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Abstract 

The paper introduces different control design methods for nonlinear systems with their 

application to the nonlinear mathematical model of a 3 DOF helicopter. Recent studies on the 

control design approaches, such as State Dependent Riccati Equation based optimal controller, 

Model Reference Adaptive Control and Sliding Mode Control, are reviewed and design 

methodologies are given. Then the mathematical model of a 3 DOF helicopter dynamics is 

derived and simplified with the software called CIFER. By using the simplified mathematical 

model of the 3 DOF helicopter, the control algorithms are applied to the model in order to explore 

the performances of the controllers. The results are given in the simulation environment. The 

paper is presented in a tutorial manner in order to explain the applications of the proposed 

nonlinear control methodologies. 
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1. INTRODUCTION 
 

A 3 DOF helicopter system is designed to research control design methods especially for aerospace studies. 

In recent years, many researchers use the 3 DOF Helicopter system to test different control algorithms in 

real-time applications. A supervisory safety controller design for a 3 DOF helicopter was proposed in [1]. 

A nonlinear dynamic model and linearized model were developed and LQR controller was designed using 

linearized model for the supervisory controller. LQR based PID controller for a 3 DOF helicopter was 

discussed in [2]. Based on successive linearization, a model predictive controller was designed in [3]. The 

reference [4] used Fuzzy Logic and LQR techniques to control the 3 DOF helicopter system. Another 

method so-called, “explicit model predictive approach” was used for regulation and tracking of 3 DOF 

helicopter in [5]. The system has nonlinear dynamical model and strongly coupled so that researchers 

studying nonlinear control techniques tend to use 3 DOF helicopter. A nonlinear adaptive control system 

was designed and tested in [6]. The reference [7] used robust adaptive LQR control method for 3 DOF 

helicopter. 

 

In this paper, in order to explore different controller design techniques for nonlinear systems, 3 different 

control approaches namely “State Dependent Riccati Equation (SDRE)”, “Model Reference Adaptive 

Control (MRAC)” and “Sliding Mode Control (SMC)” methods are designed for a 3 DOF helicopter. State-

Dependent Riccati Equation (SDRE) method has become popular since the mid-90’s because of providing 

an effective control algorithm for suboptimal control of nonlinear systems. SDRE first proposed by Pearson 

[8] and expended in time. In that method, nonlinear dynamics are rearranged and modeled in the form of 

state vector and the product of a matrix-valued function depends on the state itself so that nonlinear dynamic 

model is brought to linear-like structure having state dependent coefficient (SDC) matrices [9]. To obtain 
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control law, algebraic Riccati equation using the SDC matrices which varying with states and are updated 

at each time step is solved. Therefore, state dependent algebraic Riccati equation is used for control 

algorithm. SDRE method has been used for control of different systems. SDRE-based optimal control of 

cancer dynamics was firs proposed by Itik and Salamci [10]. Çimen documented SDRE methodology and 

implemented the SDRE method to different systems [9], [11]. 

 

Sliding Mode Control (SMC) is well defined for Linear Time Invariant (LTI) Systems in references [12], 

[13] and [14]. The objective of SMC design is to force the system to a predefined sliding surface which 

passes through the origin. The sliding surface is defined as the system exhibits stable behavior on it. The 

sliding surfaces, which are designed for nonlinear systems are either varying with time or nonlinear based 

on nonlinear dynamics. To design sliding surface optimally, different control methods such as SDRE 

method can also be used [15]. 

 

Model Reference Adaptive Control (MRAC) is one of the main adaptive control approaches to track a 

reference model with known mathematical model and parameters. The main idea of MRAC methodology 

is to force the output of the uncertain plant to track the desired output of reference model by updating 

controller gains. The aim of adjusting the controller gains is to set the tracking error, which is the difference 

between the output of plant and reference model, zero. MRAC Studies has a wide range of practical 

applications and MRAC can be combined with other control methodologies to get better performance and 

to cope with compelling circumstance. For this purpose, SDRE based MRAC architecture is one of the 

researched areas of it. Stabilizing uncertain nonlinear systems approach has been offered and used by 

Babaei et al. [16]. The control design of nonlinear reference model is based on SDRE methodology for the 

MRAC of a parametrically uncertain nonlinear plant in this study. 

 

In this paper, SDRE, MRAC and SMC approaches for tracking control of a 3 DOF helicopter are presented. 

3 DOF helicopter system description and nonlinear dynamic model of the system is given in Section 2. 

Dynamic model rearrangement for using control algorithms and controllers’ theories are represented in 

Section 3. In section 4, simulation results for each control method are conducted. Finally, conclusions are 

given in Section 5. 

 

2. 3 DOF HELICOPTER MATHEMATICAL MODEL 

 

3 DOF helicopter system is designed to track and regulate the elevation and travel angles of the 3 DOF 

helicopter that is supplied with a complete mathematical dynamic model, a sampled state-feedback 

controller and the system parameters. Therefore, the objective of this paper being to develop nonlinear 

controllers to track elevation and travel angles of the 3 DOF helicopter. 

