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Graphical/Tabular Abstract (Grafik Özet) 

This study evaluates drug solubility prediction models, highlighting Random Forest's superior 

efficacy compared to Graph Neural Networks. / Bu çalışma ilaç çözünürlük tahmin modellerini 

değerlendirirek, Rastgele Orman'ın Grafik Sinir Ağlarına göre üstün etkililiğini vurgulamaktadır. 

 

Figure A: Illustrates the schematic representation of the proposed methodology through a flow 

diagram. / Şekil A: Önerilen metodolojinin şematik gösterimini bir akış diyagramı aracılığıyla 

göstermektedir. 

Highlights (Önemli noktalar)  

➢ The Random Forest model stands out in drug solubility prediction with minimal error 

rates and superior efficacy. / Rastgele Orman modeli, ilaç çözünürlüğü tahmininde 

minimal hata oranları ve üstün etkinlikle öne çıkıyor. 

➢ The GNN model exhibits lower performance with higher error rates and lower 

explanatory power compared to other models. / GNN modeli, diğer modellere göre yüksek 

hata oranları ve düşük açıklama gücü ile daha düşük bir performans sergiliyor. 

➢ Study emphasizes differences among modeling approaches, highlighting Random 

Forest's effectiveness. / Çalışma, modelleme yaklaşımları arasındaki farkları vurgular, 

Random Forest'ın etkinliğini öne çıkarır. 

Aim (Amaç): To analyze Random Forest, GNN and traditional ML models for drug resolution in 

detail and to identify the most effective model for pharmaceutical design. / İlaç çözünürlüğü için 

Random Forest, GNN ve geleneksel ML modellerini ayrıntılı bir şekilde analiz etmek ve farmasötik 

tasarım için en etkili modeli belirlemektir.  

Originality (Özgünlük): The study contributes by deeply assessing models' performances and 

comparing their accuracy and explanatory powers. / Çalışma, modellerin performanslarını 

derinlemesine değerlendirerek doğruluk ve açıklama güçlerini karşılaştırmasıyla literatüre katkı 

sağlamaktadır.  

Results (Bulgular): Results reveal Random Forest's superior efficacy (RMSE: 1.2145, MAE: 

0.9221) compared to GNN (RMSE: 1.8389, MAE: 1.4684, R2: 0.2147). / Sonuçlar, Random 

Forest'ın üstün etkinliğini (RMSE: 1.2145, MAE: 0.9221) ve GNN'nin nispeten daha düşük 

etkinliğini (RMSE: 1.8389, MAE: 1.4684, R2: 0.2147) ortaya koyar.  

Conclusion (Sonuç): The Random Forest model showed superior efficiency with minimal error 

rates, whereas the GNN model showed inferior performance. / Random Forest modeli, minimal 

hata oranları ile üstün bir etkinlik gösterirken, GNN modeli daha düşük performans sergilemiştir.  
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Abstract 

The effective development and design of pharmaceuticals hold fundamental importance in the 

fields of medicine and the pharmaceutical industry. In this process, the accurate prediction of 

drug molecule solubility is a critical factor influencing the bioavailability, pharmacokinetics, and 

toxicity of drugs. Traditionally, mathematical equations based on chemical and physical 

properties have been used for drug solubility prediction. However, in recent years, with the 

advancement of artificial intelligence and machine learning techniques, new approaches have 

been developed in this field. This study evaluated different modeling approaches consisting of 

Graph Neural Networks (GNN), Multilayer Perceptron (MLP), and traditional Machine Learning 

(ML) algorithms. The Random Forest (RF) model stands out as the optimal performer, 

manifesting superior efficacy through the attainment of minimal error rates. It attains a Root Mean 

Square Error (RMSE) value of 1.2145, a Mean Absolute Error (MAE) value of 0.9221, and an R-

squared (R2) value of 0.6575. In contrast, GNN model displays comparatively suboptimal 

performance, as evidenced by an RMSE value of 1.8389, an MAE value of 1.4684, and an R2 

value of 0.2147. These values suggest that the predictions of this model contain higher errors 

compared to other models, and its explanatory power is lower. These findings highlight the 

performance differences among different modeling approaches in drug solubility prediction. The 

RF model is shown to be more effective than other methods, while the GNN model performs less 

effectively. This information provides valuable insights into which model should be preferred in 

pharmaceutical design and development processes. 
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Öz 

İlaçların etkin bir şekilde geliştirilmesi ve tasarlanması, tıp ve ilaç endüstrisi alanlarında temel 

öneme sahiptir. Bu süreçte, ilaç molekülünün çözünürlüğünün doğru bir şekilde tahmin edilmesi, 

ilaçların biyoyararlanımını, farmakokinetiğini ve toksisitesini etkileyen kritik bir faktördür. 

