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1. INTRODUCTION

In many life testing and reliability studies, a number of the experimental units are lost or removed from
experimentation before failure. Data obtained from these experiments is known as censored data. In the
literature, the most commonly-used censoring schemes are Type-lI and Type-Il censoring. In Type-I
censoring, the experimenter continues the experiment until a pre-fixed time T is reached. Observations
which fail after time T are censored. In Type-Il censoring, a predetermined number of failures m < n are
censored. Progressive censoring is different from Type-1 and Type-II censoring, as it is a more general
censoring scheme, where the experimenter is allowed to remove experimental units between experiments
as well, see Cohen (1963) and Rastogi and Tripathi (2014). This censoring scheme provides time-saving
and cost-effective life testing plans to the experimenter, see Balakrishnan and Aggarwala (2000). In the
literature, there are considerable number of studies dealing with progressive censoring, see Balakrishnan et
al. (2003), Ragab et al. (2010), Basak and Balakrishnan (2012), Krishna and Kumar (2013) and Musleh and
Helu (2014).

Progressively Type-1l censoring scheme is described briefly as follows: Consider life-testing experiment
starting with n identical units and a progressive censoring scheme with R = (R4, Ry, ..., R;,). When the
first failure occurs, R, surviving units are removed randomly from the remaining n — 1 units. Similarly,
when the second failure occurs, R, surviving units are removed from the remaining n — 2 — R, units. This
process continues to the mth failure and R,,, surviving units are removed from the remaining n — m —
Ym- L R; units. Here, R;>s i = 1,...,m are fixed prior to study. It is clear that the entire sample is complete
whenR; =R, =-+-=R,, =0.IfR; =R, = -+ = R,_; = 0and R,, = n — m, then the entire sample is
a traditional Type-II right censored sample.

Our aim in this paper is to derive estimators of the location and scale parameters of Jones and Faddy’s
skewed-t (JFST) distribution based on progressively type-1l censored samples. The reason for using JFST
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distribution is that it is flexible for modeling data sets having heavy tailed symmetric, positively skewed or
negatively skewed distributions.

We use the well-known and widely used maximum likelihood (ML) methodology to obtain estimators of
unknown parameters. However, it can be seen that solutions of likelihood equations cannot be obtained
explicitly because of the nonlinear functions of the parameters. We, therefore, resort to different
approaches, namely iterative and non-iterative, in order to solve them.

The rest of the paper is organized as follows. A brief description of JFST distribution is given in Section 2.
In Section 3, ML and MML estimators of the location and the scale parameters of the JSFT distribution are
obtained based on the progressively Type-Il censored samples. Observed Fisher information matrices are
computed for both the ML and the MML estimators. In addition, the confidence intervals (Cls) for unknown
parameters and the coverage probabilities (CPs) for pivotal quantities based on the asymptotic normality
are obtained. In section 4, an extensive Monte-Carlo simulation study is performed for different sample
sizes, censoring schemes and parameter settings. A real data set is analyzed in Section 6. Final comments
and conclusions are given in Section 7.

2. JFST’S SKEWED t-DISTRIBUTION

t-distribution is one of the most commonly used distributions as an alternative to normal distribution.
Although this distribution is symmetric and bell-shaped, it has heavier tails. This property provides
flexibility for modeling real life data sets. In practice, heavy tailed distribution may not be enough, because
the data sets may be skew. Therefore, the skew alternatives of the t-distribution are more suitable for use
with such data sets. A wide range of study in this field; see for example, Nadarajah and Kotz (2003), Jones
and Faddy (2003), Sartori (2006), Azzalini and Genton (2008), Carota (2010) and Massacci (2014). In this
study, we use JFST distribution as a skewed alternative to t-distribution.

The JFST distribution with the location parameter u and the scale parameter o has the following probability
density function (pdf) and cumulative distribution function (cdf)

_ 1, 7 yatl/2 _z b+1/2 .
f@ =scaaf +—W} {1 —W} , ZER,a,bER (1)

and
F(Z)=I{1+Z/\/m/2(a,b), z € R, a,b€R+ (2)

respectively. Here, z= (x —u)/o, a and b are the shape parameters, v=a+b and C,p =
2Y"1B(a, b)\/v. In addition, B(.,.) and I,(.,.) represent the Beta function and the incomplete Beta
function, respectively. If X has a JFST distribution with parameters i, o, a and b then it is denoted by
X~JFST(u,0,a,b).

Now, we discuss some important properties of JFST distribution.

i.  JFST distribution is positively and negatively skewed for a > b and a < b, respectively.
ii. It reduces to t-distribution with 2a degrees of freedom for a = b. It should be noted that, when
a, b — oo the JFST distribution is convergence to normal distribution.
iii. Ifa>k/2andb > k/2,then E(Z¥) is computed as

o @D gy ok ko
E(Z):m (i)(—l)B<a+§—l,b—E+l>.
i=0

iv.  For the effects of shape parameters a and b for the JFST distribution see Figure 1.
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Figure 1. JFST distributions for different values of shape parameters

For more detailed information, see Jones and Faddy (2003), Jones (2008), Acitas et al. (2013), Arslan
(2015) and Arslan and Senoglu (2017).