 

2.1. System Description 

 

Quanser 3 DOF helicopter system is an experimental set-up that basically simulate tandem rotor helicopter 

model.  The system which is shown in the Figure 1 has three degree of freedom about elevation “𝜃”, pitch 

“𝜙” and travel “𝜓” axes and also powered by two individual DC motors attached propellers which are 

mounted as tandem rotor helicopter.  
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Figure 1. An illustration of the 3 DOF helicopter [1] 

 

Motor-propeller systems generate the necessary force according to voltage output of the controller in order 

to drive model around the axes which is mentioned above. The helicopter frame is suspended from an 

instrumented joint mounted at the end of a long arm and is free to pitch about its center. The arm is installed 

on an additional 2 DOF instrumented joint which allows the helicopter body to move in the elevation and 

travel directions. A counterweight is mounted to the other end of the arm to change the effective mass of 

the helicopter. Three attitude angles (elevation angle “𝜃”, pitch angle “𝜙” and travel angle “𝜓”) are 

measured by using three encoders. More information about 3 DOF helicopter system can be obtained from 

the Quanser 3 DOF Helicopter User Manual such as motor specifications, encoders specifications, 

parameters [17]. 

 

2.2. Nonlinear Dynamic Model of the 3 DOF Helicopter 

 

In this section, the main nonlinear dynamics of the 3 DOF helicopter using to design controllers is given. 

The nonlinear dynamic model is derived at the horizontal trim position that center of gravity aim to define 

at the elevation encoder location where the inertial coordinate axis is placed. That allows Coriolis terms are 

vanished in order to computational simplicity.  

 

The nonlinear dynamic equations of motion are derived using the Newton’s second law of motion (see [1] 

for details). The equations are then given by [1]; 

 

𝐽𝑦𝑦𝜃̈ = −𝑀𝑔𝑙𝜃 sin(𝜃 + 𝜃0) + (𝑇𝐿 + 𝑇𝑅)𝐿 𝑐𝑜𝑠(𝜙) 

𝐽𝑥𝑥𝜙̈ = (𝑇𝐿 − 𝑇𝑅)𝑙ℎ − 𝑚𝑔𝑙𝜙 𝑠𝑖𝑛(𝜙) 

𝐽𝑧𝑧𝜓̈ = (𝑇𝐿 + 𝑇𝑅)𝐿 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙) + (−𝑇𝐿 + 𝑇𝑅)𝑙ℎ 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) − 𝐷𝑟𝑎𝑔 

 

where 

 

𝑇𝐿 = 𝐶𝑇
𝐿𝜌(Ω𝐿𝑅)2𝜋𝑅2 

𝑇𝑅 = 𝐶𝑇
𝑅𝜌(Ω𝑅𝑅)2𝜋𝑅2 

𝐷𝑟𝑎𝑔 =
1

2
𝜌(𝜓̇𝐿)

2
(𝑆0 + 𝑆′

0 𝑠𝑖𝑛(𝜙)) 

𝑅 is the radius of the helicopter blades 

Ω is the frequency of the rotating blades (L = left motor and R = right motor) 

𝐶𝑇 is the thrust coefficient given by Equation 3.157 of Padfield [22] 

𝑆0 and 𝑆′
0 are the effective drag coefficients times the reference area 

𝑀 is the total mass of the helicopter assembly 

𝑚 is the mass of the rotor assembly 

 



50 Bedrettin M. KOCAGİL, Ahmet Ç. ARICAN, Ümit M. GÜZEY, Sinan ÖZCAN, Metin U. SALAMCI/ GU J Sci, Part A, 4(3):47-66(2017) 

The nonlinear equations of motion may be simplified by using system identification approaches. Such an 

identification method is studied in [1] which is called as Comprehensive Identification FrEquency 

Responses (CIFER) tool developed by NASA. A simplified nonlinear model of the 3 DOF helicopter is 

then given by [1] 

 

𝜃̈ = −𝑑1𝜃̇ − 𝑑2 sin(𝜃) + 𝑑3𝜏𝑐𝑜𝑙𝑙 cos(−𝜙)                 (1) 

𝜙̈ = −𝑏1(𝜙̇) + 𝑏2 sin(−𝜙) − 𝑏3𝜏𝑐𝑦𝑐                              (2) 

𝜓̈ = −𝑎1𝜓̇ + 𝑎2(𝛼𝜏𝑐𝑜𝑙𝑙 + 1) sin(−𝜙)                              (3) 

𝜏̇𝑐𝑦𝑐 = −𝑐1𝜏𝑐𝑦𝑐 + 𝑐2
(𝑉𝑏−𝑉𝑓)

2
                   (4) 

𝜏̇𝑐𝑜𝑙𝑙 = −𝑒1𝜏𝑐𝑜𝑙𝑙 + 𝑒2
(𝑉𝑏+𝑉𝑓)

2
                   (5) 

 

where 

 

𝜃 : Elevation angular position  

𝜙 : Pitch angular position 

𝜓 : Travel angular position 

𝜃̇ : Elevation angular rate  

𝜙̇ : Pitch angular rate 

𝜓̇ :  Travel angular rate 

𝜏𝑐𝑦𝑐 : Cyclic thrust 

𝜏𝑐𝑜𝑙𝑙 : Collective thrust 

 

First three equations represent the Euler dynamics of rotation and the other two yields the force generated 

according to motor voltage. The parameters of the equations are obtained by using the CIFER parameter 

identification tool. 