Geleneksel olarak, ilaç çözünürlüğü tahmini için kimyasal ve fiziksel özelliklere dayalı 

matematiksel denklemler kullanılmıştır. Ancak son yıllarda yapay zekâ ve makine öğrenimi 

tekniklerinin ilerlemesiyle bu alanda yeni yaklaşımlar geliştirilmiştir. Bu çalışmada, Grafik Sinir 

Ağları (GNN), Çok Katmanlı Algılayıcı (MLP) ve geleneksel Makine Öğrenmesi (ML) 

algoritmalarından oluşan farklı modelleme yaklaşımları değerlendirilmiştir. Rastgele Orman 

(RF) modeli, minimum hata oranlarına ulaşarak üstün etkinlik gösteren en iyi performans 

gösteren model olarak öne çıkmaktadır. Kök Ortalama Kare Hata (RMSE) değeri 1,2145, 

Ortalama Mutlak Hata (MAE) değeri 0,9221 ve R-kare (R2) değeri 0,6575'tir. Buna karşılık GNN 

modeli, 1,8389 RMSE değeri, 1,4684 MAE değeri ve 0,2147 R2 değeri ile kanıtlandığı üzere 

nispeten düşük bir performans sergilemektedir. Bu değerler, bu modelin tahminlerinin diğer 

modellere kıyasla daha yüksek hata içerdiğini ve açıklayıcı gücünün daha düşük olduğunu 

göstermektedir. Bu bulgular, ilaç çözünürlüğü tahmininde farklı modelleme yaklaşımları 

arasındaki performans farklılıklarını vurgulamaktadır. RF modelinin diğer yöntemlere göre daha 

etkili olduğu, GNN modelinin ise daha az etkili performans gösterdiği görülmektedir. Bu bilgi, 

farmasötik tasarım ve geliştirme süreçlerinde hangi modelin tercih edilmesi gerektiği konusunda 

değerli bilgiler sağlamaktadır. 
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1. INTRODUCTION (GİRİŞ) 

In today's world, drug discovery and development 

represent paramount domains in the pharmaceutical 

industry and medical research. In this intricate 

process, the accurate anticipation of drug molecule 

solubility assumes a pivotal significance. The 

solubility of a drug molecule is considered a 

fundamental parameter in drug design and 

formulation. Solubility determines how well a 

compound can dissolve in water or another solvent, 

which can impact the pharmacokinetics, 

bioavailability, and toxicity of the drug. Therefore, 

accurately predicting the solubility of a drug 

candidate during its development stage is essential 

for the early detection and resolution of potential 

issues [1, 2]. 

Over the years, the landscape of drug solubility 

prediction has transitioned from conventional 

methodologies to embrace advanced techniques 

rooted in artificial intelligence (AI) and machine 

learning (ML). These technological advancements 

have provided access to vast amounts of molecular 

data, enabling the development of new approaches 

in solubility prediction. While traditional methods 

attempt to predict drug solubility using 

mathematical equations based on the chemical and 

physical properties of the compound, AI and ML 

offer a more flexible and data-driven approach, 

capable of recognizing complex molecular 

interactions and patterns [2, 3]. 

In this context, Graph Neural Networks (GNNs) 

have attracted considerable attention. GNNs exhibit 

success in handling graph-structured datasets across 

diverse domains and under various learning 

paradigms, including supervised, semi-supervised, 

self-supervised, and unsupervised settings. The 

majority of graph-based methodologies fall within 

the domain of unsupervised learning, frequently 

relying on Auto-encoders, contrastive learning, or 

concepts related to random walks. 

GNNs differ from traditional neural networks in that 

they are specifically designed to operate on graph 

structures rather than sequences. The use of graphs 

has experienced significant growth and recognition 

in recent years, primarily due to their remarkable 

ability to effectively represent complex real-world 

problems characterized by interconnections. These 

applications include structured data where 

information is used in unstructured formats such as 

test cases. Furthermore, graphs have proven 

valuable in modeling a variety of domains, 

including social networks, molecular structures, 

web link data, and more, enabling extensive 

analysis and interpretation. GNNs have proven their 

efficacy in image analysis tasks such as image 

segmentation and object detection by employing 

graphs as representations for images. In conclusion, 

the use of GNNs allows for a specialized approach 

to processing graph-structured data, facilitating 

improved performance and results in a variety of 

domains where interconnectedness and structured 

relationships are paramount considerations. 

