important both for the health systems to remain 
active and for the condition of infected individuals not to 
become critical.

When the studies in the literature are examined, Podder et 
al. (2021) have developed various ML models for patients 
admitted to the ICU or semi-ICU.  RF and voting clas-
sifiers (RF, Logistic Regression (LR), Support Vector Ma-
chines (SVM)) achieved the best performance in classifying 
patients who should be admitted to ICU and semi-ICU. 
Voting classifiers achieved 98% success and were presented 
as the most successful result. Rodriguez-Nava et al. (2020) 
determined clinical AUC scores to determine ICU admis-
sion and mortality, and ultimately obtained AUC scores 
of 0.761 and 0.781 for ICU admission and mortality, re-
spectively. Kong et al. (2020) determined the importance 
of biomarkers with RF by taking blood samples from in-
fected individuals every 3-7 days to determine the sever-
ity of COVID-19 and evaluated the diagnostic accuracy 
of the most important proteins with the Recipient Oper-
ating Characteristic (ROC) curve. Famiglini et al. (2021) 
developed 3 prognostic ML models with blood parameters 
of individuals for the admission of COVID-19 patients 
to the ICU. These models take as input the dataset BIG-
DATA-COVID19, which includes blood parameters of 
COVID-19 patients, and predict whether they need to be 
transferred to the intensive care unit within 5 days. They 
obtained an AUC value of 0.880 with the ensemble model 
obtained with the XGBoost (XGB), RF, and LR classifiers. 
Alabad et al. (2022) developed an ML model estimating the 
length of ICU stay of COVID-19 patients in eastern Saudi 
Arabia. In this model, they achieved 94.16% success by us-
ing the RF classifier. Moulaei et al. (2022) compared several 
ML models that predicted COVID-19 mortality using ini-
tial hospital admission data from 1500 COVID-19 patients. 
As a result, the RF model was chosen as the most successful 
model to predict COVID-19 mortality with 95.03% suc-
cess and 0.990 AUC. Elshennawy et al. (2022) developed 
3 Deep Learning (DL) models that predict the mortality 
risk of infected individuals. The first of these models is CV-
CNN, which was developed with the Convolutional Neural 
Network (CNN). CV-CNN was developed using the clin-
ical dataset of 12020 patients, and this clinical dataset was 
also used in the second model, CV-LSTM + CNN, which 
was developed by combining Long Short-Term Memo-
ry (LSTM) and CNN. The third model, IMG-CNN, is a 
CNN model and this model estimates mortality using the 
clinical dataset used in the first two models converted to 
image data. As a result, the IMG-CNN model performed 
better than the other two models with a success of 94.14% 
and an AUC of 93.70%. 
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In this study, a dataset containing blood parameters of 
COVID-19 patients and 2 classes of information was 
used. The first class is the Severity class, which represents 
COVID-19 patients admitted and not admitted to the ICU. 
The other is the Dead class, which represents patients who 
died and did not die due to COVID-19. The general dia-
gram of this study is presented in Figure 1. First, certain data 
preprocessing was applied to the dataset: KNN was used to 
fill in missing data (Erol et al., 2022) and Min-Max nor-
malization was performed. Two sub-datasets were obtained 
from the filled and normalized datasets. The first sub-data-
set, COVID-19 SEVERITY, was obtained by dividing the 
blood parameter characteristics and Severity class in the 
dataset. The other sub-dataset, COVID-19 MORTALITY, 
was obtained by dividing the blood parameter characteris-
tics and Dead class. Each dataset was then divided three 
times into an 80% training set and a 20% test set. The data 
in the training sets were balanced with SMOTE. ML mod-
els were developed with the Severity and Mortality datasets 
and the EL method, Bagging, RF, and Adaboost classifiers. 

There are 2 main limitations to this study. These are: 

1. Blood values are influenced by genetic factors (Mahaney 
et al., 2005). Therefore, COVID-19 studies with blood 
parameters will be active for certain breeds.

2. Missing and unbalanced data is a known problem 
in medical data (Rahman and Davis, 2013; Hu et al., 
2017). While missing blood parameter data can cause 
bias in statistical analyses, unbalanced data distribution 
between classes can lead to both bias in statistical results 
and overfitting in classification. 