 

Parameters are obtained by CIFER tool are given Table 1:  

 

Table 1. Model parameters [1] 

Parameters 𝑎1 𝑎2 𝑏1 𝑏2 𝑏3 𝑐1 𝑐2 

Value 0.2517 0.2105 0.3290 1.5664 16.2 7.32 1 

 

Parameters 𝑑1 𝑑2 𝑑3 𝑒1 𝑒2 𝛼 

Value 0.1011 0.504 1.34 6.16 1 4 

 

 

3. CONTROLLER DESIGNS 

 

This section describes extended linearization, also known as SDC parameterization of the dynamic model 

of 3 DOF helicopter, augmentation of SDC matrices and SDRE controller design, MRAC controller design 

and SMC controller design for the tracking of 3 DOF helicopter.  

 

All controller design methods use extended linearization in this paper. Extended linearization is the process 

of a nonlinear system into a linear-like structure which represented by state-dependent coefficient (SDC) 

matrices. Before defining State Dependent Coefficient matrices, state space model of the system must be 

determined with the corresponding states, 
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[
 
 
 
 
 
 
 
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6
𝑥7

𝑥8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

𝜃
𝜙
𝜓

𝜃̇
𝜙̇

𝜓̇
𝜏𝑐𝑦𝑐

𝜏𝑐𝑜𝑙𝑙]
 
 
 
 
 
 
 
 

                     (6) 

 

And the inputs; front motor voltage, back motor voltage  

 

[
𝑢1

𝑢2
] = [

𝑉𝑓

𝑉𝑏
]                      (7) 

 

Therefore, state-space model is defined as; 

 

𝑥̇1 = 𝑥4                     (8) 

𝑥̇2 = 𝑥5                     (9) 

𝑥̇3 = 𝑥6                   (10) 

𝑥̇4 = −𝑑1𝑥4 − 𝑑2 sin(𝑥1) + 𝑑3𝑥8 cos(−𝑥2)                           (11) 

𝑥̇5 = −𝑏1(𝑥5) + 𝑏2 sin(−𝑥2) − 𝑏3𝑥7                            (12) 

𝑥̇6 = −𝑎1𝑥6 + 𝑎2(𝛼𝑥8 + 1) sin(−𝑥2)                            (13) 

𝑥̇7 = −𝑐1𝑥7 +
𝑐2

2
𝑢2 −

𝑐2

2
𝑢1                 (14) 

𝑥̇8 = −𝑒1𝑥8 +
𝑒2

2
𝑢1 +

𝑒2

2
𝑢2                 (15) 

 

Every single term of the model must be state dependent. If model consist of any independent term as 

trigonometric functions or logarithmic functions that couldn’t be separated or defined as the factor of the 

state variables, some manipulations has to be done before SDC matrices are determined. Inside the 

mentioned model there exist of trigonometric term as; 

 

𝑠𝑖𝑛(−𝑥2)                   (16) 

𝑠𝑖𝑛(𝑥1)                                (17) 

 

could be defined as; 

 

𝑠𝑖𝑛(𝑥1) = [
𝑠𝑖𝑛(𝑥1)

𝑥1
] 𝑥1                  (18) 

 

which, 

 
𝑠𝑖𝑛(𝑥1)

𝑥1
= 𝑠𝑖𝑛𝑐(𝑥1)                  (19) 

 

is called cardinal sinus function and goes to “1” while “𝑥1” converging absolute zero. At the end, these 

terms are shaped like the factor of states to the SDC parametrization. If “𝑀” and “𝐿” newly described as; 

 

𝑀 =
sin(−𝑥2)

𝑥2
                   (20) 

𝐿 =
sin(𝑥1)

𝑥1
                   (21) 

 

The state-space model of the system becomes; 
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𝐴(𝑥) =

[
 
 
 
 
 
 
 

0
0
0

−𝑑2𝐿
0
0
0
0

0
0
0
0

𝑏2𝑀

𝑎2(𝛼𝑥8 + 1)𝑀
0
0

0
0
0
0
0
0
0
0

1
0
0

−𝑑1

0
0
0
0

0
1
0
0

−𝑏1

0
0
0

0
0
1
0
0

−𝑎1

0
0

0
0
0
0

−𝑏3

0
−𝑐1

0

0
0
0

𝑑3 cos(−𝑥2)
0
0
0

−𝑒1 ]
 
 
 
 
 
 
 

             (22) 

 

𝐵 =

[
 
 
 
 
 
 
 
 

0
0
0
0
0
0

−
𝑐2

2
𝑒2

2

0
0
0
0
0
0
𝑐2

2
𝑒2

2 ]
 
 
 
 
 
 
 
 

                    (23) 

 

where it can be rearranged as; 

 

𝑥̇ = 𝐴(𝑥)𝑥 + 𝐵𝑢                  (24) 

 

SDC parametrized model of the system that has to behave similar to state-space model without losing any 

information of original dynamics. Because of physical nature of the system, there exist coupled dynamics 

between pitch and travel and also pitch and elevation axes. The system can be described as under-actuated 

system because it has only two individual actuators according to three independent dynamics. Therefore, 

only elevation and travel axes can be driven by reference commands. 