GNNs find application across a diverse spectrum of 

tasks and domains, including but not limited to 

network embedding, graph classification, node 

classification, spatial-temporal graph forecasting, 

and graph generation. Their utility spans a wide 

array of activities and fields. Their adaptability 

positions GNNs as pivotal tools for tackling 

intricate problems characterized by relational 

structures and dependencies. GNNs utilize a graph-

based approach to represent and analyze molecular 

structures. This approach represents molecular 

structures as graphs and can make solubility 

predictions by analyzing these graphs. GNNs can 

contribute to a better understanding of molecular 

interactions and accelerate drug design [4, 5]. 

However, traditional regression models and 

conventional ML algorithms are still considered 

effective tools in this field. Traditional machine 

learning methodologies, particularly exemplified by 

Multilayer Perceptron (MLP), have exhibited their 

efficacy in the domain of solubility predictions and 

are widely adopted within the pharmaceutical 

industry [6]. Additionally, prominent ML 

algorithms such as XGBoost, Gradient Boosting 

(GB), and Random Forest (RF) have demonstrated 

robust predictive capabilities, particularly on 

extensive molecular datasets [7]. 

This study aims to compare AI-based models with 

traditional ML methods in drug solubility 

prediction. Specifically, we will evaluate the 

performance of GNNs and MLP in predicting drug 

solubility. We will also examine the role of popular 

ML algorithms like RF, GB, and XGBoost in this 

context. This research could guide which model 

performs best in drug design and development 

processes and contribute to future drug discovery 

studies. 

1.1. Literature Review (Literatür Taraması) 

The prediction of drug solubility is widely 

recognized as a longstanding challenge in the 

pharmaceutical industry, leading to extensive 

research in this field. Traditional methods utilize 

various mathematical equations and rules to predict 
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drug solubility by considering factors such as 

chemical groups in molecular structure, bond 

lengths, and atomic charges. However, these 

methods often achieve limited success in predicting 

the solubility of individual drug molecules. 

In recent epochs, substantial advancements have 

materialized within the purview of computational 

modeling, with a specialized emphasis on the 

intricate task of predicting the aqueous solubility of 

diverse substances. Due to the limitations of 

traditional methods, AI and machine learning 

techniques have become more appealing for drug 

solubility prediction. These techniques offer greater 

flexibility in analyzing large datasets and 

identifying complex patterns in molecular 

interactions. Specifically, AI methods such as deep 

learning and GNNs have been employed to better 

represent molecular structures and improve 

solubility predictions [8]. Various prediction 

techniques, including Multiple Linear Regression 

(MLR), Principal Component Analysis (PCA), 

Partial Least Squares (PLS), Artificial Neural 

Network (ANN), K-Nearest Neighbors (k-NN), 

Support Vector Machine (SVM), and RF, are 

utilized to forecast the properties of molecules. 

These predictions rely on descriptors that capture 

the characteristics of chemical structures [9-11]. 

GNNs represent molecular structures using a graph-

based approach, modeling atoms as nodes and 

chemical bonds as edges. GNNs play an effective 

role in a range of applications, from predicting drug-

protein binding values to analyzing drug 

similarities, predicting drug side effects without 

extracting drug scaffolds, and more. The use of 

GNNs has emerged as a significant tool to 

accelerate the drug discovery process, reduce costs, 

and discover new drug candidates by allowing for a 

more detailed analysis of molecular interactions 

[12]. In contrast, traditional regression models like 

MLP represent molecular features as vectors and 

make predictions using these feature vectors [13]. 