3. PARAMETER ESTIMATION

In this section, we consider ML and MML estimation of the location and scale parameters of JFST
distribution based on progressively Type-Il censored data. In this context, in subsection 3.1 and 3.2, ML
estimators are obtained by using iterative methods and MML estimators of the unknown parameters are
derived in explicit form. In subsection 3.3, observed Fisher information matrices are computed for both the
ML and the MML estimators of u and a. Using observed variances, the pivotal quantities are calculated.
After this, CPs and Cls are obtained.

3.1. Maximum Likelihood Estimators

Let X = (Ximm Xz o0 Xmemen) WIth Xy < Xoomn < < Xyumen be @ progressively Type-1
censored sample of size m under the censoring schema R = (Rq, R, ..., R,;,). We use the notation X; instead
of X;..,.n, for simplicity. The likelihood function, based on progressively Type-II censored sample is shown
below

m
L(H, 0,4, b;XlJXZJ 'Xm) =cC l_lf(xl)[l - F(xl.)]Ri’
i=1

wherec=n(n—R;—1)(n—R;—R,—2)..(n—Ry — Ry, — - — Rjy_1 — m + 1). The log-likelihood
function is given by
m ) m )
lnLocmlnG+(a+0.5)Zln 14— 405 In{1-—Z
i=1 Iv+zi2 i=1 /v+zi2
m
+2Riln[1 —F)), 3)
i=1

where z; = (x; — u)/o. By taking derivation with respect to u and o, likelihood equations are obtained as
given below
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dInL  a+05% b+05 18
ow o zgl(zi) t— zgz(zi) + ;z Rig3(z) = 0, (4)
3 i=1 i=1 i=1
dlnL m a+05% b+0.5% 1o
dc o o Zzigl(zi) + o Zzigz(zi) + ;z Riz;g3(z;) = 0. (5)
=1 i=1 i=1
Here,
v v
)= ’ ) = and
91(z) (V+Zi2)3/2+2i(17+2i2) 92(z;) (V+Zi2)3/2—zi(v+2i2)
93(z;) = lff,z(iz)i), i=1,..,m. (6)

The ML estimators of the unknown parameters y and o are the solutions of the likelihood equations (4)-
(5). However, because of the non-linear functions given in equation (6), the likelihood equations cannot be
solved explicitly. Therefore, we resort to iterative methods.

3.2. Modified Maximum Likelihood Estimators

We use MML methodology proposed by Tiku (1967) to obtain close form estimators of the location and
scale parameters in this subsection. To obtain MML estimators of the parameters, we first linearize the non-

linear functions g,(z;), g2(z;) and g5(z;) given in equation (6) using Taylor series expansion around
E(Z;m.n) = ti.m:n. From Balakrishnan and Sandhu (1995)

F(Zi:m:n) = Uim:n,

where U;.,,..,, 1S the ith order statistics from a progressively Type-Il censored sample whose distribution is
uniform U(0,1). Then

Zimn = F_l(Ui:m:n)
and hence
ti:m:n = E(Zi:m:n) ~ F_l(ni:m:n)i

where 1;.m.n = E (U;.m:n)- From Balakrishnan and Aggarwala (2000), it is known that

m .
' - 1—[ ]+Rm_j+1+---+Rm i1 m
Nizm:n jit1 +Rm—j+1 n "'+Rm’ y ey M.

j=m-i+1
It should be noted that, for simplicity notation, we use t; instead of t;.,,.,-
The linearized functions are obtained as shown below

91(z) = ay; — Prizis 92(2)) = az; + Puz; and gs3(z;) = az; + iz, 1=1,...,m,

where

v

3t; [v+t?+v+3t] v|3t; /v+ti2—v—3ti2] £t Fe?
— _ i i
i — 21 B3i - +

1] 2 [l
() 2aare?)] T [re2) —n(ored)] 1Rt - =Rl

Bii =
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ay; = g1(t) + tifrin azi = g2(t) — tifai, az = g3(ty) — tifs;. (7

By incorporating the linearized functions given in equation (7) into the likelihood equations (4)-(5),
modified likelihood equations are obtained as follows

dInL*  a+05%w b+ 0.5v
o Z(“u — Brizi) + - Z(%i + B2izi)
1= =

m
1
F= ) Rilasi + fsiz) =0, ®
i=1

dlnL* m a+05% b+ 0.5
5% - 5 o 2(a1i — P1izi)z; + pu Z(azl' + B2izi)z;
i=1 i=1

m
1
+ ;z Ri(as; + B3iz)z; = 0. C))
=1

The solutions of these equations are the following closed form MML estimators
A A L ~ B+VBZ+4AC
fivm, = K + —Gymy and Gy = A
where

i=1 8ixi
§i = (a+05)By; + (b +05)fy + Rifizy, w=3, 8, K==
Ai = —(a + 0.5)a1i + (b + 0.5)a2i + Rl-a3l-, A= Z:’;l Aiv
A=m=n-3¥L R, B=3YT A0 —K), C=3XL;60—K)?> (10)

Remark. On occasion, the values of the 3,; coefficients may be negative. This situation makes &y, unreal
or negative. To overcome this problem, the coefficients 8,; and ay; are replaced by S;; and a;;

3 [v+tZ+v+3t]

[w+e2)* 2 4ti(v422)]

v

Bii = 5 Uy = g(t) +tfy, i=1,..,m,

respectively. It should be noted that this alternative representation does not change the asymptotic
properties of the estimators because z; —t; = 0 and, consequently, a;; + B1;z; = aj; + B1izi (i =
1,...,m), see Islam and Tiku (2004) and Acitas et al. (2013).