Considering these 2 limitations, the dataset in the study 
should be well analyzed. The data preprocessing steps to be 
applied to the dataset in the study directly affect the classi-

fication accuracy. Therefore, the completion of missing data 
and the elimination of data imbalance are the main steps of 
the study. 

As a result of this study, severity and mortality detection 
of infected individuals was performed with a single dataset 
containing the blood parameters of COVID-19 patients, 
whether they were admitted to the ICU, and whether they 
died as a result of the disease. In addition, by applying ap-
propriate data preprocessing to a single dataset that has all 
of this information, it has been shown that EL methods 
produce very successful results in determining the prognosis 
of the disease and keeping health systems active.

2. Material and Methods
2.1. Dataset

The BIGDATA-COVID19 (Famiglini et al. 2021) dataset 
used in this study includes age, sex, and routine blood test 
results of 1218 patients admitted to the COVID-19 emer-
gency department of San Raffaele Hospital in Milan (Italy) 
between February 19 and May 31, 2020. For those hospi-
talized for at least 24 hours, blood samples were collected 
every day of hospitalization, resulting in 4995 observations 
in total. There are 2 classes in the dataset, Severity and Dead. 
The Severity class contains information on whether patients 
were admitted to the ICU within 5 days of hospitalization. 
The Dead class contains information on whether individuals 
died due to COVID-19 during this period. The features and 
classes in the dataset are given in Table 1.

The Severity class in the BIGDATA-COVID19 (Fami-
glini et al. 2021) dataset represents COVID-19 patients 
who were and were not admitted to the ICU, and the Dead 
class represents patients who died and did not die due to 
COVID-19. After applying data preprocessing to the data-

Figure 1. General diagram of the study.
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data in the training set and 999 data in the test set. In the 
COVID-19 SEVERITY training set, the number of ICU 
admissions and non-admissions are 1087 and 2909, respec-
tively. In the COVID-19 MORTALITY training set, the 
number of deaths and non-deaths due to COVID-19 are 
124 and 3872, respectively. This imbalance in the datasets 
was balanced with SMOTE and the minority classes in the 
COVID-19 SEVERITY and COVID-19 MORTALITY 
training sets were completed to 2909 and 3872, respectively.

2.2.1. Missing Data Filling with KNN Algorithm

Missing data from the dataset affects the performance of 
ML models and prevents them from producing accurate 
predictions. KNN fills the missing data in the dataset based 
on the average distance to its k nearest neighbors. Euclid-
ean, Mahapolnis, and Manhattan distance metrics are used 
for distance calculation (Idri et al. 2016).

2.2.2. Min-Max Normalization

Min-Max normalization normalizes the data so that the 

set, 2 sub-datasets were obtained. The first sub-dataset, 
COVID-19 SEVERITY, was obtained by dividing the 
blood parameter properties and Severity class in the dataset. 
The other sub-dataset, COVID-19 MORTALITY, was ob-
tained by dividing the blood parameter characteristics and 
Dead class.

2.2. Data Preprocessing

In this study, the BIGDATA-COVID19 (Famiglini et al. 
2021) dataset was first subjected to certain data prepro-
cessing: Missing data were filled with the KNN (Erol et al. 
2022) and Min-Max normalization was performed in the 
range [0, 1]. Two sub-datasets were obtained from the filled 
and normalized datasets. The first sub-dataset, COVID-19 
SEVERITY, was obtained by dividing the blood parameter 
characteristics and Severity class in the dataset. The oth-
er sub-dataset, COVID-19 MORTALITY, was obtained 
by dividing the blood parameter characteristics and Dead 
class. Each dataset was then divided three times into an 
80% training set and a 20% test set. Each dataset has 3996 