The potential of GNNs in drug solubility prediction 

has been explored in several recent studies. In one 

investigation, diverse deep learning models were 

developed for solubility prediction. Four discrete 

GNN models were postulated to encapsulate 

molecular representation, and among them, the 

AttentionFP model showcased noteworthy 

superiority in performance [14]. Simultaneously, an 

innovative Multi-Ordered Graphical Attention 

Network (MoGAT) was introduced as an advanced 

framework for the prediction of solubility. The 

primary objectives of this proposition were to 

enhance prediction performance and facilitate the 

explication of the predicted results. Findings 

indicated that MoGAT outperformed contemporary 

methods in terms of performance and demonstrated 

the compatibility of predicted results with 

established chemical knowledge [15]. In a different 

investigation, a novel graph framework was 

proposed to anticipate the water solubility of 

pharmaceutical compounds. This conceptual 

framework introduced a distinct GNN model named 

ALIGNN, explicitly tailored for the QM9 dataset 

[16]. 

The collective findings from these studies suggest 

that GNNs have the potential to enhance solubility 

predictions by offering a more nuanced 

understanding of molecular interactions. 

Nevertheless, traditional regression models such as 

MLP continue to be acknowledged as effective tools 

in this domain and are widely utilized by various 

pharmaceutical companies. For example, one 

research project employed multiple machine 

learning algorithms (MLR, ANN, RF, ET, and 

SVM) to predict drug solubility in different solvents 

[17]. In a separate investigation, Kernel Ridge 

Regression (KRR), Least Angle Regression (LAR), 

and MLP were applied to forecast the solubility of 

Lenalidomide, a drug used in the treatment of 

specific bone marrow-related conditions in adults 

[18]. Another study focused on developing an AI-

based model using a SVM to examine the solubility 

data of the drug Busulfan [19]. Additionally, three 

distinct machine learning approaches, namely k-

NN, MLP, and KRR, were employed to predict the 

solubility of the drug Nystatin [20]. 

Additionally, popular machine learning algorithms 

such as RF, GB, and XGBoost have been employed 

for drug solubility prediction, yielding successful 

results. These algorithms are considered valuable 

tools for making predictions on large molecular 

datasets and are deemed necessary for drug 

solubility prediction [21]. 

2.MATERIALS AND METHODS (MATERYAL 

VE METOD) 

This research endeavors to undertake a comparative 

analysis of diverse ML and AI methodologies 

concerning the prediction of drug solubility. In 

pursuit of this objective, an assembly of drug data is 

initially amassed, and various modeling strategies 

are scrutinized through the lens of this dataset. 

The drug dataset includes the chemical properties, 

structures, and solubility values of various drug 

molecules. This dataset is obtained from a database 

widely used in drug design and development 
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processes and encompasses a variety of drug 

molecules. 

Various methodologies are employed in the 

prediction of drug molecule solubility, 

encompassing models such as GNNs, MLP, RF, 

GB, and XGBoost. These models employ different 

mathematical and graphical approaches to represent 

the molecular features and structures of drugs. 

The methods of the study encompass the 

preparation and preprocessing of the drug dataset as 

the initial steps. Subsequently, the training of 

various models and their utilization for solubility 

predictions are executed. The results are then 

employed to compare the performance of different 

models, ultimately determining which model is the 

most effective for drug solubility prediction. Figure 

1 diagram shows the flowchart of the proposed 

method. 
 

 

 

 

 
Figure 1. Illustrates the schematic representation of the proposed methodology through a flow diagram. 

(Önerilen metodolojinin şematik gösterimini bir akış diyagramı aracılığıyla göstermektedir) 

2.1. Dataset (Veri Seti) 

This study utilizes the "ESOL (Estimated Aqueous 

Solubility)" dataset, which is employed for 

predicting the solubility of drugs. The ESOL dataset 

serves as a data source created with the purpose of 

measuring and estimating the aqueous solubility of 

various chemical compounds. This dataset finds 

application in drug design, chemical analysis, 

pharmacokinetic investigations, and molecular 

modeling studies [22, 23]. 

The ESOL dataset comprises 1,125 chemical 

compounds, each with its solubility provided as a 

logarithmically transformed value. These values 

represent solubility predictions in micromolars. 

Additionally, it includes independent variables 

representing the chemical structure and molecular 

properties of each compound. These molecular 

properties constitute the fundamental data used for 

solubility predictions [22, 23]. 

This dataset is employed to contribute to the 

understanding of critical pharmaceutical parameters 

such as the bioavailability, pharmacokinetics, and 

toxicity of drugs. Furthermore, it is extensively 

investigated to comprehend how artificial 

intelligence-based regression models and deep 

learning techniques can be utilized to expedite drug 

design processes. 