The MML estimators have the following properties:

i.  They have closed form expressions.
ii.  They are the functions of sample observations and are easy to compute.

iii.  Asymptotically, they are fully efficient, i.e., their variances are equivalent to Rao-Cramer lower
bound when regularity conditions hold, see VVaughan (2002). They also have high efficiencies, even
for small n values.

iv.  They are asymptotically equivalent to ML estimators, see Bhattacharyya (1985) and Vaughan and
Tiku (2000).

In addition to being non-iterative, MML methodology provides initial values having the fastest convergence
rate among the others for the iterative methods, see Acitas et al. (2011). Therefore, in this study, we use
MML estimators of parameters as initial values for solving the likelihood equations in ML methodology.
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3.3 Variances and Covariances

The asymptotic variance-covariance matrix of the ML estimators of the parameters u and o is derived from
the inverse on the following Fisher information matrix

e )
H(5R) ()

Elements of the Fisher information matrix for ML estimators: The elements of the Fisher information matrix
for the likelihood equations (4)-(5) are obtained from the following equations

92 InL  a+05%" b+05% 1
o2 T T T g2 Z 91(z:) — o2 21 92(z;) — ;Z 93(z1), (12)
i= 1= 1=

(11)

92InL m 2(a+0.5) a+05 2(b+05)
=—2+—Zzlgl<zl>— Zz gi) - == Z 792(21)
i=1

do? o 4
i=
b+ 05

- o2 Z lgz(zz) - Z R; Zlg3(Zl) - Z R; iz 93(Z1) (13)

i=1
0°InL a+05 a+05 b+05
e = Z AOE 2 7gi () - Z 9202

=1
b+ 0. 5
- P ZZLgZ(ZL) - Z Rigs(z) — Z R; Zlg3(ZL) (14)
i=1

where g1(.), g5(.) and g5(.) are the derivative of g,(.), g>(.) and g5(.), respectively. These are

4 p2 2 2 2
9l(z) = 3(v+z? ) vzt +3sz1’ 94(z) = 3(v+z? ) vzi—v 3172; and
[(v+zi2) +zl(v+zz)] [( +22) —zi(v+zi2)]
f (Zz)(l F(ZL))"'fZ(Zl)
Zi) = 15
95(m) = (1-F(z))’ (15)

However, because the exact mathematical expressions for the expectation of the equation (11) is extremely
difficult, we use the observed variance-covariance matrix. Following this, the inverse of the observed Fisher
information matrix is derived from following equation

-1

0%InL 0%InL
-1 — ou? oudo — 2 o2 (16)
0bs T 1 82InL _ 8%InL 21 22

doou da? U=R,0=6

where 112 = [?1,

Elements of the Fisher information matrix for MML estimators: The elements of the Fisher information
matrix for the modified likelihood equations (8)-(9) are obtained from the following equations

m
azlnL* 1
2 - 02261' (17)

i=1
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azlnL* m ‘¢ 5
60 - O'ZZA iZi — ZZSiZi ’ (18)
i=1
92InL* 1< 2
ouds 72“72‘%- (19)
H i=1 i=1
21nL

Similar to equation (16), the inverse of the observed Fisher information matrix is derived by replacmg

9%InL*
to

. As a result, we get

11 12
2|k L | (20)

Iops =0 [121 22|
The observed variances and covariance of the ML estimators of j1 and & are computed as shown below
Var(p) = 6*VI'L, Var(6) = 62VI?2 and Cov(f, ) = 6%VIt2. (21)

By incorporating the MML estimators of i, 6 and I, I}? and I?? into equation (21), the observed
variances and covariance of the MML /i and & are obtained in similar manner.

Then, we calculate pivotal quantities for both the ML and the MML estimators as given below

-0

I _
P, = Nz and P, = Foal (22)

The asymptotic distribution of the pivotal quantities is to becomes standard normal, based on the asymptotic
normality of £ and 6. Using Monte-Carlo simulation, CPs are computed as

CPy = P(|P| < z4/5) and CP, = P(|P,] < z4/5), (23)
where z, /, is the (a/2)th percentile of the standard normal distribution.

The two-sided normal approximate Cls for the ML and the MML estimators of u and o are obtained as

At zg/o\/Var() and 6 * z, /,+/Var(G), respectively.

4. SIMULATION STUDY

In this section, an extensive Monte-Carlo simulation study was conducted to compare the performances of
the proposed estimators of the parameters of the JFST distribution examined in Section 3 for various
different parameter settings, sample sizes, number of failures and censoring schemes. Comparisons are
made for both the point and the interval estimators of the parameters. Bias and mean square error (MSE)
are used for comparisons of point estimators and the CP criterion is used for comparisons of the interval
estimators.

