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1. INTRODUCTION 

  

In many life testing and reliability studies, a number of the experimental units are lost or removed from 

experimentation before failure. Data obtained from these experiments is known as censored data. In the 

literature, the most commonly-used censoring schemes are Type-I and Type-II censoring. In Type-I 

censoring, the experimenter continues the experiment until a pre-fixed time 𝑇 is reached. Observations 

which fail after time T are censored. In Type-II censoring, a predetermined number of failures 𝑚 < 𝑛 are 

censored. Progressive censoring is different from Type-I and Type-II censoring, as it is a more general 

censoring scheme, where the experimenter is allowed to remove experimental units between experiments 

as well, see Cohen (1963) and Rastogi and Tripathi (2014). This censoring scheme provides time-saving 

and cost-effective life testing plans to the experimenter, see Balakrishnan and Aggarwala (2000). In the 

literature, there are considerable number of studies dealing with progressive censoring, see Balakrishnan et 

al. (2003), Raqab et al. (2010), Basak and Balakrishnan (2012), Krishna and Kumar (2013) and Musleh and 

Helu (2014).  

 

Progressively Type-II censoring scheme is described briefly as follows: Consider life-testing experiment 

starting with 𝑛 identical units and a progressive censoring scheme with 𝑹 = (𝑅1, 𝑅2, … , 𝑅𝑚). When the 

first failure occurs, 𝑅1 surviving units are removed randomly from the remaining 𝑛 − 1 units. Similarly, 

when the second failure occurs, 𝑅2 surviving units are removed from the remaining 𝑛 − 2 − 𝑅1 units. This 

process continues to the 𝑚th failure and 𝑅𝑚 surviving units are removed from the remaining 𝑛 −𝑚 −
∑ 𝑅𝑖
𝑚−1
𝑖=1  units. Here, 𝑅𝑖’s 𝑖 = 1,… ,𝑚 are fixed prior to study. It is clear that the entire sample is complete 

when 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑚 = 0. If 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑚−1 = 0 and 𝑅𝑚 = 𝑛 −𝑚, then the entire sample is 

a traditional Type-II right censored sample.    

 

Our aim in this paper is to derive estimators of the location and scale parameters of Jones and Faddy’s 

skewed-𝑡 (JFST) distribution based on progressively type-II censored samples. The reason for using JFST 
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distribution is that it is flexible for modeling data sets having heavy tailed symmetric, positively skewed or 

negatively skewed distributions.  

 

We use the well-known and widely used maximum likelihood (ML) methodology to obtain estimators of 

unknown parameters. However, it can be seen that solutions of likelihood equations cannot be obtained 

explicitly because of the nonlinear functions of the parameters. We, therefore, resort to different 

approaches, namely iterative and non-iterative, in order to solve them.    

 

The rest of the paper is organized as follows. A brief description of JFST distribution is given in Section 2. 

In Section 3, ML and MML estimators of the location and the scale parameters of the JSFT distribution are 

obtained based on the progressively Type-II censored samples. Observed Fisher information matrices are 

computed for both the ML and the MML estimators. In addition, the confidence intervals (CIs) for unknown 

parameters and the coverage probabilities (CPs) for pivotal quantities based on the asymptotic normality 

are obtained. In section 4, an extensive Monte-Carlo simulation study is performed for different sample 

sizes, censoring schemes and parameter settings. A real data set is analyzed in Section 6. Final comments 

and conclusions are given in Section 7. 

 

2.  JFST’S SKEWED t-DISTRIBUTION   

 

𝑡-distribution is one of the most commonly used distributions as an alternative to normal distribution. 

Although this distribution is symmetric and bell-shaped, it has heavier tails. This property provides 

flexibility for modeling real life data sets. In practice, heavy tailed distribution may not be enough, because 

the data sets may be skew. Therefore, the skew alternatives of the 𝑡-distribution are more suitable for use 

with such data sets. A wide range of study in this field; see for example, Nadarajah and Kotz (2003), Jones 

and Faddy (2003), Sartori (2006), Azzalini and Genton (2008), Carota (2010) and Massacci (2014). In this 

study, we use JFST distribution as a skewed alternative to 𝑡-distribution.  

 

The JFST distribution with the location parameter 𝜇 and the scale parameter 𝜎 has the following probability 

density function (pdf) and cumulative distribution function (cdf) 

 

𝑓(𝑧) =
1

𝜎
𝐶𝑎,𝑏
−1 {1 +

𝑧

√𝑣+𝑧2
}
𝑎+1 2⁄

{1 −
𝑧

√𝑣+𝑧2
}
𝑏+1 2⁄

,   𝑧 ∈ ℝ, 𝑎, 𝑏 ∈ ℝ+                          (1) 

 

and 

 

  𝐹(𝑧) = 𝐼{1+𝑧 √𝑣+𝑧2⁄ } 2⁄
(𝑎, 𝑏),   𝑧 ∈ ℝ, 𝑎, 𝑏 ∈ ℝ+                                    (2) 

 

respectively. Here, 𝑧 = (𝑥 − 𝜇) 𝜎⁄ , 𝑎 and 𝑏 are the shape parameters, 𝑣 = 𝑎 + 𝑏 and 𝐶𝑎,𝑏 =

2𝑣−1𝐵(𝑎, 𝑏)√𝑣. In addition, 𝐵(. , . ) and 𝐼𝑧(. , . )  represent the Beta function and the incomplete Beta 

function, respectively. If 𝑋 has a JFST distribution with parameters 𝜇, 𝜎, 𝑎 and 𝑏 then it is denoted by 

𝑋~𝐽𝐹𝑆𝑇(𝜇, 𝜎, 𝑎, 𝑏). 
 

Now, we discuss some important properties of JFST distribution. 

 

i. JFST distribution is positively and negatively skewed for 𝑎 > 𝑏 and 𝑎 < 𝑏, respectively. 

ii. It reduces to 𝑡-distribution with 2𝑎 degrees of freedom for 𝑎 = 𝑏. It should be noted that, when 

𝑎, 𝑏 → ∞ the JFST distribution is convergence to normal distribution.  

iii. If 𝑎 > 𝑘 2⁄  and 𝑏 > 𝑘 2⁄ , then 𝐸(𝑍𝑘) is computed as 

 

𝐸(𝑍𝑘) =
(𝑎 + 𝑏)𝑘 2⁄

2𝑘𝐵(𝑎, 𝑏)
∑(

𝑘
𝑖
) (−1)𝑖𝐵 (𝑎 +

𝑘

2
− 𝑖, 𝑏 −

𝑘

2
+ 𝑖)

𝑘

𝑖=0

. 

iv. For the effects of shape parameters 𝑎 and 𝑏 for the JFST distribution see Figure 1. 
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Figure 1. JFST distributions for different values of shape parameters 

 

For more detailed information, see Jones and Faddy (2003), Jones (2008), Acıtaş et al. (2013), Arslan 

(2015) and Arslan and Şenoğlu (2017). 

 

3. PARAMETER ESTIMATION 

In this section, we consider ML and MML estimation of the location and scale parameters of JFST 

distribution based on progressively Type-II censored data. In this context, in subsection 3.1 and 3.2, ML 

estimators are obtained by using iterative methods and MML estimators of the unknown parameters are 

derived in explicit form. In subsection 3.3, observed Fisher information matrices are computed for both the 

ML and the MML estimators of 𝜇 and 𝜎. Using observed variances, the pivotal quantities are calculated. 