Regarded as a pivotal asset within the 

pharmaceutical industry, chemical research, and 

molecular modeling domains, this dataset holds 

substantial importance. The objective of this study 

is to predict solubility utilizing the ESOL dataset, 

with the anticipation that these predictions will 

provide invaluable insights for the design and 

development of pharmaceutical compounds. 

The esol dataset consists of 10 columns and 1128 

rows. Table 1 below shows the relevant attribute 

columns for 19 drugs for this data.   
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Table 1. ESOL dataset (ESOL veriseti)
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Amigdalin 1 457,432 7 3 7 202,32 -0,77 OCC3OC(OCC2OC(OC(C#

N)c1ccccc1)C(O)C(O)C2O)

C(O)C(O)C3O  

Fenfuram 1 201,225 1 2 2 42,24 -3,3 Cc1occc1C(=O)Nc2ccccc2 

citral 1 152,237 0 0 4 17,07 -2,06 CC(C)=CCCC(C)=CC(=O) 

Picene 2 278,354 0 5 0 0 -7,87 c1ccc2c(c1)ccc3c2ccc4c5ccc

cc5ccc43 

Thiophene 2 84,143 0 1 0 0 -1,33 c1ccsc1 

benzothiazole 2 135,191 0 2 0 12,89 -1,5 c2ccc1scnc1c2  

2,2,4,6,6'-PCB 1 326,437 0 2 1 0 -7,32 Clc1cc(Cl)c(c(Cl)c1)c2c(Cl)

cccc2Cl 

Estradiol 1 272,388 2 4 0 40,46 -5,03 CC12CCC3C(CCc4cc(O)ccc

34)C2CCC1O 

Dieldrin 1 380,913 0 5 0 12,53 -6,29 ClC4=C(Cl)C5(Cl)C3C1CC(

C2OC12)C3C4(Cl)C5(Cl)Cl 

Rotenone 1 394,423 0 5 3 63,22 -4,42 COc5cc4OCC3Oc2c1CC(Oc

1ccc2C(=O)C3c4cc5OC)C(

C)=C  

2-pyrrolidone 1 85,106 1 1 0 29,1 1,07 O=C1CCCN1 

2-

Chloronapthalene 

1 162,619 0 2 0 0 -4,14 Clc1ccc2ccccc2c1 

1-Pentene  1 70,135 0 0 2 0 -2,68 CCCC=C 

Primidone 1 218,256 2 2 2 58,2 -2,64 CCC1(C(=O)NCNC1=O)c2c

cccc2 

Tetradecane 1 198,394 0 0 11 0 -7,96 CCCCCCCCCCCCCC 

2-Chloropropane 1 78,542 0 0 0 0 -1,41 CC(C)Cl 

2-Methylbutanol 1 88,15 1 0 2 20,23 -0,47 CCC(C)CO 

Benzonitrile 1 103,124 0 1 0 23,79 -1 N#Cc1ccccc1 

Diazinon 1 304,352 0 1 7 53,47 -3,64 CCOP(=S)(OCC)Oc1cc(C)n

c(n1)C(C)C 

 

2.2. Graph Neural Networks (Grafik Sinir Ağları) 

GNNs represent an artificial intelligence approach 

that graphically depicts the molecular structures of 

chemical compounds and utilizes deep learning 

techniques to analyze these graphical structures. 

The molecular graph representations of chemical 

compounds encompass the bonds between atoms 

and molecular properties. GNNs possess the ability 

to make solubility predictions by processing this 

graphical structure [24]. 

GNNs offer several crucial features that assist in a 

better understanding of the molecular properties and 

chemical structures of chemical compounds. In 

particular, GNNs can make solubility predictions by 

considering the local structure of the molecular 

graph. This is highly valuable in evaluating the 

interactions and bonds between different atoms in 

chemical compounds. Additionally, they can take 

into account the topology and structural 

characteristics of chemical compounds. 

Within the framework of this investigation, the 

pivotal function of GNNs is to augment and refine 

the regression model deployed for the anticipation 

of chemical compound solubility within the 

confines of the ESOL dataset. This model generates 

solubility predictions by utilizing the molecular 

graph representations of chemical compounds. 
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These predictions can contribute to the 

comprehension and improvement of critical 

parameters in drug design processes, such as the 

bioavailability and pharmacokinetics of drugs. 