The progressive type-11 censored samples are generated using the algorithm originated by Balakrishnan and
Sandhu (1995), and without loss of generality, u and o are taken to be 0 and 1, respectively. Four different
sets of shape parameters are used, i.e.,a = b =3 and a = b =15 (symmetric cases); a =6, b =3 and a =9,
b =3 (positively skewed cases). It should be noted that the simulation results fora = 3, b = 6 and a = 3,
b = 9 (negatively skewed cases) have also been obtained. However, the simulation results are very similar
with those obtained from the positively skewed cases. Therefore, for the sake of brevity, we therefore did
not reproduce them.
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The following sample sizes and the number of failures were considered in the simulations

n =15=>m =5and 10,
n=30=>m =10and 20 and
n =50 > m = 25 and 40.

We use different censoring schemes, depending on the shape of the distribution to make comparisons
meaningful. For simplicity, we use ‘*’ notation to illustrate censoring schemes. For example, (17,0",1%)
denotes the censoring scheme (1,1,1,0,0,0,0,0,1,1).

All the simulations were conducted using Matlab R2013a for [100,000/m] Monte-Carlo runs. Here, [.]
represents the greatest integer value. It should be noted that, as mentioned in subsection 3.1, the likelihood
equations (4) and (5) cannot be solved explicitly. Therefore, ML estimators of the parameters u and ¢ are
obtained using the iterative method. Because of the reasons given in subsection 3.2, we use MML estimates
of the parameters in (10) as initial values for the iterations.

In Table 1, means and MSEs of the ML and the MML estimators of the location and scale parameters of
the JFST distribution, i.e. u and o, are reported. Discussions about the simulation results for the parameters
u and o are presented separately for the sake of simplicity.

For u: In terms of the bias criterion, the ML estimator has smaller bias than the corresponding MML
estimator when the shape of the JFST distribution is symmetric, i.e., a = b =3 and a = b =15. On the
other hand, the ML estimator has larger bias than the MML estimator for positively skewed cases, i.e.,
a =6, b =3 and a =9, b =3. In terms of the MSE criterion, the ML estimator shows better performance
than the corresponding MML estimator in all cases. It should be noted that the performances of the ML and
the MML estimators are more or less the same when m >20 for all the parameter settings, sample sizes and
the censoring schemes as expected, since it is known that the MML estimator is asymptotically equivalent
to the ML estimator.

For o: The MML estimator outperforms the corresponding ML estimator with respect to the bias criterion
in all cases, because, the ML estimator underestimates the scale parameter o. The ML estimator of ¢ is
more efficient than the corresponding MML estimator with respect to the MSE criterion in most of the
cases. For large values of n and m, the ML and the MML estimators are close to each other due to the
reason given in subsection 3.2.

It should be noted that the performances of the all the estimators increase significantly as the sample
proportion m/n increases (in other words, the proportion of censoring decreases) as expected.

The exact variances of [ and & cannot be obtained. We therefore compute the observed Fisher information
matrix to obtain approximate variances and covariance of the parameter estimators. In Table 2, simulated
variances and covariance of the ML and the MML estimators of u and o are compared with the
corresponding variances and covariance obtained from the observed Fisher information matrix. It is easy
to see that variances and covariance determined from the observed Fisher information matrix are close to
simulated variances and covariance, even when m is moderate, i.e. m =20 for both the ML and the MML
estimators.
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Table 1. Mean and MSEs of ML, MML and LS estimators of 4 and o.