After this, CPs and CIs are obtained.  

 

3.1. Maximum Likelihood Estimators 

Let 𝑿 = (𝑋1:𝑚:𝑛, 𝑋2:𝑚:𝑛 , … , 𝑋𝑚:𝑚:𝑛) with 𝑋1:𝑚:𝑛 < 𝑋2:𝑚:𝑛 < ⋯ < 𝑋𝑚:𝑚:𝑛 be a progressively Type-II 

censored sample of size 𝑚 under the censoring schema 𝑹 = (𝑅1, 𝑅2, … , 𝑅𝑚). We use the notation 𝑋𝑖 instead 

of 𝑋𝑖:𝑚:𝑛, for simplicity. The likelihood function, based on progressively Type-II censored sample is shown 

below 

𝐿(𝜇, 𝜎, 𝑎, 𝑏; 𝑋1, 𝑋2, … , 𝑋𝑚) = 𝑐∏𝑓(𝑥𝑖)[1 − 𝐹(𝑥𝑖)]
𝑅𝑖

𝑚

𝑖=1

,    

 

where 𝑐 = 𝑛(𝑛 − 𝑅1 − 1)(𝑛 − 𝑅1 − 𝑅2 − 2)… (𝑛 − 𝑅1 − 𝑅2 −⋯− 𝑅𝑚−1 −𝑚 + 1). The log-likelihood 

function is given by 

 

ln 𝐿 ∝ 𝑚 ln𝜎 + (𝑎 + 0.5)∑ln

{
 

 

1 +
𝑧𝑖

√𝑣 + 𝑧𝑖
2

}
 

 𝑚

𝑖=1

+ (𝑏 + 0.5)∑ln

{
 

 

1 −
𝑧𝑖

√𝑣 + 𝑧𝑖
2

}
 

 𝑚

𝑖=1

 

+∑𝑅𝑖 ln[1 − 𝐹(𝑧𝑖)]

𝑚

𝑖=1

, (3) 

 

where 𝑧𝑖 = (𝑥𝑖 − 𝜇) 𝜎⁄ . By taking derivation with respect to 𝜇 and 𝜎, likelihood equations are obtained as 

given below 
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𝜕 ln 𝐿

𝜕𝜇
= −

𝑎 + 0.5

𝜎
∑𝑔1(𝑧𝑖)

𝑚

𝑖=1

+
𝑏 + 0.5

𝜎
∑𝑔2(𝑧𝑖)

𝑚

𝑖=1

+
1

𝜎
∑𝑅𝑖𝑔3(𝑧𝑖)

𝑚

𝑖=1

= 0,                                        (4) 

 

𝜕 ln 𝐿

𝜕𝜎
= −

𝑚

𝜎
−
𝑎 + 0.5

𝜎
∑𝑧𝑖𝑔1(𝑧𝑖)

𝑚

𝑖=1

+
𝑏 + 0.5

𝜎
∑𝑧𝑖𝑔2(𝑧𝑖)

𝑚

𝑖=1

+
1

𝜎
∑𝑅𝑖𝑧𝑖𝑔3(𝑧𝑖)

𝑚

𝑖=1

= 0.                    (5) 

 

Here, 

 

𝑔1(𝑧𝑖) =
𝑣

(𝑣+𝑧𝑖
2)
3 2⁄

+𝑧𝑖(𝑣+𝑧𝑖
2)

,   𝑔2(𝑧𝑖) =
𝑣

(𝑣+𝑧𝑖
2)
3 2⁄

−𝑧𝑖(𝑣+𝑧𝑖
2)

    and 

𝑔3(𝑧𝑖) =
𝑓(𝑧𝑖)

1−𝐹(𝑧𝑖)
,   𝑖 = 1,… ,𝑚.                                                         (6) 

 

The ML estimators of the unknown parameters 𝜇 and 𝜎 are the solutions of the likelihood equations (4)-

(5). However, because of the non-linear functions given in equation (6), the likelihood equations cannot be 

solved explicitly. Therefore, we resort to iterative methods.  

 

3.2. Modified Maximum Likelihood Estimators 

 

We use MML methodology proposed by Tiku (1967) to obtain close form estimators of the location and 

scale parameters in this subsection. To obtain MML estimators of the parameters, we first linearize the non-

linear functions 𝑔1(𝑧𝑖), 𝑔2(𝑧𝑖) and 𝑔3(𝑧𝑖) given in equation (6) using Taylor series expansion around 

𝐸(𝑍𝑖:𝑚:𝑛) = 𝑡𝑖:𝑚:𝑛. From Balakrishnan and Sandhu (1995) 

 

𝐹(𝑍𝑖:𝑚:𝑛) = 𝑈𝑖:𝑚:𝑛, 

 

where 𝑈𝑖:𝑚:𝑛 is the 𝑖th order statistics from a progressively Type-II censored sample whose distribution is 

uniform 𝑈(0,1). Then 

 

𝑍𝑖:𝑚:𝑛 = 𝐹
−1(𝑈𝑖:𝑚:𝑛) 

 

and hence 

 

𝑡𝑖:𝑚:𝑛 = 𝐸(𝑍𝑖:𝑚:𝑛) ≈ 𝐹
−1(𝜂𝑖:𝑚:𝑛), 

 

where 𝜂𝑖:𝑚:𝑛 = 𝐸(𝑈𝑖:𝑚:𝑛). From Balakrishnan and Aggarwala (2000), it is known that 

 

𝜂𝑖:𝑚:𝑛 = 1 − ∏
𝑗 + 𝑅𝑚−𝑗+1 +⋯+ 𝑅𝑚

𝑗 + 1 + 𝑅𝑚−𝑗+1 +⋯+ 𝑅𝑚

𝑚

𝑗=𝑚−𝑖+1

,   𝑖 = 1,… ,𝑚. 

 

It should be noted that, for simplicity notation, we use 𝑡𝑖 instead of 𝑡𝑖:𝑚:𝑛. 

 

The linearized functions are obtained as shown below 

 

𝑔1(𝑧𝑖) = 𝛼1𝑖 − 𝛽1𝑖𝑧𝑖,   𝑔2(𝑧𝑖) = 𝛼2𝑖 + 𝛽1𝑖𝑧𝑖   and   𝑔3(𝑧𝑖) = 𝛼3𝑖 + 𝛽3𝑖𝑧𝑖,   𝑖 = 1,… ,𝑚, 

 

where 

 

 𝛽1𝑖 =
𝑣[3𝑡𝑖√𝑣+𝑡𝑖

2+𝑣+3𝑡𝑖
2]

[(𝑣+𝑡𝑖
2)
3 2⁄

+𝑡𝑖(𝑣+𝑡𝑖
2)]

2,   𝛽2𝑖 =
𝑣[3𝑡𝑖√𝑣+𝑡𝑖

2−𝑣−3𝑡𝑖
2]

[(𝑣+𝑡𝑖
2)
3 2⁄

−𝑡𝑖(𝑣+𝑡𝑖
2)]

2,   𝛽3𝑖 =
𝑓′(𝑡𝑖)

1−𝐹(𝑡𝑖)
+

𝑓(𝑡𝑖)
2

[1−𝐹(𝑡𝑖)]
2, 
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 𝛼1𝑖 = 𝑔1(𝑡𝑖) + 𝑡𝑖𝛽1𝑖,   𝛼2𝑖 = 𝑔2(𝑡𝑖) − 𝑡𝑖𝛽2𝑖,   𝛼3𝑖 = 𝑔3(𝑡𝑖) − 𝑡𝑖𝛽3𝑖.                            (7) 