 

In order to perform reference tracking, the SDC parametrized system is augmented as [18]; 

 

𝐴̂(𝑒) = [
   𝐴(𝑥) 0
−𝐶 0

]     𝐵̂(𝑒) = [
𝐵(𝑥)

0
]                (25) 

 

where for 3 DOF helicopter system: 

 

𝐶 = [
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]                 (26) 

 

Yields error dynamics as; 

 

𝑒̇ = 𝐴̂(𝑒)𝑒 + 𝐵̂(𝑒)𝑢𝑒                  (27) 

 

Controllers can be designed by using error dynamics form for tracking of the 3 DOF helicopter. Nonlinear 

system is stable at every local point which is designed as LTI by the compensation of the full state feedback 

controller. Unfortunately, it is not possible to measure all of the states for the 3 DOF helicopter. 

Experimental system has three related encoders in every axis which is only able to measure position of the 

helicopter. At this point basic first order filters are designed for the purpose of obtaining angular rates by 

using position data. However, first order filters are not required for simulation based studies and direct 

derivative of position data can be used to obtain angular rates. 
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The same situation has been occurred while feeding back the thrust states, 

 
𝜏𝑐𝑦𝑐

𝜏𝑐𝑜𝑙𝑙
                    (28) 

 

This is handled by computing the numerical integration of first order thrust dynamics that augmented in 

state space model. 

 

3.1. SDRE Control Design 

 

SDRE method has become a popular method for suboptimal control of nonlinear systems amongst control 

researchers in recent years because of a systematic and effective procedure for nonlinear control [19].  

 

Consider a nonlinear system, which can be represented in SDC form as, 

 

𝑥̇ = 𝐴(𝑥)𝑥 + 𝐵(𝑥)𝑢                  (29) 

 

where 𝑥 ∈ 𝑅𝑛, 𝑢 ∈ 𝑅𝑚 and the SDC matrices are  𝐴(𝑥) ∈ 𝑅𝑛𝑥𝑛 and 𝐵(𝑥) ∈ 𝑅𝑛𝑥𝑚.  The SDC representation 

must be a controllable and observable parameterization of the nonlinear system. Therefore, two sufficient 

tests is to be performed [11]. 

 

Controllable of the system can be check by state dependent controllability matrix, 

 

𝑀𝑐(𝑥) = [𝐵(𝑥) ⋮ 𝐴(𝑥)𝐵(𝑥) ⋮ ⋯ ⋮ 𝐴𝑛−1(𝑥)𝐵(𝑥)]              (30) 

 

has 𝑟𝑎𝑛𝑘(𝑀𝑐) = 𝑛 at all 𝑥. Similarly, observable of the system can be checked by state dependent 

observability matrix, 

 

𝑀𝑜 = [𝐶𝑇(𝑥) ⋮ 𝐴𝑇(𝑥)𝐶𝑇(𝑥) ⋮ ⋯ ⋮ (𝐴𝑇(𝑥))
𝑛−1

𝐶𝑇(𝑥)]                          (31) 

 

has 𝑟𝑎𝑛𝑘(𝑀0) = 𝑛 at all 𝑥. 

 

The objective of the control is to minimize the following cost function, 

 

𝐽 =
1

2
∫ {𝑥𝑇𝑄(𝑥)𝑥 + 𝑢𝑇𝑅(𝑥)𝑢} 𝑑𝑡

∞

0
                (32) 

 

where 𝑄(𝑥) and 𝑅(𝑥) are state-dependent weighting matrices. However, weighting matrices can be selected 

constant for simplicity of control design. 𝑄(𝑥) a symmetric positive semi-definite matrix and 𝑅(𝑥) is a 

symmetric positive definite matrix. 

 

To minimize the above cost function, a state feedback control law can be given by 

 

𝑢 = −𝐾(𝑥)𝑥 = −𝑅−1(𝑥) 𝐵𝑇(𝑥) 𝑃(𝑥)𝑥                            (33) 

 

where 𝐾(𝑥) is the optimal gain matrix and changes with states. 𝑃(𝑥), that is the unique, symmetric and 

positive-definite solution of the State-Dependent Riccati equation, is obtained from algebraic State-

Dependent Riccati equation given by 

 

𝑃(𝑥)𝐴(𝑥) + 𝐴𝑇(𝑥)𝑃(𝑥) − 𝑃(𝑥)𝐵(𝑥)𝑅−1(𝑥)𝐵𝑇(𝑥)𝑃(𝑥) + 𝑄(𝑥) = 0              (34) 

 

The closed loop dynamics of the nonlinear system is then given by 

 

𝑥̇ = (𝐴(𝑥) − 𝐵(𝑥)𝐾(𝑥))𝑥 = 𝐴𝑐𝑙(𝑥)𝑥                  (35) 
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where 𝐴𝑐𝑙(𝑥) = (𝐴(𝑥) − 𝐵(𝑥)𝐾(𝑥)) satisfies the pointwise Hurwitz condition 𝑅𝑒 𝜆𝑖(𝐴𝑐𝑙(𝑥)) < 0 [15]. 