ML MML
n m Scheme 1 o 1 G
(a=3,b=3)
15 5 (3,0,4,0,3) -0.1225(0.2015)  0.8773(0.1543)  -0.1286(0.2024)  0.9336(0.1710)
10 (2,0%,3) -0.0139(0.1011)  0.9453(0.0739)  -0.0307(0.1024)  0.9883(0.0848)
10 (17%,0",1?) -0.0151(0.1056)  0.9481(0.0713)  -0.0253(0.1064)  0.9912(0.0802)
30 10 (5"2,0",5"2) -0.0603(0.0913)  0.9375(0.0751)  -0.0613(0.0918)  0.9846(0.0859)
20 (5,0"8)5) -0.0081(0.0497)  0.9709(0.0354)  -0.0193(0.0501)  1.0027(0.0405)
20 (1°,00,1")  -0.0128(0.0521)  0.9705(0.0358)  -0.0162(0.0523)  0.9974(0.0381)
50 25 (012,212 1) -0.0180(0.0350)  0.9691(0.0321)  -0.0150(0.0351)  0.9863(0.0330)
40 (5,0785) -0.0005(0.0298)  0.9857(0.0176)  -0.0056(0.0299)  1.0027(0.0185)
40 (1,017  -0.0013(0.0282)  0.9856(0.0177)  -0.0036(0.0282)  1.0010(0.0184)
(a=6b=3)
15 5 2% 0.0281(0.1442) 0.8649(0.1340) 0.0127(0.1457)  0.8871(0.1352)
10 (07°,5) 0.0603(0.1283) 0.9301(0.0682) 0.0516(0.1286)  0.9406(0.0685)
10 (075,1) 0.0515(0.1243) 0.9359(0.0672) 0.0440(0.1246)  0.9556(0.0685)
30 10 (2719 0.0153(0.0786) 0.9382(0.0619)  -0.0022(0.0799)  0.9574(0.0632)
20 (0"%%,10) 0.0328(0.0639) 0.9634(0.0340) 0.0250(0.0641)  0.9716(0.0342)
20 (175,070,17%) 0.0205(0.0665) 0.9704(0.0325) 0.0117(0.0670)  0.9861(0.0332)
50 25 (1"%) 0.0101(0.0405) 0.9793(0.0255) 0.0034(0.0406)  0.9944(0.0263)
40 (07%,10) 0.0143(0.0384) 0.9839(0.0166) 0.0090(0.0387)  0.9901(0.0167)
40 (175,00 1) 0.0184(0.0378) 0.9884(0.0169) 0.0114(0.0379)  0.9989(0.0173)
(a=9,b=3)
15 5 2% 0.1610(0.3008) 0.8601(0.1296) 0.1512(0.3006)  0.8741(0.1298)
10 (0"°,5) 0.1379(0.2615) 0.9267(0.0665) 0.1426(0.2620)  0.9301(0.0664)
10 (07,17%) 0.1338(0.2541) 0.9284(0.0678) 0.1316(0.2548)  0.9424(0.0689)
30 10 (2719 0.0716(0.1514) 0.9352(0.0584) 0.0564(0.1524)  0.9462(0.0587)
20 (0"%%,10) 0.0653(0.1250) 0.9649(0.0324) 0.0647(0.1252)  0.9679(0.0324)
20 (175,070,17%) 0.0598(0.1218) 0.9693(0.0319) 0.0526(0.1221)  0.9804(0.0324)
50 25 (1"%) 0.0368(0.0775) 0.9766(0.0247) 0.0288(0.0778)  0.9872(0.0251)
40 (07%,10) 0.0380(0.0709) 0.9812(0.0159) 0.0362(0.0709)  0.9845(0.0159)
40 (175,07, 1"%) 0.0400(0.0685) 0.9837(0.0161) 0.0338(0.0687)  0.9911(0.0162)
(a=15b=15)
15 5 (3,0,4,0,3) -0.1310(0.1783)  0.8479(0.1246)  -0.1369(0.1790)  0.8630(0.1242)
10 (2,07%,3) -0.0248(0.0884)  0.9259(0.0599)  -0.0306(0.0885)  0.9359(0.0599)
10 (17%,0%,172) -0.0267(0.0889)  0.9277(0.0567)  -0.0316(0.0891)  0.9368(0.0566)
30 10 (5"2,0",57) -0.0620(0.0829)  0.9300(0.0598)  -0.0641(0.0830)  0.9437(0.0600)
20 (5,0"8,5) -0.0148(0.0439)  0.9687(0.0282)  -0.0193(0.0440)  0.9777(0.0285)
20 (1"°,00,1")  -0.0130(0.0450)  0.9637(0.0282)  -0.0154(0.0450)  0.9698(0.0281)
50 25 (012,212 1) -0.0243(0.0338)  0.9615(0.0248)  -0.0250(0.0339)  0.9651(0.0248)
40 (5,0"%85) 0.0003(0.0232) 0.9863(0.0139)  -0.0022(0.0232)  0.9913(0.0139)
40 (175,0"%,1"%) 0.0003(0.0235) 0.9815(0.0134)  -0.0018(0.0235)  0.9854(0.0133)
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Table 2. Simulated and observed variance and covariances of the ML and the MML estimators.