Table 1. BIGDATA-COVID19 Dataset

Parameter Acronym Unit of Measure
Feature 1 Age - Years
Feature 2 Sex - Female-Male
Feature 3 Mean Corpuscular Volume MCV fL
Feature 4 Mean Platelet Volume MPV fL
Feature 5 Mean Corpuscular Hemoglobin MCH Pg/Cell
Feature 6 Mean Corpuscular Hemoglobin Concentration MCHC g Hb/dL
Feature 7 Neutrophils Count NE - NET % - 109/L
Feature 8 Lymphocytes Count LY - LYT % - 109/L
Feature 9 Monocytes Count MO - MOT % - 109/L
Feature 10 Eosinophils Count EO - EOT % - 109/L
Feature 11 Basophils Count BA - BAT % - 109/L
Feature 12 Hematocrit HCT %
Feature 13 Platelets PLT 109/L
Feature 14 Red Blood Cell RBC 1012/L
Feature 15 White Blood Cells WBC 109/L
Feature 16 Hemoglobin HGB g/dL
Feature 17 Erythrocyte Distribution Width RDW CV%
Class 1 Severity - (0,1)
Class 2 Dead - (0,1)



Erol Doğan, Uzbaş / Detection of COVID-19 Severity and Mortality

Karaelmas Fen Müh. Derg., 2023; 13(2):329-342 333

ies on EL methods and different EL methods have been 
presented according to how the models are combined and 
trained (Dong et al. 2020, Sagi and Rokach 2018). The com-
monly used ones are as follows: Bagging, RF, and Adaboost.

2.4.1. Bagging Classification Algorithm

Bagging is a bootstrap algorithm developed by Breiman 
(1996). This algorithm randomly selects sub-samples from 
the dataset and presents each of these samples to a classi-
fier model to form an ensemble of classifiers. Each of this 
ensemble of classifiers produces a prediction. The final class 
prediction is produced by combining all the predictions. 
In the combination of predictions, the average is taken for 
regression trees, while in classification trees the results are 
determined by multiple voting. Bagging generates random 
sub-samples of n samples from a dataset of n samples and 
each selected sample is put back into the dataset. The work-
ing principle of Bagging is presented in Figure 2.

2.4.2. Random Forest Classification Algorithm

RF is a very fast and robust classifier for overlearning (Brei-
man 2001). RF creates an ensemble forest with multiple 
trees and trains each tree in this forest on a different obser-
vation, generating various models, and then combines these 
models to obtain a final prediction, maximizing the classifi-
cation success. The working principle of RF is presented in 
Figure 3.

2.4.3. Adaboost Classification Algorithm

Adaboost, developed by Freund and Schapire (1999), is a 
classification algorithm that works by boosting. Boosting is 
the process of combining several weak classifier models to 
create a strong classifier model. In the Adaboost algorithm, 
which is one of the boosting methods, the training set is 
first trained with a weak classifier, and then a training mod-
el is created again by giving more priority to the samples 
that are incorrectly predicted as a result of this training, that 
is, by increasing their weights. The model is continued by 
training the model so that the output of the weak classifi-
er is the input of the other classifier, and finally, the results 
are combined to produce the final classifier model and class 
prediction. The working principle of Adaboost is presented 
in Figure 4.

2.5. Classification Performance Metrics

Classifier models that take the dataset as input provide in-
formation about their accuracy with performance measures 
in various criteria. These performance measures on various 
criteria are based on an error table called the Confusion Ma-

smallest value is 0 and the largest value is 1 and spreads all 
data in the dataset over the range [0, 1]. This method ensures 
that all data is kept on a positive scale. Min-Max normal-
ization is presented in Equation 1. According to Equation 
1, Xnorm represents the rescaled data and Xi represents the 
original data. With Min-Max normalization, each data Xi 
in the dataset is subtracted from the minimum value in the 
relevant feature column, and the Xnorm value is obtained by 
dividing the maximum value of the relevant feature column 
by the difference of the minimum value.

( ) ( )
( )

max min
min

X
X X

X X
norm

i
=

-
-  (1)

2.2.3. Data Balancing with SMOTE

When the number of data in classes in a dataset is not ap-
proximately equal, this is called imbalanced data. Unbal-
anced data produces success according to the majority class 
ignoring the minority class and giving misleading results 
for ML models. Therefore, many algorithms have been de-
veloped to balance the data in datasets. One of these algo-
rithms, SMOTE, developed by Chawla et al. (2002), gener-
ates synthetic samples based on the k nearest neighbors of 
the samples examined in the minority class. The rationale of 
the method is to help the classifier generalize to the test data 
without disturbing the natural structure of the dataset by 
generating synthetic samples instead of copying the existing 
observations in the minority class (Douzas et al. 2018, Fer-
nandez et al. 2018). This method overcomes the overfitting 
that occurs by oversampling through replication.