 

SDC parametrized system is to be augmented and error dynamics model is used (which is represented by 

Eq.27) to design SDRE controller for tracking of 3 DOF helicopter. 

 

3.2. SDRE based MRAC Design 

 

The experimental setup which is called plant has involved unknown parameters and/or inadequate modelled 

dynamics. MRAC is a control method based on a reference model whose desired output is taken as a 

reference trajectory for the plant. In this method, the deviation between the output of plant and reference 

model is known as tracking error, e. The controller gains are varied by updated online and they are depended 

on tracking error which is changed considerably by reference command. The main idea of the control design 

is to adapt the response of the reference model to the plant in order to do that the plant output tracks 

reference model output asymptotically and e0 as t [20]. Repetitively estimation of controller gains is 

performed using an adaptive law which is derived from the Lyapunov Stability Theorem in this study. 

Therefore, parameter adaptation law is created by using a positive-definite Lyapunov function. 

 

3.2.1. SDRE based MRAC for uncertain systems with full state feedback 

 

The control design of nonlinear reference model is based on SDRE methodology for the MRAC of 

parametrically uncertain nonlinear plant in this study. Consider the following nonlinear system as reference: 

 

𝑥̇𝑚(𝑡) = 𝐴𝑚(𝑥𝑚)𝑥𝑚(𝑡) + 𝐵𝑚(𝑥𝑚)𝑢𝑚(𝑡)               (36) 

 

where 𝑥𝑚(𝑡) 𝜖 ℝ𝑛 is the state vector, 𝐴𝑚(𝑥𝑚)𝜖 ℝ𝑛𝑥𝑛 and 𝐵𝑚(𝑥𝑚)𝜖 ℝ𝑛𝑥𝑞 are system dynamics and input 

SDC matrices respectively for the reference model over and above they are completely known. 𝑢𝑚(𝑡)𝜖 ℝ𝑞 

is a bounded external input. The plant is nonlinear system described by: 

 

𝑥(𝑡) = 𝐴(𝑥)𝑥(𝑡) + 𝐵(𝑥)𝑢(𝑡)                 (37) 

 

where 𝑥(𝑡) 𝜖 ℝ𝑛 is the state vector which are all measurable, 𝐴(𝑥) 𝜖 ℝ𝑛𝑥𝑛 and 𝐵(𝑥) 𝜖 ℝ𝑛𝑥𝑞 are possibly 

unknown SDC system matrices while {𝐴(𝑥), 𝐵(𝑥)} pair is pointwise controllable and 𝑢(𝑡)𝜖 ℝ𝑞 is the 

control input for the plant. When the SDC matrices are evaluated for a given state vector via the SDRE 

based method, the nonlinear reference model is regarded as a pointwise LTI which is similar to a frozen 

system at the state vector. Therefore, the control input is allowed to design with well-known approaches 

for LTI systems for each state vector [20]. 

 

The control input is designed to provide desired states of the reference model, 𝑥𝑚(𝑡), is tracked by the plant 

states, 𝑥(𝑡), as closely as possible and the tracking error, which is defined as 𝑒(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑚(𝑡), 

approaches zero asymptotically. So, the control law can be constituted with SDRE method as follows:  

 

𝑢𝑚(𝑥𝑚) = −𝐾𝑚(𝑥𝑚)𝑥𝑚                   (38) 

 

where 𝐾𝑚(𝑥𝑚) is control gain matrix. The control gain matrix is determined for asymptotic stability of 

pointwise LTI system with LQR strategy. Regulated closed-loop system for the reference model with 

desired state is in the form 

 

𝑥̇𝑚(𝑡) = [𝐴𝑚(𝑥𝑚) − 𝐵𝑚(𝑥𝑚)𝐾𝑚(𝑥𝑚)]𝑥𝑚(𝑡) = 𝐴𝑚𝑐𝑙(𝑥𝑚)𝑥𝑚(𝑡)            (39) 

 

where 𝐴𝑚𝑐𝑙(𝑥𝑚) is pointwise Hurwitz. We consider the following assumptions [20]: 

 

{𝐴𝑚(𝑥), 𝐵𝑚(𝑥)} pair is pointwise controllable for reference model. 

There exist a 𝐾∗𝜖 ℝ𝑛 such that matching conditions of  𝐴𝑚𝑐𝑙(𝑥𝑚) = 𝐴(𝑥) − 𝐵(𝑥)𝐾∗𝑇
 holds. 