ML MML
n m Scheme Var(j) Var(6) Cov(fi.5) G211t 62172 62112 Var(i) Var(6) Cov(i.5) o 62172 62112
(@=3,b=3)
15 5 (3,0,4,0,3) 0.1865 0.1392 0.0681 0.1583 0.1303 0.0598 0.1859 0.1666 0.0730 0.1738 0.1159 0.0666
10 (2,0"83) 0.1010 0.0709 0.0055 0.0968 0.0690 0.0047 0.1014 0.0847 0.0026 0.0988 0.0639 0.0086
10 (173,0"5,17%) 0.1053 0.0686 0.0091 0.1019 0.0666 0.0074 0.1058 0.0801 0.0078 0.1020 0.0616 0.0098
30 10 (5%,06,5%) 0.0877 0.0712 0.0317 0.0801 0.0688 0.0282 0.0881 0.0856 0.0348 0.0873 0.0633 0.0308
20 (5,0"8)5) 0.0496 0.0345 0.0018 0.0506 0.0346 0.0019 0.0497 0.0405 0.0009 0.0518 0.0329 0.0030
20 (175,0™10,1%) 0.0519 0.0350 0.0036 0.0502 0.0342 0.0039 0.0521 0.0381 0.0033 0.0506 0.0324 0.0045
50 25 (0™12,2"12)1) 0.0347 0.0312 0.0106 0.0335 0.0299 0.0099 0.0349 0.0328 0.0110 0.0339 0.0289 0.0099
40 (5,078 5) 0.0298 0.0174 0.0003 0.0283 0.0176 0.0002 0.0298 0.0185 0.0001 0.0285 0.0171 0.0004
40 (175,07%0,1"%) 0.0282 0.0175 0.0011 0.0282 0.0175 0.0006 0.0282 0.0184 0.0010 0.0282 0.0169 0.0007
(@a=6b=3)
15 5 (2™) 0.1434 0.1157 -0.0343 0.1248 0.1010 -0.0308 0.1455 0.1225 -0.0378 0.1172 0.0956 -0.0259
10 (07°,5) 0.1247 0.0633 -0.0398 0.1156 0.0595 -0.0383 0.1260 0.0650 -0.0412 0.1114 0.0573 -0.0361
10 (075,1™) 0.1216 0.0631 -0.0364 0.1159 0.0611 -0.0369 0.1227 0.0665 -0.0380 0.1141 0.0581 -0.0352
30 10 (219 0.0784 0.0581 -0.0215 0.0731 0.0547 -0.0206 0.0799 0.0614 -0.0238 0.0693 0.0517 -0.0167
20 (0"1°,10) 0.0628 0.0326 -0.0212 0.0599 0.0311 -0.0201 0.0635 0.0334 -0.0219 0.0585 0.0302 -0.0191
20 (175,0"10,1"%) 0.0661 0.0316 -0.0188 0.0638 0.0305 -0.0182 0.0669 0.0330 -0.0197 0.0625 0.0292 -0.0171
50 25 1) 0.0404 0.0250 -0.0117 0.0393 0.0246 -0.0114 0.0406 0.0262 -0.0122 0.0390 0.0237 -0.0108
40 (07,10) 0.0382 0.0163 -0.0114 0.0363 0.0160 -0.0111 0.0386 0.0166 -0.0117 0.0357 0.0156 -0.0107
40 (175,07%0,1"9) 0.0374 0.0167 -0.0114 0.0382 0.0161 -0.0107 0.0378 0.0173 -0.0117 0.0377 0.0156 -0.0102
(@=9,b = 3)
15 5 (2 0.2749 0.1101 -0.1120 0.2325 0.0965 -0.0968 0.2777 0.1139 -0.1152 0.2274 0.0925 -0.0940
10 (07°,5) 0.2425 0.0611 -0.0834 0.2179 0.0567 -0.0767 0.2416 0.0615 -0.0834 0.2188 0.0554 -0.0764
10 (075,1") 0.2362 0.0627 -0.0832 0.2172 0.0587 -0.0771 0.2375 0.0656 -0.0855 0.2214 0.0566 -0.0765
30 10 (219 0.1463 0.0542 -0.0579 0.1372 0.0514 -0.0551 0.1492 0.0558 -0.0599 0.1304 0.0495 -0.0518
20 (0"19,10) 0.1207 0.0312 -0.0425 0.1148 0.0298 -0.0406 0.1210 0.0314 -0.0427 0.1143 0.0293 -0.0401
20 (175,0"10,17%) 0.1182 0.0310 -0.0395 0.1157 0.0299 -0.0386 0.1193 0.0321 -0.0405 0.1152 0.0290 -0.0377
50 25 1) 0.0762 0.0242 -0.0287 0.0742 0.0238 -0.0279 0.0769 0.0249 -0.0294 0.0738 0.0232 -0.0273
40 (07,10) 0.0695 0.0156 -0.0218 0.0665 0.0155 -0.0217 0.0696 0.0157 -0.0218 0.0662 0.0152 -0.0214
40 (175,07%0,1"9) 0.0669 0.0158 -0.0211 0.0678 0.0157 -0.0213 0.0676 0.0162 -0.0215 0.0673 0.0154 -0.0209
(a=150b = 15)
15 5 (3,0,4,0,3) 0.1611 0.1014 0.0654 0.1320 0.0896 0.0564 0.1602 0.1054 0.0659 0.1367 0.0866 0.0598
10 (2,0"83) 0.0878 0.0544 0.0126 0.0784 0.0510 0.0099 0.0876 0.0558 0.0124 0.0786 0.0495 0.0115
10 (173,05,1"%) 0.0882 0.0515 0.0101 0.0804 0.0486 0.0104 0.0881 0.0526 0.0099 0.0799 0.0472 0.0115
30 10 (5™2,0,5™) 0.0791 0.0549 0.0328 0.0728 0.0511 0.0300 0.0789 0.0568 0.0331 0.0750 0.0491 0.0312
20 (5,0"8)5) 0.0437 0.0272 0.0044 0.0425 0.0268 0.0044 0.0437 0.0280 0.0043 0.0428 0.0260 0.0051
20 (175,0"10,17%) 0.0448 0.0269 0.0049 0.0417 0.0260 0.0056 0.0448 0.0272 0.0048 0.0416 0.0255 0.0059
50 25 (012,2"12)1) 0.0333 0.0233 0.0113 0.0298 0.0229 0.0103 0.0332 0.0235 0.0113 0.0299 0.0226 0.0104
40 (5,078 5) 0.0232 0.0137 0.0010 0.0235 0.0137 0.0010 0.0232 0.0138 0.0009 0.0236 0.0134 0.0012
40 (175,07%0,1"9) 0.0235 0.0130 0.0014 0.0231 0.0134 0.0013 0.0235 0.0131 0.0014 0.0231 0.0131 0.0014