2.3. Machine Learning

ML learns meaningful relationships and patterns from the 
observations in the training set and predicts the information 
learned from the observations in the test set that it has never 
seen (Bishop 2006). In this way, it assimilates the datasets 
presented to it and aims to perform the classification task 
directly without instructions. There are many ML classifier 
models. In this study,  EL models were used, which have 
been successful in many fields and outperformed single 
models (Anwar et al. 2014, Prusa et al. 2015, Shahzad and 
Lavesson 2013).

2.4. Ensemble Learning

EL is a classification methodology that refers to the use of 
multiple models together to create a stronger model rather 
than using a single classification model. Model diversity in-
creases success and reduces the risk of overfitting (Moham-
med and Kora 2023). In the literature, there are many stud-
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2.5.1. Accuracy

Accuracy presents the rate at which the classifier model 
built using the training set correctly classifies the data in 
the test set. This metric is calculated as the ratio of correctly 
predicted areas in the model to the total dataset, as present-
ed in Equation 2. This helps to evaluate the overall perfor-
mance of the classifier by treating all class labels equally. The 
accuracy metric alone is not enough to evaluate a classifier 
model, especially for imbalanced datasets. Therefore, other 
performance metrics should also be used when evaluating 
the performance of a classifier model (Dai et al. 2022).

Accuracy TP TN F FN
TP TN

P= + + +
+                          (2)

2.5.2. Recall and Precision

Precision and Recall are metrics used to evaluate infor-
mation extraction by measuring the test performance of a 
classifier and are suitable for applications such as artificial 
neural networks that perform information extraction (Abeel 
et al. 2009, Huang and Bader 2009). The standard to aim for 
when building a classifier model is a high TP and low FP 
ratio. The ability of the classifier to detect positive classes 
is called recall. In other words, recall is a metric that shows 

trix (CM) ( Japkowicz and Shah 2011). The CM is a special 
two-dimensional table that presents the number of correct 
and incorrect data produced by the predicted results versus 
the actual results. The basic structure of the CM is presented 
in Figure 5, based on a binary classification model.

Each row of the matrix represents the instances in the pre-
dicted class and each column represents the actual class of 
those instances. As shown in Figure 5, for a two-class clas-
sifier model with positive and negative labels:

True- Positive (TP): This represents a dataset with a posi-
tive class label correctly predicted by the classifier.

True -Negative (TN): This represents the dataset with a 
negative class label correctly predicted by the classifier.

False-Positive (FP): This represents the dataset with a pos-
itive class label that is incorrectly predicted by the classifier.

False - Negative (FN): This represents a dataset with a neg-
ative class label that is incorrectly predicted by the classifier.

Some basic metrics have been established to measure the 
performance of a classifier using CM. These are Accuracy, 
Recall, Precision, F-Score, and Area under the ROC Curve 
(AUC).

Figure 2. Working principle of bagging classification algorithm.
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Figure 3. Working principle of random forest classification algorithm.
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Recall TP FN
TP= +   (3)

Precision is a metric that indicates how many of the posi-
tively labeled values are correctly labeled positive. The pre-
cision metric is calculated as the ratio of the number of cor-
rectly labeled positive data to the number of data labeled as 
the predicted positive class and its formulation is given in 
Equation 4.

Precision TP FP
TP= +   (4)

2.5.3. F-Score

The Precision and Recall measures alone do not provide a 
meaningful comparison result for the classifier models. The 
F-Score, which evaluates the two measures together, is the 
harmonic mean of the precision and sensitivity values. The 
F-Score is commonly used as F1, F0.5, and F2 and takes 
values between 0 and 1. A classifier that makes accurate 
predictions is expected to have an F-Score value close to 1 
( Japkowicz 2011). The formulation of the F-Score is given 
in Equation 5.

( ) ( )
F Score

Precision Recall
Precision Recall1

2

2

#
# #

b
b

- =
+

+
b   (5)

Figure 5. Confusion matrix.