 

By incorporating the linearized functions given in equation (7) into the likelihood equations (4)-(5), 

modified likelihood equations are obtained as follows 

 

𝜕 ln 𝐿∗

𝜕𝜇
= −

𝑎 + 0.5

𝜎
∑(𝛼1𝑖 − 𝛽1𝑖𝑧𝑖)

𝑚

𝑖=1

+
𝑏 + 0.5

𝜎
∑(𝛼2𝑖 + 𝛽2𝑖𝑧𝑖)

𝑚

𝑖=1

 

+
1

𝜎
∑𝑅𝑖(𝛼3𝑖 + 𝛽3𝑖𝑧𝑖)

𝑚

𝑖=1

= 0,                                                                              (8) 

 

𝜕 ln 𝐿∗

𝜕𝜎
= −

𝑚

𝜎
−
𝑎 + 0.5

𝜎
∑(𝛼1𝑖 − 𝛽1𝑖𝑧𝑖)𝑧𝑖

𝑚

𝑖=1

+
𝑏 + 0.5

𝜎
∑(𝛼2𝑖 + 𝛽2𝑖𝑧𝑖)𝑧𝑖

𝑚

𝑖=1

 

+
1

𝜎
∑𝑅𝑖(𝛼3𝑖 + 𝛽3𝑖𝑧𝑖)𝑧𝑖

𝑚

𝑖=1

= 0.                                                                                   (9) 

 

The solutions of these equations are the following closed form MML estimators 

 

𝜇̂𝑀𝑀𝐿 = 𝐾 +
Δ

𝑤
𝜎̂𝑀𝑀𝐿   and   𝜎̂𝑀𝑀𝐿 =

𝐵+√𝐵2+4𝐴𝐶

2𝐴
, 

where 

𝛿𝑖 = (𝑎 + 0.5)𝛽1𝑖 + (𝑏 + 0.5)𝛽2𝑖 + 𝑅𝑖𝛽3𝑖,   𝑤 = ∑ 𝛿𝑖
𝑚
𝑖=1 ,   𝐾 =

∑ 𝛿𝑖𝑥𝑖
𝑚
𝑖=1

𝑤
, 

 

Δ𝑖 = −(𝑎 + 0.5)𝛼1𝑖 + (𝑏 + 0.5)𝛼2𝑖 + 𝑅𝑖𝛼3𝑖,   Δ = ∑ Δ𝑖
𝑚
𝑖=1 , 

 

𝐴 = 𝑚 = 𝑛 − ∑ 𝑅𝑖
𝑚
𝑖=1 ,   𝐵 = ∑ Δ𝑖(𝑥𝑖 − 𝐾)

𝑚
𝑖=1 ,   𝐶 = ∑ 𝛿𝑖(𝑥𝑖 −𝐾)

2𝑚
𝑖=1 .                    (10) 

 

Remark. On occasion, the values of the 𝛽1𝑖 coefficients may be negative. This situation makes 𝜎̂𝑀𝑀𝐿 unreal 

or negative. To overcome this problem, the coefficients 𝛽1𝑖 and 𝛼1𝑖 are replaced by 𝛽1𝑖
∗  and 𝛼1𝑖

∗  

 

𝛽1𝑖
∗ =

𝑣[3√𝑣+𝑡𝑖
2+𝑣+3𝑡𝑖

2]

[(𝑣+𝑡𝑖
2)
3 2⁄

+𝑡𝑖(𝑣+𝑡𝑖
2)]

2,   𝛼2𝑖
∗ = 𝑔(𝑡𝑖) + 𝑡𝑖𝛽1𝑖

∗ ,   𝑖 = 1,… ,𝑚, 

 

respectively. It should be noted that this alternative representation does not change the asymptotic 

properties of the estimators because 𝑧𝑖 − 𝑡𝑖 ≅ 0 and, consequently, 𝛼1𝑖 + 𝛽1𝑖𝑧𝑖 ≅ 𝛼1𝑖
∗ + 𝛽1𝑖

∗ 𝑧𝑖 (𝑖 =
1,… ,𝑚), see Islam and Tiku (2004) and Acıtaş et al. (2013). 

 

The MML estimators have the following properties: 

 

i. They have closed form expressions. 

ii. They are the functions of sample observations and are easy to compute. 

iii. Asymptotically, they are fully efficient, i.e., their variances are equivalent to Rao-Cramer lower 

bound when regularity conditions hold, see Vaughan (2002). They also have high efficiencies, even 

for small 𝑛 values. 

iv. They are asymptotically equivalent to ML estimators, see Bhattacharyya (1985) and Vaughan and 

Tiku (2000).   

 

In addition to being non-iterative, MML methodology provides initial values having the fastest convergence 

rate among the others for the iterative methods, see Acıtaş et al. (2011).  Therefore, in this study, we use 

MML estimators of parameters as initial values for solving the likelihood equations in ML methodology. 
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3.3 Variances and Covariances 

 

The asymptotic variance-covariance matrix of the ML estimators of the parameters 𝜇 and 𝜎 is derived from 

the inverse on the following Fisher information matrix 

 

𝐼 = [
−𝐸 (

𝜕2 ln 𝐿

𝜕𝜇2
) −𝐸 (

𝜕2 ln 𝐿

𝜕𝜇𝜕𝜎
)

−𝐸 (
𝜕2 ln 𝐿

𝜕𝜎𝜕𝜇
) −𝐸 (

𝜕2 ln 𝐿

𝜕𝜎2
)
].                                                     (11) 

 

Elements of the Fisher information matrix for ML estimators: The elements of the Fisher information matrix 

for the likelihood equations (4)-(5) are obtained from the following equations 

 

𝜕2 ln 𝐿

𝜕𝜇2
= −

𝑎 + 0.5

𝜎2
∑𝑔1

′ (𝑧𝑖)

𝑚

𝑖=1

−
𝑏 + 0.5

𝜎2
∑𝑔2

′ (𝑧𝑖)

𝑚

𝑖=1

−
1

𝜎2
∑𝑔3

′ (𝑧𝑖)

𝑚

𝑖=1

,                              (12) 

 

𝜕2 ln 𝐿

𝜕𝜎2
=
𝑚

𝜎2
+
2(𝑎 + 0.5)

𝜎2
∑𝑧𝑖𝑔1(𝑧𝑖)

𝑚

𝑖=1

−
𝑎 + 0.5

𝜎2
∑𝑧𝑖

2𝑔1
′ (𝑧𝑖)

𝑚

𝑖=1

−
2(𝑏 + 0.5)

𝜎2
∑𝑧𝑖𝑔2(𝑧𝑖)

𝑚

𝑖=1

 

−
𝑏 + 0.5

𝜎2
∑𝑧𝑖

2𝑔2
′ (𝑧𝑖)

𝑚

𝑖=1

−
2

𝜎2
∑𝑅𝑖𝑧𝑖𝑔3(𝑧𝑖)

𝑚

𝑖=1

−
1

𝜎2
∑𝑅𝑖𝑧𝑖

2𝑔3
′ (𝑧𝑖)

𝑚

𝑖=1

,                                  (13) 

 

𝜕2 ln 𝐿

𝜕𝜇𝜕𝜎
=
𝑎 + 0.5

𝜎2
∑𝑔1(𝑧𝑖)

𝑚

𝑖=1

−
𝑎 + 0.5

𝜎2
∑𝑧𝑖𝑔1

′ (𝑧𝑖)