Table 3. Average confidence lengths and coverage probabilities for the ML and the MML estimators of u

and g.
ML MML
n m Scheme i G Q G
(a=3b=3)
15 5 (3,0,4,0,3) 1.5594(0.8230) 1.4148(0.7871) 1.6341(0.8318) 1.3348(0.7917)
10 (2,0%3) 1.2198(0.9120)  1.0301(0.8678)  1.2322(0.9116) 0.9911(0.8692)
10 (13,0%,17) 1.2511(0.9161)  1.0114(0.8714) 1.2519(0.9127) 0.9733(0.8753)
30 10 (57,0,5%) 1.1092(0.8817)  1.0284(0.8647) 1.1584(0.8905) 0.9865(0.8671)
20 (5,0"8,5) 0.8821(0.9392)  0.7291(0.9108) 0.8924(0.9390) 0.7113(0.9086)
20 (1,0710,17) 0.8781(0.9324)  0.7244(0.9042) 0.8814(0.9330) 0.7061(0.9066)
50 25 (02,2712 1) 0.7180(0.9260)  0.6780(0.9050) 0.7220(0.9275) 0.6661(0.9103)
40 (5,0"%85) 0.6597(0.9368)  0.5207(0.9304) 0.6616(0.9392) 0.5127(0.9296)
40 (1°,070,1) 0.6577(0.9388)  0.5188(0.9364) 0.6582(0.9400) 0.5103(0.9348)
(a=6,b=3)
15 5 (27) 1.3850(0.8584)  1.2460(0.7735) 1.3419(0.8500) 1.2118(0.7759)
10 (0,5) 1.3327(0.8909)  0.9560(0.8574)  1.3085(0.8873) 0.9383(0.8578)
10 (0,17 1.3348(0.8968)  0.9688(0.8616) 1.3243(0.8953) 0.9447(0.8644)
30 10 (219 1.0602(0.9088)  0.9166(0.8634) 1.0317(0.9036) 0.8915(0.8658)
20 (0°,10) 0.9596(0.9210)  0.6908(0.9002) 0.9479(0.9184) 0.6810(0.8998)
20 (1°,0710,17) 0.9898(0.9326)  0.6846(0.9044) 0.9801(0.9308) 0.6701(0.9084)
50 25 (1) 0.7768(0.9343)  0.6148(0.9160) 0.7737(0.9333) 0.6037(0.9180)
40 (0"%°,10) 0.7464(0.9352)  0.4952(0.9268) 0.7410(0.9332) 0.4893(0.9248)
40 (1°,070,17) 0.7661(0.9388)  0.4971(0.9316) 0.7610(0.9384) 0.4895(0.9312)
(a=9,b=3)
15 5 2% 1.8901(0.8161)  1.2175(0.7678) 1.8692(0.8160) 1.1922(0.7689)
10 (0,5) 1.8298(0.8681)  0.9336(0.8503) 1.8335(0.8668) 0.9230(0.8491)
10 (0,17 1.8269(0.8664)  0.9499(0.8486) 1.8447(0.8690) 0.9329(0.8507)
30 10 (2719 1.4522(0.8935) 0.8883(0.8637) 1.4153(0.8892) 0.8726(0.8644)
20 (0™°,10) 1.3282(0.9088) 0.6768(0.9010) 1.3251(0.9078) 0.6711(0.9002)
20 (17,0M0,1) 1.3335(0.9162) 0.6783(0.9026) 1.3304(0.9170) 0.6678(0.9046)
50 25 (1) 1.0676(0.9223)  0.6049(0.9200) 1.0647(0.9230) 0.5968(0.9235)
40 (0™%,10) 1.0112(0.9268)  0.4874(0.9236) 1.0084(0.9264) 0.4834(0.9240)
40 (1°,070,1) 1.0207(0.9312)  0.4917(0.9220) 1.0173(0.9324) 0.4862(0.9240)
(a =15,b =15)
15 5 (3,0,4,0,3) 1.4243(0.8143) 1.1734(0.7626) 1.4495(0.8172) 1.1533(0.7655)
10 (2,0%3) 1.0979(0.9010)  0.8857(0.8518)  1.0992(0.9003) 0.8723(0.8530)
10 (1%3,07,172) 1.1118(0.9035)  0.8638(0.8597) 1.1083(0.9025) 0.8520(0.8616)
30 10 (5%,0,5%) 1.0575(0.8823)  0.8864(0.8559) 1.0735(0.8848) 0.8684(0.8582)
20 (5,0"8,5) 0.8085(0.9266)  0.6419(0.9064) 0.8105(0.9258) 0.6326(0.9058)
20 (1,00,17) 0.8001(0.9226)  0.6321(0.8948)  0.7994(0.9220) 0.6255(0.8962)
50 25 (02,212 1) 0.6767(0.9180)  0.5938(0.9000) 0.6778(0.9188) 0.5898(0.9008)
40 (5,0"%8,5) 0.6015(0.9456)  0.4582(0.9332) 0.6016(0.9440) 0.4543(0.9356)
40 (1°,07%0,17) 0.5963(0.9424)  0.4530(0.9284) 0.5956(0.9420) 0.4493(0.9292)

In Table 3, the average lengths of the Cls and the CPs for the location parameter x and the scale parameter
o are computed at 95% confidence level. Here, it should be noted that the observed Fisher information
matrices, based on the ML and the MML estimators, are used for computing pivotal quantities.