The integration of GNNs in this study serves the 

overarching purpose of catalyzing the evolution of 

pioneering solubility prediction methodologies 

within the spheres of pharmaceuticals and 

chemistry. This strategic inclusion aims to expedite 

and enhance the intricate processes involved in drug 

design. Consequently, a GNN-based solubility 

prediction model can serve as a valuable tool in drug 

development processes and assist in the more 

effective and safe design of drugs. Figure 2 shows 

the working structure of a GNN.

 
Figure 2. GNNs work structure (GNN’lerin çalışma yapısı) 

2.3. Multilayer Perceptron (MLP) (Çok Katmanlı 

Algılayıcı) 

Within the scope of this study, the MLP is employed 

as a deep learning model derived from artificial 

neural networks. MLP is a widely used regression 

and classification model in the fields of data mining 

and pattern recognition. It is known for its capability 

to learn complex functions and is particularly 

successful in prediction problems involving 

structured and unstructured data types. 

The multi-layered architecture is a distinctive 

feature of MLP. MLP architecture comprises no 

fewer than three essential layers: an initial input-

layer, followed by one or more hidden-layers, and 

culminating in output-layer. Neurons within these 

layers are fully interconnected, establishing 

connections with every neuron in both the preceding 

and succeeding layers. This structural characteristic 

augments the model's capacity to adeptly represent 

and learn intricate functions [6]. 

Every neuron undertakes the processing of 

incoming data through the application of an 

activation function. Frequently employed activation 

functions encompass sigmoid, Rectified Linear Unit 

(ReLU), and tanh. The selection of activation 

functions plays a crucial role in determining the 

outputs of neurons, facilitating the model's capacity 

to acquire and comprehend non-linear relationships. 

Training MLP is typically performed using a 

process called backpropagation. This process 

involves comparing the model's predictions to 

actual values and propagating errors arising from 

this comparison backward between layers. This 

allows for the updating of weights and the training 

of the model. Figure 3 illustrates the structure of an 

MLP. 
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Figure 3. An MLP structure (Bir MLP yapısı) 

 

2.1. Machine Learning (ML) (Makine Öğrenmesi) 

This study encompasses a diverse array of ML 

algorithms utilized in the prediction of drug 

molecule solubility. These algorithms are employed 

in the fields of data mining and pattern recognition 

with the purpose of accomplishing the critical task 

of solubility prediction, which plays a significant 

role in drug development processes and drug design. 

Here is a brief description of some fundamental ML 

algorithms utilized in this study: 

a. Random Forest (RF): RF is an ensemble 

learning algorithm where multiple decision 

trees are constructed and combined. Each 

decision tree evaluates data samples 

independently and aggregates their results. 

This approach enhances the overall 

performance of the model while reducing 

the risk of overfitting [25]. 

 

b. Gradient Boosting (GB): GB is a 

technique of ensemble learning where 

simple models, referred to as weak 

learners, are combined to create a powerful 

model. This method employs an iterative 

process where each new model attempts to 

correct the errors of the previous ones. GB 

can create a robust regression model 

capable of achieving high accuracy [26]. 

c. XGBoost (Extreme Gradient Boosting): 

XGBoost is a variation of GB and is often 

known for its high-performance and 

scalability. XGBoost is frequently 

preferred, especially in structured datasets 

and regression tasks like solubility 

prediction in tabular data [27]. 

 

These ML algorithms are integral to this study's 

objective of predicting drug solubility, aiding in the 

advancement of drug design processes, and 

contributing to pharmaceutical research. 

 

3. PERFORMANCE METRICS AND THE 

RESEARCH FINDINGS (Performans Metrikleri ve 

Araştırma Bulguları) 

Performance metrics are criteria used to assess how 

close a model's predictions are to the actual values. 

The metrics utilized in this study include: 

 

1. Root Mean Square Error (RMSE): RMSE is 

a measure of how much a model's predictions 

deviate from the actual values. When 

calculating RMSE, the difference between each 

prediction and the actual value is computed, the 

squares of these differences are averaged, and 

finally, the square root of this value is taken. 

RMSE shares the same units as the predicted 

variable, making it directly interpretable. The 

mathematical formula is shown in Equation 1. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

𝑝𝑟𝑒
− 𝑦𝑖

𝑒𝑥𝑝
)2𝑛

𝑖=1

𝑛
                                  (1)  

(1) 

2. Mean Absolute Error (MAE): MAE serves as 

a metric indicating the extent to which a model's 

predictions deviate from the actual values by 

utilizing the absolute values of these 

differences. It involves computing the average 

of the absolute differences between each 

prediction and its corresponding actual value. 