Figure 4. Working principle of adaboost classification algorithm.

how much of the data that is known to belong to a positive 
class is labeled as a positive class after classification. The re-
call of a classifier is the number of TPs obtained from the 
CM divided by the number of instances in the true positive 
class. The TP ratio, the recall performance metric, is given 
in Equation 3.
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by applying 10-fold cross-validation to balanced training 
sets. Bagging, RF, and Adaboost classifiers were used. Ker-
nel classifier RF was chosen for Bagging and Adaboost. The 
numFeatures parameter, which sets the number of randomly 
selected features for RF and kernel RF, was chosen as 4. 
Testing procedures were performed by applying test sets to 
the developed training models. The study was coded in Py-
thon 3.9.7 and classification processes were carried out with 
Weka 3.8.4.

Classification performances for COVID-19 SEVERITY 
and COVID-19 MORTALITY are presented in Table 2 
with average Accuracy, Precision, Recall, F-Score, and AUC 
measurements of 3 sub-datasets obtained from each dataset.

As can be seen in Table 2, the highest success with the 
COVID-19 SEVERITY dataset was 89.54% with Ada-
boost. Bagging and RF achieved 89.11% and 89.41%, re-
spectively. For the COVID-19 MORTALITY dataset, the 
highest success was 97.25% with Adaboost. Bagging and 
Adaboost achieved 96.69% and 96.89%, respectively. As a 
result, it was revealed that Adaboost, one of the EL meth-
ods, produced the most successful results in detecting both 
COVID-19 patients who were admitted to the ICU and 
those who were not, and individuals who died and did not 
die due to COVID-19. 

The AUC performance criterion provides the optimal thresh-
old for the separation of positive and negative classes and 
plays a central role in discriminating between populations 
(Hajian-Tilaki 2013, Metz 1978). Adaboost was selected as 
the most successful model for COVID-19 SEVERITY and 
COVID-19 MORTALITY. Adaboost, which was selected 
as the most successful model for COVID-19 SEVERITY 
and COVID-19 MORTALITY, produced 0.949 and 0.953 
AUC for these two datasets, respectively. In contrast, the 
most successful AUC value for COVID-19 MORTALITY 
is 0.959 with Bagging. 

2.5.4. The Area Under the ROC Curve

The ROC curve is a graphical representation of the rela-
tionship between recall and specificity. On the x-axis of the 
ROC graph is the FP ratio, the specificity performance met-
ric, while on the y-axis is the TP ratio, the sensitivity perfor-
mance metric. Recall and specificity values are calculated for 
different threshold values and each point on the ROC curve 
represents the recall-specificity pair corresponding to a giv-
en decision threshold. AUC is used to test the performance 
of classifiers between 0 and 1. A value of AUC approaching 
1 indicates that the classifier is making accurate predictions, 
a value of 0.5 indicates that the classifier is making random 
predictions, and values below 0.5 indicate that the classifier 
is not working correctly (Hulley et al. 2001).

3. Results and Discussion
In this study, we used the BIGDATA-COVID-19 (Fami-
glini et al. 2021) dataset, which contains blood parameters 
of COVID-19 patients and 2 classes of information. The 
classes in the dataset are as follows: Severity class repre-
senting COVID-19 patients who were and were not ad-
mitted to the ICU and Dead class representing patients 
who died and did not die due to COVID-19. First, cer-
tain data preprocessing was applied to the dataset: Missing 
data were filled with the KNN (Erol et al. 2022) and Min-
Max normalization was performed in the range [0, 1]. Two 
sub-datasets were obtained from the filled and normalized 
datasets. The first sub-dataset, COVID-19 SEVERITY, 
was obtained by dividing the blood parameter characteris-
tics and Severity class in the dataset. The other sub-data-
set, COVID-19 MORTALITY, was obtained by dividing 
the blood parameter characteristics and Dead class. Each 
dataset was then divided three times into an 80% training 
set and a 20% test set. The data in the training sets were 
balanced with SMOTE. Training models were developed 

Table 2. Classification results.