𝑚

𝑖=1

−
𝑏 + 0.5

𝜎2
∑𝑔2(𝑧𝑖)

𝑚

𝑖=1

 

−
𝑏 + 0.5

𝜎2
∑𝑧𝑖𝑔2

′ (𝑧𝑖)

𝑚

𝑖=1

−
1

𝜎2
∑𝑅𝑖𝑔3(𝑧𝑖)

𝑚

𝑖=1

−
1

𝜎2
∑𝑅𝑖𝑧𝑖𝑔3

′ (𝑧𝑖)

𝑚

𝑖=1

                        (14) 

 

where 𝑔1
′ (. ), 𝑔2

′ (. ) and 𝑔3
′ (. ) are the derivative of 𝑔1(. ), 𝑔2(. ) and 𝑔3(. ), respectively. These are  

 

𝑔1
′ (𝑧𝑖) =

3(𝑣+𝑧𝑖
2)
1 2⁄

𝑣𝑧𝑖+𝑣
2+3𝑣𝑧𝑖

2

[(𝑣+𝑧𝑖
2)
3 2⁄

+𝑧𝑖(𝑣+𝑧𝑖
2)]

2 ,   𝑔2
′ (𝑧𝑖) =

3(𝑣+𝑧𝑖
2)
1 2⁄

𝑣𝑧𝑖−𝑣
2−3𝑣𝑧𝑖

2

[(𝑣+𝑧𝑖
2)
3 2⁄

−𝑧𝑖(𝑣+𝑧𝑖
2)]

2    and 

𝑔3
′ (𝑧𝑖) =

𝑓′(𝑧𝑖)(1−𝐹(𝑧𝑖))+𝑓
2(𝑧𝑖)

(1−𝐹(𝑧𝑖))
2 .                                                     (15) 

 

However, because the exact mathematical expressions for the expectation of the equation (11) is extremely 

difficult, we use the observed variance-covariance matrix. Following this, the inverse of the observed Fisher 

information matrix is derived from following equation 

 

𝐼𝑜𝑏𝑠
−1 = [

−
𝜕2 ln 𝐿

𝜕𝜇2
−
𝜕2 ln 𝐿

𝜕𝜇𝜕𝜎

−
𝜕2 ln 𝐿

𝜕𝜎𝜕𝜇
−
𝜕2 ln 𝐿

𝜕𝜎2

]

𝜇=𝜇̂,𝜎=𝜎̂

−1

= 𝜎2 [𝐼
11 𝐼12

𝐼21 𝐼22
]                                                    (16) 

 

where 𝐼12 = 𝐼21. 

 

Elements of the Fisher information matrix for MML estimators: The elements of the Fisher information 

matrix for the modified likelihood equations (8)-(9) are obtained from the following equations 

 

𝜕2 ln 𝐿∗

𝜕𝜇2
= −

1

𝜎2
∑𝛿𝑖

𝑚

𝑖=1

,                                                                   (17) 
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𝜕2 ln 𝐿∗

𝜕𝜎2
=
𝑚

𝜎2
−
2

𝜎2
∑Δ𝑖𝑧𝑖

𝑚

𝑖=1

−
3

𝜎2
∑𝛿𝑖𝑧𝑖

2

𝑚

𝑖=1

,                                                  (18) 

 

𝜕2 ln 𝐿∗

𝜕𝜇𝜕𝜎
= −

1

𝜎2
∑Δ𝑖

𝑚

𝑖=1

−
2

𝜎2
∑𝛿𝑖𝑧𝑖

𝑚

𝑖=1

.                                                   (19) 

 

Similar to equation (16), the inverse of the observed Fisher information matrix is derived by replacing 
𝜕2 ln 𝐿

𝜕
 

to 
𝜕2 ln 𝐿∗

𝜕
. As a result, we get   

 

𝐼𝑜𝑏𝑠
−1 ∗ = 𝜎2 [

𝐼∗
11 𝐼∗

12

𝐼∗
21 𝐼∗

22].                                                                (20)  

 

The observed variances and covariance of the ML estimators of 𝜇̂ and 𝜎̂ are computed as shown below  

 

 𝑉𝑎𝑟(𝜇̂) = 𝜎̂2√𝐼11,   𝑉𝑎𝑟(𝜎̂) = 𝜎̂2√𝐼22   and    𝐶𝑜𝑣(𝜇̂, 𝜎̂) = 𝜎̂2√𝐼12.                        (21) 

 

By incorporating the MML estimators of 𝜇̂, 𝜎̂ and  𝐼∗
11, 𝐼∗

12 and 𝐼∗
22 into equation (21), the observed 

variances and covariance of the MML 𝜇̂ and 𝜎̂ are obtained in similar manner. 

 

Then, we calculate pivotal quantities for both the ML and the MML estimators as given below  

 

 𝑃1 =
𝜇̂−𝜇

√𝑉𝑎𝑟(𝜇̂)
    and    𝑃2 =

𝜎̂−𝜎

√𝑉𝑎𝑟(𝜎̂)
.      (22) 

 

The asymptotic distribution of the pivotal quantities is to becomes standard normal, based on the asymptotic 

normality of 𝜇̂ and 𝜎̂. Using Monte-Carlo simulation, CPs are computed as  

 

 𝐶𝑃1 = 𝑃(|𝑃1| ≤ 𝑧𝛼 2⁄ )   and    𝐶𝑃2 = 𝑃(|𝑃2| ≤ 𝑧𝛼 2⁄ ),       (23) 

 

where 𝑧𝛼 2⁄  is the (𝛼 2⁄ )𝑡ℎ percentile of the standard normal distribution.   

     

The two-sided normal approximate CIs for the ML and the MML estimators of 𝜇 and 𝜎 are obtained as 

𝜇̂ ± 𝑧𝛼 2⁄ √𝑉𝑎𝑟(𝜇̂) and 𝜎̂ ± 𝑧𝛼 2⁄ √𝑉𝑎𝑟(𝜎̂), respectively. 

 

4.  SIMULATION STUDY 

 

In this section, an extensive Monte-Carlo simulation study was conducted to compare the performances of 

the proposed estimators of the parameters of the JFST distribution examined in Section 3 for various 

different parameter settings, sample sizes, number of failures and censoring schemes. Comparisons are 

made for both the point and the interval estimators of the parameters. Bias and mean square error (MSE) 

are used for comparisons of point estimators and the CP criterion is used for comparisons of the interval 

estimators. 

 

The progressive type-II censored samples are generated using the algorithm originated by Balakrishnan and 

Sandhu (1995), and without loss of generality, 𝜇 and 𝜎 are taken to be 0 and 1, respectively. Four different 

sets of shape parameters are used, i.e., 𝑎 = 𝑏 =3 and 𝑎 = 𝑏 =15 (symmetric cases); 𝑎 =6, 𝑏 =3 and 𝑎 =9, 

𝑏 =3 (positively skewed cases). It should be noted that the simulation results for 𝑎 = 3, 𝑏 = 6 and 𝑎 = 3, 

𝑏 = 9 (negatively skewed cases) have also been obtained. However, the simulation results are very similar 

with those obtained from the positively skewed cases. Therefore, for the sake of brevity, we therefore did 

not reproduce them.  
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The following sample sizes and the number of failures were considered in the simulations 

 

𝑛 =15 ⇒ 𝑚 = 5 and 10, 

𝑛 =30 ⇒ 𝑚 = 10 and 20   and 

𝑛 =50 ⇒ 𝑚 = 25 and 40. 