There exist a positive definite matrix 𝐺 𝜖 ℝ𝑞𝑥𝑞, such that 𝐵̂(𝑥) = 𝐵(𝑥)𝐺 is known. 
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It should be noted that if the algebraic equation given in the second assumption is satisfied, perfect model 

following (matching condition) is achieved. By taking into consideration the assumptions, control law for 

the uncertain nonlinear plant dynamic is proposed as follows: 

 

𝑢(𝑡) = −𝐾(𝑥, 𝑡)𝑥(𝑡)                  (40) 

 

where 𝐾(𝑥, 𝑡) is control gain matrix of plant. The adaptation rule for adjusting 𝐾(𝑥, 𝑡) matrix is created by 

using the Lyapunov Stability Theorem for the purpose of the error dynamics,𝑒̇(𝑡), which are converged to 

zero. On the other hand the control parameter error, which is defined  𝐾̃(𝑥, 𝑡) ≜ 𝐾(𝑥, 𝑡) − 𝐾∗, is constituted 

for the error dynamics. The adaptation law is proposed as follows: 

 

𝐾̇(𝑥, 𝑡) = Γ𝑘𝑥𝑒𝑇𝑃(𝑥𝑚)𝐵̂(𝑥), 𝑘(0) = 𝑘0               (41) 

 

where Γ𝑘 is positive-valued adaptation rate which is determine the rate of convergence of error to zero and 

𝑃(𝑥𝑚) = 𝑃𝑇(𝑥𝑚) > 0 (positive-definite matrix) satisfies the following algebraic Lyapunov equation for 

stable closed-loop reference model given in (36) for some 𝑄(𝑥𝑚) = 𝑄𝑇(𝑥𝑚) > 0 as follows: 

 

𝐴𝑚𝑐𝑙
𝑇(𝑥𝑚)𝑃(𝑥𝑚) + 𝑃(𝑥𝑚)𝐴𝑚𝑐𝑙(𝑥𝑚) = −𝑄(𝑥𝑚)              (42) 

 

It should not be forgotten that the values of 𝐾(𝑥, 𝑡) are calculated at each iteration in the SDRE based 

MRAC, so the initial conditions for 𝐾(𝑥, 𝑡) are updated in every step which is started 𝑘0. Also, constant 𝑄 

can be selected instead of the state dependent 𝑄(𝑥𝑚) but chosen matrix must be positive-definite and 

symmetric in both cases.  

 

Finally the error dynamics, 𝑒̇(𝑡), is derived as follows: 

 

𝑒̇(𝑡) = 𝑥̇(𝑡) − 𝑥̇𝑚(𝑡) = 𝐴𝑚𝑐𝑙(𝑥𝑚)𝑒(𝑡) + 𝐵(𝑥) 𝐾̃(𝑥, 𝑡) 𝑥(𝑡)             (43) 

 

3.3. SDRE based SMC Design 

 

Trajectory tracking control is designed for the 3 DOF Helicopter by using Sliding Mode Control technique. 

The sliding surface is designed to be time varying so that the nonlinear dynamics of the 3 DOF helicopter 

model is to track elevation and travel axes. 

 

Sliding mode control is applied that the nonlinear model of the 3 DOF helicopter is frozen at each time step 

so that the nonlinear model can be behaved as Linear Time Invariant System. Sliding surface can be 

determined by solving State Dependent Ricatti Equation at each time step. The sliding mode controller is 

designed to move state to sliding surface and to keep states on the moving sliding surface [15]. 

 

After sliding motion starts, system dynamic is not affected from parameter changes and disturbances. 

Sliding mode control can be described within two phases, one is called Reaching phase and the other is 

called as sliding motion.  
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Figure 2. Phases of sliding mode control 

 

The system in Eq.44 needs to be transformed into two subsystems to apply sliding mode control. The first 

subsystem needs to be independent from controller input and second one needs to be dependent from 

controller input  [14], [15]. 

 

𝑥̇ = 𝐴(𝑥)𝑥(𝑡) + 𝐵(𝑥)𝑢(𝑡), 𝐴 ∈ ℛ𝑛𝑥𝑛, 𝐵 ∈ ℛ𝑛𝑥𝑚𝑥 ∈ ℛ𝑛 , 𝑢 ∈ ℛ𝑚                                (44) 

 

To apply transformation, the system needs to be separated to n-m subsystem, which has controller input 

and m number subsystem which has no controller input. As well as, the inverse of transformation matrix 

needs to be calculated.  

 

Transformation matrix can be computable from controllability matrix, Q and weight matrix, W [14]. 

 

𝑇(𝑥) = (𝑄𝑊)−1                  (45) 

 

The system states can be transform to z coordinate system by using transformation matrix. 

 

𝑧(𝑡) = 𝑇(𝑥)𝑥(𝑡) , 𝑥(𝑡) = 𝑇(𝑥)−1𝑧(𝑡)                (46) 

𝑧(𝑡) = [
𝑧1(𝑡) 

𝑧2(𝑡)
] , 𝑧1 ∈ ℛ𝑛−𝑚, 𝑧2 ∈ ℛ𝑚                (47) 

 

The system can be transformed into z coordinate system. 