Classification Results
Classifier Dataset Accuracy Precision Recall F-Score AUC TP Rate

Bagging
COVID-19 Severity 89.11% 89.30% 89.13% 89.20% 0.948 89.13%

COVID-19 Mortality 96.69% 97.26% 96.70% 96.93% 0.959 96.70%

Random Forest
COVID-19 Severity 89.41% 89.46% 89.43% 89.43% 0.948 89.40%

COVID-19 Mortality 96.89% 97.13% 96.90% 97.0% 0.953 96.90%

Adaboost
COVID-19 Severity 89.54% 89.60% 89.56% 89.56% 0.949 89.56%

COVID-19 Mortality 97.25% 97.33% 97.26% 97.30% 0.953 97.26%
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When Table 3 is examined, Rodríguez-Nava et al. (2020) 
examined the blood parameters of 313 COVID-19 patients 
in the Northwestern United States and determined the 
patients’ clinical AUC scores for determining ICU admis-
sion and deaths. As a result, the AUC for ICU admission 
and mortality in COVID-19 was determined to be 0.761 
and 0.781, respectively. In this study, AUCs of 0.949 and 
0.953 were obtained for COVID-19 SEVERITY and 
COVID-19 MORTALITY, respectively. This shows that 
the ML detection models developed in this study achieved 
higher AUC values determined by Rodriguez-Nava et al. 
(2020) for COVID-19 severity and mortality. In the study 
conducted by Podder et al. (2021), a dataset containing 
111 blood samples of 5644 COVID-19 patients was used 
to predict whether individuals would be admitted to ICU 
or semi-ICU. Missing data in the dataset were completed 
with median values and then feature selection was made 
with Extra Trees (ET). They developed various ML models 
for patients admitted to ICU or semi-ICU with 10 selected 

In this study, the imbalance in the dataset is eliminated in 
the training set to ensure unbiased training and the accuracy 
of the models is checked with TP Rate in the test mod-
el. The TP Rate performance criterion provides the aver-
age number of true positives predicted for the true positive 
class. As seen in Table 2, the most successful TP Rate for 
COVID-19 SEVERITY and COVID-19 MORTALITY 
is 89.56% and 97.26% with Adaboost, respectively. Despite 
the unbalanced data distribution in the test set, thanks to 
the data balancing applied in the training model, the models 
perform their detection without bias. As a result, the blood 
parameters of COVID-19 patients can successfully deter-
mine whether the patients will be admitted to the ICU and 
whether they will die due to the disease.

The comparison of this study with other COVID-19 sever-
ity and mortality detection studies conducted in the litera-
ture is presented in Table 3.

Table 3. Comparison of this study with the literature

Study Dataset Purpose Result

Rodriguez-Nava et al. 
(2020)

Blood samples of 313 
COVID-19 patients in the 
Northwestern United States

Determining clinical AUC 
scores for determining 

intensive care unit admissions 
and deaths.

AUC of 0.761 and 0.781 for 
ICU admission and mortality, 

respectively

Podder et al. (2021)
111 blood samples from 5644 
patients at Hospital Israelita

Albert Einstein, Brazil.

Classifying ICU and semi-
ICU admission by selecting 

features from the blood 
parameters of COVID-19 

patients.

98% accuracies with voting  
classifiers

Famiglini et al. (2021)

4995 blood samples taken 
from 1218 COVID-19 
patients (BIGDATA-

COVID19)

Predicting whether patients 
need to be transferred to the 
ICU within 5 days by blood 

parameters.

0.880 AUC with the 
ensemble model obtained 
with XGB, RF and LR 

classifiers

Moulaei et al. (2022)

First hospital admission data 
of 1500  (1386 survivors and 

144 deaths) COVID-19 
patients

Comparing various ML 
models predicting COVID-19 

mortality

95.03% accuracy and 0.990 
AUC with RF

This Study

4995 blood samples taken 
from 1218 COVID-19 
patients (BIGDATA-

COVID19)