 

We use different censoring schemes, depending on the shape of the distribution to make comparisons 

meaningful. For simplicity, we use ‘*’ notation to illustrate censoring schemes. For example, (1*3,0*5,1*2) 

denotes the censoring scheme (1,1,1,0,0,0,0,0,1,1).  

 

All the simulations were conducted using Matlab R2013a for ⟦100,000 𝑚⁄ ⟧ Monte-Carlo runs. Here, ⟦. ⟧ 
represents the greatest integer value. It should be noted that, as mentioned in subsection 3.1, the likelihood 

equations (4) and (5) cannot be solved explicitly. Therefore, ML estimators of the parameters 𝜇 and 𝜎 are 

obtained using the iterative method. Because of the reasons given in subsection 3.2, we use MML estimates 

of the parameters in (10) as initial values for the iterations.  

 

In Table 1, means and MSEs of the ML and the MML estimators of the location and scale parameters of 

the JFST distribution, i.e. 𝜇 and 𝜎, are reported. Discussions about the simulation results for the parameters 

𝜇 and 𝜎 are presented separately for the sake of simplicity. 

 

For 𝜇: In terms of the bias criterion, the ML estimator has smaller bias than the corresponding MML 

estimator when the shape of the JFST distribution is symmetric, i.e., 𝑎 = 𝑏 =3 and 𝑎 = 𝑏 =15. On the 

other hand, the ML estimator has larger bias than the MML estimator for positively skewed cases, i.e., 

𝑎 =6, 𝑏 =3 and 𝑎 =9, 𝑏 =3. In terms of the MSE criterion, the ML estimator shows better performance 

than the corresponding MML estimator in all cases. It should be noted that the performances of the ML and 

the MML estimators are more or less the same when 𝑚 ≥20 for all the parameter settings, sample sizes and 

the censoring schemes as expected, since it is known that the MML estimator is asymptotically equivalent 

to the ML estimator.   

 

For 𝜎: The MML estimator outperforms the corresponding ML estimator with respect to the bias criterion 

in all cases, because, the ML estimator underestimates the scale parameter 𝜎. The ML estimator of 𝜎 is 

more efficient than the corresponding MML estimator with respect to the MSE criterion in most of the 

cases. For large values of 𝑛 and 𝑚, the ML and the MML estimators are close to each other due to the 

reason given in subsection 3.2.   

 

It should be noted that the performances of the all the estimators increase significantly as the sample 

proportion 𝑚/𝑛 increases (in other words, the proportion of censoring decreases) as expected. 

  

The exact variances of 𝜇̂ and 𝜎̂ cannot be obtained. We therefore compute the observed Fisher information 

matrix to obtain approximate variances and covariance of the parameter estimators. In Table 2, simulated 

variances and covariance of the ML and the MML estimators of 𝜇 and 𝜎 are compared with the 

corresponding variances and covariance obtained from the observed Fisher information matrix. It is easy 

to see that variances and covariance determined from the observed Fisher information matrix are close to 

simulated variances and covariance, even when 𝑚 is moderate, i.e. 𝑚 =20 for both the ML and the MML 

estimators. 
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Table 1. Mean and MSEs of ML, MML and LS estimators of 𝜇 and 𝜎. 
   ML MML 

𝑛 𝑚 Scheme 𝜇̂ 𝜎̂ 𝜇̂ 𝜎̂ 

    (𝑎 = 3, 𝑏 = 3) 
15 5 (3,0,4,0,3) -0.1225(0.2015) 0.8773(0.1543) -0.1286(0.2024) 0.9336(0.1710) 

 10 (2,0*8,3) -0.0139(0.1011) 0.9453(0.0739) -0.0307(0.1024) 0.9883(0.0848) 

 10 (1*3,0*5,1*2) -0.0151(0.1056) 0.9481(0.0713) -0.0253(0.1064) 0.9912(0.0802) 

30 10 (5*2,0*6,5*2) -0.0603(0.0913) 0.9375(0.0751) -0.0613(0.0918) 0.9846(0.0859) 

 20 (5,0*18,5) -0.0081(0.0497) 0.9709(0.0354) -0.0193(0.0501) 1.0027(0.0405) 

 20 (1*5,0*10,1*5) -0.0128(0.0521) 0.9705(0.0358) -0.0162(0.0523) 0.9974(0.0381) 

50 25 (0*12,2*12,1) -0.0180(0.0350) 0.9691(0.0321) -0.0150(0.0351) 0.9863(0.0330) 

 40 (5,0*38,5) -0.0005(0.0298) 0.9857(0.0176) -0.0056(0.0299) 1.0027(0.0185) 

 40 (1*5,0*30,1*5) -0.0013(0.0282) 0.9856(0.0177) -0.0036(0.0282) 1.0010(0.0184) 

    (𝑎 = 6, 𝑏 = 3) 
15 5 (2*5) 0.0281(0.1442) 0.8649(0.1340) 0.0127(0.1457) 0.8871(0.1352) 

 10 (0*9,5) 0.0603(0.1283) 0.9301(0.0682) 0.0516(0.1286) 0.9406(0.0685) 

 10 (0*5,1*5) 0.0515(0.1243) 0.9359(0.0672) 0.0440(0.1246) 0.9556(0.0685) 

30 10 (2*10) 0.0153(0.0786) 0.9382(0.0619) -0.0022(0.0799) 0.9574(0.0632) 

 20 (0*19,10) 0.0328(0.0639) 0.9634(0.0340) 0.0250(0.0641) 0.9716(0.0342) 

 20 (1*5,0*10,1*5) 0.0205(0.0665) 0.9704(0.0325) 0.0117(0.0670) 0.9861(0.0332) 

50 25 (1*25) 0.0101(0.0405) 0.9793(0.0255) 0.0034(0.0406) 0.9944(0.0263) 

 40 (0*39,10) 0.0143(0.0384) 0.9839(0.0166) 0.0090(0.0387) 0.9901(0.0167) 

 40 (1*5,0*30,1*5) 0.0184(0.0378) 0.9884(0.0169) 0.0114(0.0379) 0.9989(0.0173) 

    (𝑎 = 9, 𝑏 = 3) 
15 5 (2*5) 0.1610(0.3008) 0.8601(0.1296) 0.1512(0.3006) 0.8741(0.1298) 

 10 (0*9,5) 0.1379(0.2615) 0.9267(0.0665) 0.1426(0.2620) 0.9301(0.0664) 

 10 (0*5,1*5) 0.1338(0.2541) 0.9284(0.0678) 0.1316(0.2548) 0.9424(0.0689) 

30 10 (2*10) 0.0716(0.1514) 0.9352(0.0584) 0.0564(0.1524) 0.9462(0.0587) 

 20 (0*19,10) 0.0653(0.1250) 0.9649(0.0324) 0.0647(0.1252) 0.9679(0.0324) 

 20 (1*5,0*10,1*5) 0.0598(0.1218) 0.9693(0.0319) 0.0526(0.1221) 0.9804(0.0324) 

50 25 (1*25) 0.0368(0.0775) 0.9766(0.0247) 0.0288(0.0778) 0.9872(0.0251) 

 40 (0*39,10) 0.0380(0.0709) 0.9812(0.0159) 0.0362(0.0709) 0.9845(0.0159) 

 40 (1*5,0*30,1*5) 0.0400(0.0685) 0.9837(0.0161) 0.0338(0.0687) 0.9911(0.0162) 