The average lengths of the Cls based on the ML and the MML estimators for both parameters p and o are
more or less the same. However, the average length of the CI based on the ML estimator of u is slightly
shorter than the corresponding MML estimator for symmetrical cases. On the other hand, the MML
estimator is preferable to the ML estimator in computing the average length of the CI for positively skewed

*Corresponding author, e-mail: ftm.gul.fuz@artvin.edu.tr
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cases. The average length of the Cl based on the MML estimator of o is a little bit shorter than the ML
estimator.

The CPs based on the ML and the MML estimators of u and o are extremely unsatisfactory, especially
when m/n is small. On the other hand, the values of CPs based on the ML and the MML estimators of u
and o are close to the expected value 95% while m/n is increasing.

5. DATA ANALYSIS

In this section, we analyze a real data set taken from the literature to demonstrate implementation of the
proposed estimation methods. For this purpose, we use the ball bearing data set originally discussed by
Lieblein and Zelen (1956). This concern the results of a test on endurance of deep groove ball bearings
(each measurement in 108 revolutions). The complete data contains 23 observations and are given as
follows:

17.88, 28.92, 33.0,41.52,42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,
93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.4.

In the literature, this data set was modeled using several statistical distributions, such as Weibull, logistic-
exponential, generalized inverted exponential and log-normal, see Lawless (1982), Lieblein and Zelen
(1956), Krishna and Kumar (2013) and Singh and Tripathi (2015). Different to earlier studies, here, we use
JEST distribution for modeling the ball bearing data.

Before analyzing this data set, we first need to estimate the shape parameters a and b. We use the profile
likelihood method to identify estimates of the shape parameters a and b. The steps of the profile likelihood
method are given below, see for example, Islam and Tiku (2004) and Acitas and Senoglu (2016).

Step 1. Calculate /i and & for the given a and b values.

Step 2. Calculate the log-likelihood value by incorporating £ and & into (3).

Step 3. Repeat step 1 and step 2 for a serious values of a and b.

Step 4. Find a and b values maximizing the log-likelihood function among the others and choose
them as conceivable values of the shape parameters.

Following these steps, a and b are obtained as 4.1 and 1.8, respectively. Then, we draw the Q-Q plots of
the observations for the various values of a and b. It can be observed that the JFST distribution a =4.1 and
b =1.8 beautifully models the ball bearing data; see Figure 2. It is clear that both profile likelihood
methodology and the Q-Q plot technique are in agreement in identifying the shape parameters of the JFST
distribution.
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Figure 2. JFST Q-Q plot of the ball bearing data
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Now, we consider the progressively Type-II censored samples with the following censoring schemes, see
Table 4.

Table 4. Progressively censored samples.

n m Scheme Censored data
17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12,
23 23 (0"%) 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,

127.92,128.04, 173.4

17.88, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92

17.88, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.4

23 18 (3,06,2)

23 15 (8,0

For each censoring schemes, we obtain the profile likelihood estimates of a and b. Based on these estimate
values of the shape parameters, the location parameter u and the scale parameter ¢ are obtained using ML
and MML methodologies. We then compute the 95% of the Cls for u and ¢ based on the ML and the MML
estimates.

The corresponding estimates of x4 and o and the corresponding Cls are summarized in Table 5.

Table 5. Point and interval estimates of 4 and ¢ based on the ML and the MML methodologies for the
ball bearing data.

ML MML
n m a b Pz OmL a b Aymmi OMML
23 23 412 178 (24.83077.?4096?804) (14.02529,7331?414) 415 182 (25-03073,75302.456) (14.23293i,23712.652)
220 79 23 goniliee oerssorm) T8 23 (eagreinady (12911287)
23 15 56 3l (40.45771'?735?199) (16.72785;,23‘;8.720) >8 32 (39-7566;7031.234) (18-‘1251,13597-865)

It is clear from Table 5 that the estimate values of u and ¢ obtained using the ML and MML methodologies
are very close to each other for all the censoring schemes, see also Figure 3-5. From these figures it can
easily be said that the JFST distribution provides good modeling performance for these complete and
censored data sets.
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Figure 5. Scatter plot of the ball bearing data (a) and the fitted pdfs (b) n =23, m =15

The lengths of the Cls, based on the observed Fisher information matrices obtained using ML and MML
estimates, are more or less the same. These results are in agreement with the simulation results.

6. CONCLUSIONS

In this paper, we obtain the point and interval estimators for the location and scale parameters of JFST
distribution based on progressively Type-Il censored samples. In the estimation procedure, the ML and
MML methodologies are used. It should be noted that the MML estimates for the parameters u and o are
used as initial values to obtain the ML estimates of u and o iteratively. We use pivotal quantities for
constructing Cls for the parameters p and . The performances of the proposed estimators are compared
via Monte-Carlo simulation study. It seen that the ML and MML estimators are very similar in terms of
bias and MSE criteria when the sample sizes increase as expected. The CPs based on the ML and the MML
estimators of u and ¢ are found to be unsatisfactory, especially when m/n is small. In spite of this, the
corresponding CPs are close to the expected value of 95% when m/n is getting large. Moreover, the results
of the real data analysis coincide with the simulation study.
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