 

𝑧̇(𝑡) = 𝑇(𝑥)[𝐴(𝑥)𝑇(𝑥)−1𝑧(𝑡) + 𝐵(𝑥)𝑢(𝑡)] = 𝑇(𝑥)𝐴(𝑥)𝑇(𝑥)−1𝑧(𝑡) + 𝑇(𝑥)𝐵(𝑥)𝑢(𝑡)                        (48) 

𝐴𝑍(𝑧) = [
𝐴11

𝑧 (𝑧) 𝐴12
𝑧 (𝑧)

𝐴21
𝑧 (𝑧) 𝐴22

𝑧 (𝑧)
]                 (49) 

𝐵𝑧(𝑧) = 𝑇(𝑥)𝐵(𝑥) = [
0

𝐵2
𝑧(𝑧)

]                             (50) 

 

The transformed system in matrix form: 

 

𝑧̇(𝑡) = [
𝑧1̇(𝑡)

𝑧2̇(𝑡)
] = [

𝐴11
𝑧 (𝑧) 𝐴12

𝑧 (𝑧)

𝐴21
𝑧 (𝑧) 𝐴22

𝑧 (𝑧)
] [

𝑧1(𝑡)
𝑧2(𝑡)

] + [
0

𝐵2
𝑧(𝑧)

] 𝑢(𝑡)                         (51) 

 

The first subsystem without controller input: 

 

𝑧̇1(𝑡) = 𝐴11
𝑧 (𝑧)𝑧1(𝑡) + 𝐴12

𝑧 (𝑧)𝑧2(𝑡)                               (52) 

 

http://tureng.com/tr/turkce-ingilizce/controllability
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The second subsystem with controller input: 

 

𝑧̇2(𝑡) = 𝐴21
𝑧 (𝑧)𝑧1(𝑡) + 𝐴22

𝑧 (𝑧)𝑧2(𝑡) + 𝐵2
𝑧(𝑧)𝑢(𝑡)              (53) 

 

The sliding surface equation can be described as 

 

𝜎(𝑧) = 𝑧2(𝑡) + 𝐶𝑧1(𝑡)                      (54) 

 

For controllability, 𝜎(𝑧)𝜎̇(𝑧) < 0 needs to be satisfied. For this purpose, sliding surface scope can be 

computed by using SDRE, Eq.55 to subsystem 1 [21]. 

 

𝐴11
𝑧 𝑇

𝑧 + 𝑧𝐴11
𝑧 − 𝑧𝐴12

𝑧 𝐴12
𝑧 𝑇

𝑧 + 𝑄 = 0                 (55) 

 

The controller input has two parts, one is equivalent control, other is regulator control. 

 

𝑢(𝑡) = 𝑢𝑐(𝑡) + 𝑢𝑒𝑞(𝑡)                  (56) 

 

where the equivalent control is 

 

𝑢𝑒𝑞(𝑡) = −𝐵2
𝑧(𝑧)−1{(𝐴21

𝑧 (𝑧)𝑧1(𝑡) + 𝐴22
𝑧 (𝑧)𝑧2(𝑡)) + 𝐶(𝐴11

𝑧 (𝑧)𝑧1(𝑡) + 𝐴12
𝑧 (𝑧)𝑧2(𝑡)) + 𝐶̇𝑧1(𝑡)}       (57) 

 

where regulator control is 

 
𝑢𝑐(𝑡) =  −𝐵2

𝑧(𝑧)𝑘 𝑠𝑔𝑛(𝜎)                             (58) 

 
The problem of the SMC is chattering due to regulator control. The k amplitude determines the reaching 

phase time and chattering amplitude. To eliminate chattering problem, there are different type of solutions. 

Instead of signum function, Eq.58 saturation function, Eq.59 and hyperbolic tangent function, Eq.60. A 

different approach to minimize the chattering problem, the regulator control input can be dependent to 

errors of states Eq.61.  

 

𝑢𝑐(𝑡) =  −𝐵2
𝑧(𝑧)𝑘 𝑠𝑎𝑡(𝜎)                 (59) 

𝑢𝑐(𝑡) =  −𝐵2
𝑧(𝑧)𝑘 𝑡𝑎𝑛ℎ(𝜎)                 (60) 

𝑢𝑐(𝑡) =  −𝐵2
𝑧(𝑧)𝑘𝑎(𝑟(𝑡)2)(|𝑒(𝑡)| + 𝜀) tanh (𝑘𝑠

𝜎(𝑡)

|𝑒(𝑡)|+𝜀
)                             (61) 

 

4. SIMULATION RESULTS 

 

In this section, simulation results of tracking of 3 DOF helicopter controlled via SDRE, MRAC and SMC 

controller are given. All three controller design methods, using in this paper, have same desired state steps 

for same axes of motion, same (100 Hz) sampling time, same (Runge-Kutta Method, ODE 4) solver and 

same (125 s) simulation time. 

 

Desired state steps are given, 

 

Elevation angle; 

1. Step: 5 degrees at 25th s 

2. Step: 10 degrees at 40th s 

3. Step: -15 degrees at 65th s 

4. Step: -5 degrees at 85th s 

5. Step: 10 degrees at 110th s 

 

Travel angle; 

1. Step: 15 degrees at 10th s 
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2. Step:  25 degrees at 40th s 

3. Step: -30 degrees at 65th s 

4. Step: -10 degrees at 100th s 

 

All the simulations obtained in this studied are performed by using the SIMULINK toolbox of MATLAB. 