    (𝑎 = 15, 𝑏 = 15) 
15 5 (3,0,4,0,3) -0.1310(0.1783) 0.8479(0.1246) -0.1369(0.1790) 0.8630(0.1242) 

 10 (2,0*8,3) -0.0248(0.0884) 0.9259(0.0599) -0.0306(0.0885) 0.9359(0.0599) 

 10 (1*3,0*5,1*2) -0.0267(0.0889) 0.9277(0.0567) -0.0316(0.0891) 0.9368(0.0566) 

30 10 (5*2,0*6,5*2) -0.0620(0.0829) 0.9300(0.0598) -0.0641(0.0830) 0.9437(0.0600) 

 20 (5,0*18,5) -0.0148(0.0439) 0.9687(0.0282) -0.0193(0.0440) 0.9777(0.0285) 

 20 (1*5,0*10,1*5) -0.0130(0.0450) 0.9637(0.0282) -0.0154(0.0450) 0.9698(0.0281) 

50 25 (0*12,2*12,1) -0.0243(0.0338) 0.9615(0.0248) -0.0250(0.0339) 0.9651(0.0248) 

 40 (5,0*38,5) 0.0003(0.0232) 0.9863(0.0139) -0.0022(0.0232) 0.9913(0.0139) 

 40 (1*5,0*30,1*5) 0.0003(0.0235) 0.9815(0.0134) -0.0018(0.0235) 0.9854(0.0133) 
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Table 2. Simulated and observed variance and covariances of the ML and the MML estimators. 
     ML     MML   

𝑛 𝑚 Scheme 𝑉𝑎𝑟(𝜇̂) 𝑉𝑎𝑟(𝜎̂) 𝐶𝑜𝑣(𝜇̂. 𝜎̂) 𝜎̂2𝐼11 𝜎̂2𝐼22 𝜎̂2𝐼12 𝑉𝑎𝑟(𝜇̂) 𝑉𝑎𝑟(𝜎̂) 𝐶𝑜𝑣(𝜇̂. 𝜎̂) 𝜎̂2𝐼∗
11 𝜎̂2𝐼∗

22 𝜎̂2𝐼∗
12 

        (𝑎 = 3, 𝑏 = 3)      

15 5 (3,0,4,0,3) 0.1865 0.1392 0.0681 0.1583 0.1303 0.0598 0.1859 0.1666 0.0730 0.1738 0.1159 0.0666 

 10 (2,0*8,3) 0.1010 0.0709 0.0055 0.0968 0.0690 0.0047 0.1014 0.0847 0.0026 0.0988 0.0639 0.0086 

 10 (1*3,0*5,1*2) 0.1053 0.0686 0.0091 0.1019 0.0666 0.0074 0.1058 0.0801 0.0078 0.1020 0.0616 0.0098 

30 10 (5*2,0*6,5*2) 0.0877 0.0712 0.0317 0.0801 0.0688 0.0282 0.0881 0.0856 0.0348 0.0873 0.0633 0.0308 

 20 (5,0*18,5) 0.0496 0.0345 0.0018 0.0506 0.0346 0.0019 0.0497 0.0405 0.0009 0.0518 0.0329 0.0030 

 20 (1*5,0*10,1*5) 0.0519 0.0350 0.0036 0.0502 0.0342 0.0039 0.0521 0.0381 0.0033 0.0506 0.0324 0.0045 

50 25 (0*12,2*12,1) 0.0347 0.0312 0.0106 0.0335 0.0299 0.0099 0.0349 0.0328 0.0110 0.0339 0.0289 0.0099 

 40 (5,0*38,5) 0.0298 0.0174 0.0003 0.0283 0.0176 0.0002 0.0298 0.0185 0.0001 0.0285 0.0171 0.0004 

 40 (1*5,0*30,1*5) 0.0282 0.0175 0.0011 0.0282 0.0175 0.0006 0.0282 0.0184 0.0010 0.0282 0.0169 0.0007 

        (𝑎 = 6, 𝑏 = 3)      

15 5 (2*5) 0.1434 0.1157 -0.0343 0.1248 0.1010 -0.0308 0.1455 0.1225 -0.0378 0.1172 0.0956 -0.0259 

 10 (0*9,5) 0.1247 0.0633 -0.0398 0.1156 0.0595 -0.0383 0.1260 0.0650 -0.0412 0.1114 0.0573 -0.0361 

 10 (0*5,1*5) 0.1216 0.0631 -0.0364 0.1159 0.0611 -0.0369 0.1227 0.0665 -0.0380 0.1141 0.0581 -0.0352 

30 10 (2*10) 0.0784 0.0581 -0.0215 0.0731 0.0547 -0.0206 0.0799 0.0614 -0.0238 0.0693 0.0517 -0.0167 

 20 (0*19,10) 0.0628 0.0326 -0.0212 0.0599 0.0311 -0.0201 0.0635 0.0334 -0.0219 0.0585 0.0302 -0.0191 

 20 (1*5,0*10,1*5) 0.0661 0.0316 -0.0188 0.0638 0.0305 -0.0182 0.0669 0.0330 -0.0197 0.0625 0.0292 -0.0171 

50 25 (1*25) 0.0404 0.0250 -0.0117 0.0393 0.0246 -0.0114 0.0406 0.0262 -0.0122 0.0390 0.0237 -0.0108 

 40 (0*39,10) 0.0382 0.0163 -0.0114 0.0363 0.0160 -0.0111 0.0386 0.0166 -0.0117 0.0357 0.0156 -0.0107 

 40 (1*5,0*30,1*5) 0.0374 0.0167 -0.0114 0.0382 0.0161 -0.0107 0.0378 0.0173 -0.0117 0.0377 0.0156 -0.0102 

        (𝑎 = 9, 𝑏 = 3)      

15 5 (2*5) 0.2749 0.1101 -0.1120 0.2325 0.0965 -0.0968 0.2777 0.1139 -0.1152 0.2274 0.0925 -0.0940 

 10 (0*9,5) 0.2425 0.0611 -0.0834 0.2179 0.0567 -0.0767 0.2416 0.0615 -0.0834 0.2188 0.0554 -0.0764 

 10 (0*5,1*5) 0.2362 0.0627 -0.0832 0.2172 0.0587 -0.0771 0.2375 0.0656 -0.0855 0.2214 0.0566 -0.0765 

30 10 (2*10) 0.1463 0.0542 -0.0579 0.1372 0.0514 -0.0551 0.1492 0.0558 -0.0599 0.1304 0.0495 -0.0518 

 20 (0*19,10) 0.1207 0.0312 -0.0425 0.1148 0.0298 -0.0406 0.1210 0.0314 -0.0427 0.1143 0.0293 -0.0401 

 20 (1*5,0*10,1*5) 0.1182 0.0310 -0.0395 0.1157 0.0299 -0.0386 0.1193 0.0321 -0.0405 0.1152 0.0290 -0.0377 

50 25 (1*25) 0.0762 0.0242 -0.0287 0.0742 0.0238 -0.0279 0.0769 0.0249 -0.0294 0.0738 0.0232 -0.0273 

 40 (0*39,10) 0.0695 0.0156 -0.0218 0.0665 0.0155 -0.0217 0.0696 0.0157 -0.0218 0.0662 0.0152 -0.0214 

 40 (1*5,0*30,1*5) 0.0669 0.0158 -0.0211 0.0678 0.0157 -0.0213 0.0676 0.0162 -0.0215 0.0673 0.0154 -0.0209 