Determining the disease 
severity and mortality 

with a single blood dataset 
containing information about 
whether COVID-19 patients 
were admitted to the ICU and 

whether they died

89.54% accuracy and 0.949 
AUC and 97.25%  accuracy 

and 0.953 AUC with 
Adaboost for COVID-19 

SEVERITY  and 
COVID-19 MORTALITY, 

respectively.
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KNN was used to fill in missing data (Erol et al. 2022) and 
Min-Max normalization was performed. Two sub-datasets 
were obtained from the filled and normalized datasets. The 
first sub-dataset, COVID-19 SEVERITY, was obtained 
by dividing the blood parameter characteristics and Sever-
ity class in the dataset. The other sub-dataset, COVID-19 
MORTALITY, was obtained by dividing the blood param-
eter characteristics and Dead class. Each dataset was then 
divided three times into an 80% training set and a 20% 
test set. The data in the training sets were balanced with 
SMOTE. Training models were developed by applying 10-
fold cross-validation to balanced training sets. Bagging, RF, 
and Adaboost classifiers were used. Testing procedures were 
performed by applying test sets to the developed training 
models. As a result of the classification, the most successful 
model was determined to be the Adaboost classifier. With 
Adaboost, the highest success was obtained with 89.54% for 
COVID-19 SEVERITY and for COVID-19 MORTAL-
ITY with 97.25%. In addition, the AUC values produced 
by this classifier for the most successful result are 0.949 for 
COVID-19 SEVERITY and 0.953 for COVID-19 MOR-
TALITY.

As a result of this study, it has been demonstrated that se-
verity and mortality detection of infected individuals can 
be performed with high success with a single dataset that 
includes blood parameters of COVID-19 patients, informa-
tion on whether they were admitted to the ICU and wheth-
er they died as a result of the disease. Göreke et al. (2021) 
revealed that genetic differences are directly related to the 
ML models developed for COVID-19. In future studies, 
severity and mortality models can be developed based on 
the genetic factor with the knowledge of the blood parame-
ters of many COVID-19 patients of different races, wheth-
er they were admitted to the ICU, and whether they died 
due to COVID-19. In addition, this study can be applied to 
many infectious diseases.
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features. Voting classifiers (RF, Logistic Regression (LR), 
Support Vector Machines (SVM)) showed the best perfor-
mance, achieving 98% success in classifying patients who 
should be admitted to intensive care and semi-intensive 
care. Famiglini et al. (2021) developed an ML model that 
predicts whether infected individuals should be transferred 
to the ICU within 5 days using the BIG DATA-COVID19 
dataset used in this study. As a result, they achieved an AUC 
value of 0.880 with the ensemble classifier model consisting 
of XGBoost (XGB) RF and LR. In this study, an AUC of 
0.949 was obtained with COVID-19 SEVERITY repre-
senting transfer to ICU using the same dataset. Although 
data imbalance was resolved with SMOTE in both studies, 
differences in pre-processing directly affected success. The 
success of the data preprocessing combination presented 
in the study was demonstrated by obtaining a higher AUC 
value with the same dataset. In this study, in addition to the 
prediction model of transfer to ICU, a prediction model of 
whether patients will die due to disease was also developed. 
In the study conducted by Moulaei et al. (2022), they de-
veloped ML models that predict COVID-19 mortality by 
applying certain data preprocessing and feature selection to 
the data of 1500 COVID-19 patients, 1386 of whom were 
alive and 144 of whom were dead. Among the models, RF 
was chosen as the most successful model with 95.03% ac-
curacy and 0.990 AUC value. In this study, higher accuracy 
(97.25%) and AUC (0.953) for COVID-19 MORTALITY 
were achieved with Adaboost.

4. Conclusion and Suggestions
COVID-19 is a pandemic respiratory disease that targets 
the lungs and can cause lung damage and death in severe 
cases. The lethality of this disease varies between countries 
(Asch et al. 2021, Strålin et al. 2021, Strålin et al. 2022), and 
workload in hospitals affects the lethality of the disease (Fe-
igin et al. 2022, Strålin et al. 2022). About 15% of infected 
patients developed severe illnesses and about 6% of them 
reached critical status (Wang et al. 2020). Although many 
people were admitted to the ICU due to severe pneumonia 
and ARDS, 2.9% of those with severe illness had no ab-
normalities on initial admission (Guan et al. 2020, Pasquier 
et al. 2021). This has led to serious confusion in healthcare 
systems as COVID-19 patients’ conditions worsened and 
the level of ICU need could not be determined.

In this study, a dataset containing blood parameters of 
COVID-19 patients and 2 classes of information was used 
first, certain data preprocessing was applied to the dataset: 
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