A typical Simulink blocks are represented below in Figures 3-6; 

 

 
Figure 3. Desired States Design Scenario 

 

 

 

 
Figure 4. SDRE Controller Design Scheme with Simulink 
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Figure 5. SDRE Based MRAC Controller Design Scheme with Simulink 

 

 

 
Figure 6. SDRE Based SMC Controller Design Scheme with Simulink 
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4.1. SDRE Results 

 

In this paper, weighting matrices for tracking of 3 DOF helicopter selected as, 

 

𝑄 =

[
 
 
 
 
 
 
 
 
40
0
0
0
0
0
0
0
0
0

0
5
0
0
0
0
0
0
0
0

0
0
5
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
10
0
0
0
0
0

0
0
0
0
0
15
0
0
0
0

0
0
0
0
0
0
1
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
0
0

0
4
0

0
0
2]
 
 
 
 
 
 
 
 

,   𝑅 = [
0.5 0
0 0.5

] 

 

Figure 7 illustrate the system time responses, namely elevation, travel and pitch angles, to the desired step 

commands. It is seen that the SDRE control is capable of controlling the helicopter dynamics. The desired 

elevation and travel commands are followed by the 3 DOF Helicopter as expected. The settling time for 

each of the step command is small enough to recover the Helicopter for another step commands. 

 

 
Figure 7. System Responses of 3 DOF Helicopter for SDRE method 

 

Figure 8, on the other hand, give the control input signal obtained from the proposed SDRE control design. 

From the figures, it is seen that the control signal is between ±5 Volts which are compatible with the motors 

input voltages. It is seen that the voltages vary during the step command changes. 
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Figure 8. Input voltages for SDRE method 

 

4.2. MRAC Results 

 

In this paper, weighting matrix and adaptation rate for tracking of MRAC method are selected as, 

 

𝑄 =

[
 
 
 
 
 
 
 
 
100
0
0
0
0
0
0
0
0
0

0
0.1
0
0
0
0
0
0
0
0

0
0

100
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
1
0
0
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1
0
0

0
1
0

0
0
1]
 
 
 
 
 
 
 
 

 ,  Γ = 10−6 

 

Figure 9 illustrate the system time responses, namely elevation, travel and pitch angles, to the desired step 

commands for the Model Reference Adaptive Control. It is seen that the MRAC approach is also capable 

of controlling the helicopter dynamics. The desired elevation and travel commands are followed by the 

reference model (labeled as “Model”) and the 3 DOF Helicopter (label as “Plant” in the figures). The 

overshoots are seen in the time responses. However, the desired commands are successfully followed by 

both the “Model” and the “Plant”. 
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Figure 9. System Responses of 3 DOF Helicopter for MRAC method 

 

Figure 10 give the control input signal obtained from the proposed MRAC design. The control signals are 

again between ±5 Volts which are compatible with the motors input voltages. Similar to the SDRE control 

cases, the voltages vary during the step command changes. 

 

 
Figure 10. Input voltages for MRAC method 

 

 

4.3. SMC Results 

 

For the SMC design proposed in this paper, the following weighting matrices and parameter are selected 

as follows, 
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𝑄(𝑥) =

[
 
 
 
 
 
 
40
0
0
0
0
0
0
0

0
2
0
0
0
0
0
0

0
0

200
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
10
0
0
0

0
0
0
0
0
10
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
10]

 
 
 
 
 
 

 ,   𝑅 = [
0.5 0
0 0.5

] , 𝑘 = 4 

 

Figure 11 illustrate the system time responses, namely elevation, travel and pitch angles, to the desired step 

commands. The SDRE based SMC is capable of controlling the helicopter dynamics as well. The proposed 

control approach is capable of controlling the helicopter dynamics. The desired elevation and travel 

commands are followed successfully. It should be noted that the time responses of the system can be 

changed by using different control parameters. For instance, the time response for the travel angle could be 

better shaped with different parameters. 

 

 

 
Figure 11. System Responses of 3 DOF Helicopter for SMC method 

 

Figure 12, on the other hand, give the control input signal obtained from the proposed SMC design. Unlike 

the previous control actions, the control signals are again between ±10 Volts which are compatible with the 

motors input voltages. 
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Figure 12. Input voltages for SMC method 

 

 

5. CONCLUSION 

 

This paper introduces 3 popular nonlinear controller design methodologies in a systematic manner. The 

control methods studied in this paper are “State Dependent Riccati Equation based Optimal Control”, 

“Model Reference Adaptive Control” and “Sliding Mode Control”. The designed control approaches are 

applied to a 3 DOF Helicopter dynamics for tracking purposes. The 3 DOF experimental helicopter setup 

has a state-dependent nonlinear dynamic feature. SDRE technique and robust controllers are synthesized to 

get much better control performance and robustness against nonlinearity and parametric uncertainties. The 

simulation results clearly show that these three nonlinear controller methods are sufficient enough to 

achieve the goal which is decent performance characteristic. 
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