        (𝑎 = 15, 𝑏 = 15)      

15 5 (3,0,4,0,3) 0.1611 0.1014 0.0654 0.1320 0.0896 0.0564 0.1602 0.1054 0.0659 0.1367 0.0866 0.0598 

 10 (2,0*8,3) 0.0878 0.0544 0.0126 0.0784 0.0510 0.0099 0.0876 0.0558 0.0124 0.0786 0.0495 0.0115 

 10 (1*3,0*5,1*2) 0.0882 0.0515 0.0101 0.0804 0.0486 0.0104 0.0881 0.0526 0.0099 0.0799 0.0472 0.0115 

30 10 (5*2,0*6,5*2) 0.0791 0.0549 0.0328 0.0728 0.0511 0.0300 0.0789 0.0568 0.0331 0.0750 0.0491 0.0312 

 20 (5,0*18,5) 0.0437 0.0272 0.0044 0.0425 0.0268 0.0044 0.0437 0.0280 0.0043 0.0428 0.0260 0.0051 

 20 (1*5,0*10,1*5) 0.0448 0.0269 0.0049 0.0417 0.0260 0.0056 0.0448 0.0272 0.0048 0.0416 0.0255 0.0059 

50 25 (0*12,2*12,1) 0.0333 0.0233 0.0113 0.0298 0.0229 0.0103 0.0332 0.0235 0.0113 0.0299 0.0226 0.0104 

 40 (5,0*38,5) 0.0232 0.0137 0.0010 0.0235 0.0137 0.0010 0.0232 0.0138 0.0009 0.0236 0.0134 0.0012 

 40 (1*5,0*30,1*5) 0.0235 0.0130 0.0014 0.0231 0.0134 0.0013 0.0235 0.0131 0.0014 0.0231 0.0131 0.0014 



*Corresponding author, e-mail: ftm.gul.fuz@artvin.edu.tr 

Table 3. Average confidence lengths and coverage probabilities for the ML and the MML estimators of  𝜇 

and 𝜎. 

   ML MML 

𝑛 𝑚 Scheme 𝜇̂ 𝜎̂ 𝜇̂ 𝜎̂ 

    (𝑎 = 3, 𝑏 = 3)  

15 5 (3,0,4,0,3) 1.5594(0.8230) 1.4148(0.7871) 1.6341(0.8318) 1.3348(0.7917) 

 10 (2,0*8,3) 1.2198(0.9120) 1.0301(0.8678) 1.2322(0.9116) 0.9911(0.8692) 

 10 (1*3,0*5,1*2) 1.2511(0.9161) 1.0114(0.8714) 1.2519(0.9127) 0.9733(0.8753) 

30 10 (5*2,0*6,5*2) 1.1092(0.8817) 1.0284(0.8647) 1.1584(0.8905) 0.9865(0.8671) 

 20 (5,0*18,5) 0.8821(0.9392) 0.7291(0.9108) 0.8924(0.9390) 0.7113(0.9086) 

 20 (1*5,0*10,1*5) 0.8781(0.9324) 0.7244(0.9042) 0.8814(0.9330) 0.7061(0.9066) 

50 25 (0*12,2*12,1) 0.7180(0.9260) 0.6780(0.9050) 0.7220(0.9275) 0.6661(0.9103) 

 40 (5,0*38,5) 0.6597(0.9368) 0.5207(0.9304) 0.6616(0.9392) 0.5127(0.9296) 

 40 (1*5,0*30,1*5) 0.6577(0.9388) 0.5188(0.9364) 0.6582(0.9400) 0.5103(0.9348) 

    (𝑎 = 6, 𝑏 = 3)  

15 5 (2*5) 1.3850(0.8584) 1.2460(0.7735) 1.3419(0.8500) 1.2118(0.7759) 

 10 (0*9,5) 1.3327(0.8909) 0.9560(0.8574) 1.3085(0.8873) 0.9383(0.8578) 

 10 (0*5,1*5) 1.3348(0.8968) 0.9688(0.8616) 1.3243(0.8953) 0.9447(0.8644) 

30 10 (2*10) 1.0602(0.9088) 0.9166(0.8634) 1.0317(0.9036) 0.8915(0.8658) 

 20 (0*19,10) 0.9596(0.9210) 0.6908(0.9002) 0.9479(0.9184) 0.6810(0.8998) 

 20 (1*5,0*10,1*5) 0.9898(0.9326) 0.6846(0.9044) 0.9801(0.9308) 0.6701(0.9084) 

50 25 (1*25) 0.7768(0.9343) 0.6148(0.9160) 0.7737(0.9333) 0.6037(0.9180) 

 40 (0*39,10) 0.7464(0.9352) 0.4952(0.9268) 0.7410(0.9332) 0.4893(0.9248) 

 40 (1*5,0*30,1*5) 0.7661(0.9388) 0.4971(0.9316) 0.7610(0.9384) 0.4895(0.9312) 

    (𝑎 = 9, 𝑏 = 3)  

15 5 (2*5) 1.8901(0.8161) 1.2175(0.7678) 1.8692(0.8160) 1.1922(0.7689) 

 10 (0*9,5) 1.8298(0.8681) 0.9336(0.8503) 1.8335(0.8668) 0.9230(0.8491) 

 10 (0*5,1*5) 1.8269(0.8664) 0.9499(0.8486) 1.8447(0.8690) 0.9329(0.8507) 

30 10 (2*10) 1.4522(0.8935) 0.8883(0.8637) 1.4153(0.8892) 0.8726(0.8644) 

 20 (0*19,10) 1.3282(0.9088) 0.6768(0.9010) 1.3251(0.9078) 0.6711(0.9002) 

 20 (1*5,0*10,1*5) 1.3335(0.9162) 0.6783(0.9026) 1.3304(0.9170) 0.6678(0.9046) 

50 25 (1*25) 1.0676(0.9223) 0.6049(0.9200) 1.0647(0.9230) 0.5968(0.9235) 

 40 (0*39,10) 1.0112(0.9268) 0.4874(0.9236) 1.0084(0.9264) 0.4834(0.9240) 

 40 (1*5,0*30,1*5) 1.0207(0.9312) 0.4917(0.9220) 1.0173(0.9324) 0.4862(0.9240) 

    (𝑎 = 15, 𝑏 = 15)  

15 5 (3,0,4,0,3) 1.4243(0.8143) 1.1734(0.7626) 1.4495(0.8172) 1.1533(0.7655) 

 10 (2,0*8,3) 1.0979(0.9010) 0.8857(0.8518) 1.0992(0.9003) 0.8723(0.8530) 

 10 (1*3,0*5,1*2) 1.1118(0.9035) 0.8638(0.8597) 1.1083(0.9025) 0.8520(0.8616) 

30 10 (5*2,0*6,5*2) 1.0575(0.8823) 0.8864(0.8559) 1.0735(0.8848) 0.8684(0.8582) 

 20 (5,0*18,5) 0.8085(0.9266) 0.6419(0.9064) 0.8105(0.9258) 0.6326(0.9058) 

 20 (1*5,0*10,1*5) 0.8001(0.9226) 0.6321(0.8948) 0.7994(0.9220) 0.6255(0.8962) 

50 25 (0*12,2*12,1) 0.6767(0.9180) 0.5938(0.9000) 0.6778(0.9188) 0.5898(0.9008) 

 40 (5,0*38,5) 0.6015(0.9456) 0.4582(0.9332) 0.6016(0.9440) 0.4543(0.9356) 

 40 (1*5,0*30,1*5) 0.5963(0.9424) 0.4530(0.9284) 0.5956(0.9420) 0.4493(0.9292) 

 

In Table 3, the average lengths of the CIs and the CPs for the location parameter 𝜇 and the scale parameter 

𝜎 are computed at 95% confidence level. Here, it should be noted that the observed Fisher information 

matrices, based on the ML and the MML estimators, are used for computing pivotal quantities. 

 

The average lengths of the CIs based on the ML and the MML estimators for both parameters 𝜇 and 𝜎 are 

more or less the same. However, the average length of the CI based on the ML estimator of 𝜇 is slightly 

shorter than the corresponding MML estimator for symmetrical cases. On the other hand, the MML 

estimator is preferable to the ML estimator in computing the average length of the CI for positively skewed 



12    Fatma Gül AKGÜL, Birdal ŞENOĞLU / GU J Sci, 30(3):1-17(2017) 

 

cases. The average length of the CI based on the MML estimator of 𝜎 is a little bit shorter than the ML 

estimator.  

 

The CPs based on the ML and the MML estimators of 𝜇 and 𝜎 are extremely unsatisfactory, especially 

when 𝑚/𝑛 is small. On the other hand, the values of CPs based on the ML and the MML estimators of 𝜇 

and 𝜎 are close to the expected value 95% while 𝑚/𝑛 is increasing.    

 

5. DATA ANALYSIS 

 

In this section, we analyze a real data set taken from the literature to demonstrate implementation of the 

proposed estimation methods. For this purpose, we use the ball bearing data set originally discussed by 

Lieblein and Zelen (1956). This concern the results of a test on endurance of deep groove ball bearings 

(each measurement in 106 revolutions). The complete data contains 23 observations and are given as 

follows:  

 

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 

93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.4. 

 

In the literature, this data set was modeled using several statistical distributions, such as Weibull, logistic-

exponential, generalized inverted exponential and log-normal, see Lawless (1982), Lieblein and Zelen 

(1956), Krishna and Kumar (2013) and Singh and Tripathi (2015). Different to earlier studies, here, we use 

JFST distribution for modeling the ball bearing data.  

 

Before analyzing this data set, we first need to estimate the shape parameters 𝑎 and 𝑏. We use the profile 

likelihood method to identify estimates of the shape parameters 𝑎 and 𝑏. The steps of the profile likelihood 

method are given below, see for example, Islam and Tiku (2004) and Acıtaş and Şenoğlu (2016). 

 

 Step 1. Calculate 𝜇̂ and 𝜎̂ for the given 𝑎 and 𝑏 values. 

 Step 2. Calculate the log-likelihood value by incorporating 𝜇̂ and 𝜎̂ into (3). 

 Step 3. Repeat step 1 and step 2 for a serious values of 𝑎 and 𝑏. 

Step 4. Find 𝑎 and 𝑏 values maximizing the log-likelihood function among the others and choose  

them as conceivable values of the shape parameters. 

 

Following these steps, 𝑎 and 𝑏 are obtained as 4.1 and 1.8, respectively. Then, we draw the Q-Q plots of 

the observations for the various values of 𝑎 and 𝑏. It can be observed that the JFST distribution 𝑎 =4.1 and 

𝑏 =1.8 beautifully models the ball bearing data; see Figure 2. It is clear that both profile likelihood 

methodology and the Q-Q plot technique are in agreement in identifying the shape parameters of the JFST 

distribution. 

 
Figure 2. JFST Q-Q plot of the ball bearing data 
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Now, we consider the progressively Type-II censored samples with the following censoring schemes, see 

Table 4. 

 

Table 4. Progressively censored samples. 

𝑛 𝑚 Scheme Censored data 

23 23 (0*23) 

17.88, 28.92, 33.0, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 

55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 

127.92, 128.04, 173.4 

23 18 (3,0*16,2) 
17.88, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92 

23 15 (8,0*14) 
17.88, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 

105.12, 105.84, 127.92, 128.04, 173.4 

 

For each censoring schemes, we obtain the profile likelihood estimates of 𝑎 and 𝑏. Based on these estimate 

values of the shape parameters, the location parameter 𝜇 and the scale parameter 𝜎 are obtained using ML 

and MML methodologies. We then compute the 95% of the CIs for 𝜇 and 𝜎 based on the ML and the MML 

estimates. 

 

The corresponding estimates of 𝜇 and 𝜎 and the corresponding CIs are summarized in Table 5. 

 

Table 5. Point and interval estimates of 𝜇 and 𝜎 based on the ML and the MML methodologies for the 

ball bearing data. 

  ML MML 

𝑛 𝑚 𝑎 𝑏 𝜇̂𝑀𝐿 𝜎̂𝑀𝐿 𝑎 𝑏 𝜇̂𝑀𝑀𝐿 𝜎̂𝑀𝑀𝐿 

23 23 4.12 1.78 
37.306 

(24.807,49.804) 

22.736 

(14.059,31.414) 
4.15 1.82 

37.732 

(25.008,50.456) 

23.272 

(14.891,31.652) 

23 20 7.9 2.3 
25.146 

(8.823,41.468) 

20.1491 

(12.267,28.021) 
7.8 2.3 

25.415 

(9.487,41.343) 

20.541 

(12.911,28.171) 

23 15 5.6 3.1 
57.835 

(40.471,75.199) 

28.248 

(16.775,39.720) 
5.8 3.2 

56.501 

(39.768,73.234) 

29.157 

(18.451,39.865) 

 

It is clear from Table 5 that the estimate values of 𝜇 and 𝜎 obtained using the ML and MML methodologies 

are very close to each other for all the censoring schemes, see also Figure 3-5. From these figures it can 

easily be said that the JFST distribution provides good modeling performance for these complete and 

censored data sets. 
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Figure 3. Scatter plot of the ball bearing data (a) and the fitted pdfs (b) 𝑛 =23, 𝑚 =23 

 
 Figure 4. Scatter plot of the ball bearing data (a) and the fitted pdfs (b) 𝑛 =23, 𝑚 =18 
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 Figure 5. Scatter plot of the ball bearing data (a) and the fitted pdfs (b) 𝑛 =23, 𝑚 =15 

 

The lengths of the CIs, based on the observed Fisher information matrices obtained using ML and MML 

estimates, are more or less the same. These results are in agreement with the simulation results. 

 

6. CONCLUSIONS 

In this paper, we obtain the point and interval estimators for the location and scale parameters of JFST 

distribution based on progressively Type-II censored samples. In the estimation procedure, the ML and 

MML methodologies are used. It should be noted that the MML estimates for the parameters 𝜇 and 𝜎 are 

used as initial values to obtain the ML estimates of 𝜇 and 𝜎 iteratively. We use pivotal quantities for 

constructing CIs for the parameters 𝜇 and 𝜎. The performances of the proposed estimators are compared 

via Monte-Carlo simulation study. It seen that the ML and MML estimators are very similar in terms of 

bias and MSE criteria when the sample sizes increase as expected. The CPs based on the ML and the MML 

estimators of 𝜇 and 𝜎 are found to be unsatisfactory, especially when 𝑚/𝑛 is small. In spite of this, the 

corresponding CPs are close to the expected value of 95% when 𝑚/𝑛 is getting large. Moreover, the results 

of the real data analysis coincide with the simulation study.   
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