MAE provides insight into the average 

magnitude of deviations between predictions 

and actual values. The mathematical expression 

for MAE is presented in Equation 2. 
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𝑀𝐴𝐸 =
∑ |𝑦𝑖

𝑝𝑟𝑒
− 𝑦𝑖

𝑒𝑥𝑝
|𝑛

𝑖=1

𝑛
               

(2) 

3. R-squared (R2): R2 measures how well a model 

explains the variance in the dataset. R2, ranging 

between 0 and 1, signifies the goodness of fit of 

the model to the data, where higher values 

denote a superior fit. As R2 approaches 1, the 

model explains the data well. However, R2 can 

also be negative, indicating the model's failure 

to predict the data. The mathematical formula is 

shown in Equation 3.  

𝑅2 = √
∑ (𝑦𝑖

𝑝𝑟𝑒
− 𝑦𝑖

𝑒𝑥𝑝
)2𝑛

𝑖=1

∑ (𝑦𝑖
𝑒𝑥𝑝

− �̅�)2𝑛
𝑖=1

                  
(3) 

These metrics are commonly used in evaluating the 

performance of regression models. RMSE and 

MAE determine the accuracy of predictions, while 

R2 indicates how well the model fits the dataset. 

Utilizing these metrics is essential for assessing a 

model's effectiveness and accuracy, providing 

fundamental tools for understanding and comparing 

results. 

The analyses were performed in PYTHON 

environment on a computer with 32 GB RAM and 

GPU RTX3060 graphics processor. The parameters 

of the models were chosen as epcoh=50, optimizer= 

Adam, learning rate= 0.01. The dataset was 

partitioned into distinct training and test subsets, 

with the training set encompassing 80% of the data 

and the test set constituting the remaining 20%. The 

subsequent assessment and measurement of 

outcomes were exclusively conducted on the 

designated test set. The findings of the study show 

the impact of different modeling approaches on 

drug resolution prediction. The results show that 

GNN and MLP perform poorly compared to other 

traditional machine learning methods. In particular, 

performance measures such as RMSE, MAE and R² 

reveal that the predictions made by GNN and MLP 

contain more errors compared to other models. 

ML algorithms such as RF, GB, and XGBoost 

achieved better results in this regression task. These 

outcomes suggest that traditional machine learning 

methods are more effective for drug solubility 

prediction compared to AI-based approaches like 

GNN and MLP. 

 

However, it's essential to note that results can vary 

depending on numerous factors, including dataset 

quality, feature engineering, hyperparameter tuning, 

and other considerations. Therefore, further 

research and consideration of different model 

structures and data characteristics may be necessary 

for improving drug solubility prediction. 

Table 2. The solubility prediction error amounts of the models (Modellerin çözünürlük tahmin hata miktarları) 

Models RMSE MAE R2 

Random Forest 1.2145 0.9221 0.6575 

Gradient Boosting 1.2955 1.0002 0.6102 

MLP 1.1473 0.8586 0.6943 

GNN 1.8389 1.4684 0.2147 

The results in Table 2 indicate that RF and MLP 

exhibited superior performance in drug solubility 

prediction compared to other models. Lower RMSE 

and MAE values along with higher R² scores signify 

the better performance of these models in predicting 

drug solubility. Specifically, MLP achieved the 

lowest RMSE and the highest R² score. 

In contrast, the GNN model showed lower 

performance compared to other models. High 

RMSE and MAE values along with a low R² score 

suggest that the GNN model contained more errors 

in drug solubility prediction and was less successful 

compared to other models.  
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Figure 4. Loss values during training (Eğitim sırasındaki kayıp değerleri) 

Figure 4 illustrates the loss values during training. 

After 100 iterations, the training loss value was 

completed at 0.082. A trained GNN model can be 

utilized to predict the solubility of new molecules. 

Table 2 demonstrate that the RF model had the 

lowest error rates compared to other models. This 

indicates that the RF model predicted solubility 

more accurately and provided results closer to the 

actual values. On the other hand, the GNN model 

exhibited higher error rates compared to other 

models, suggesting that it made less accurate 

predictions for this specific dataset and needs 

improvement. 

This graph aids in a clear comparison of the 

performance of each model and helps us understand 

which model excelled in drug solubility prediction 

and which one has more room for improvement. 

This information guides the selection of the 

appropriate model in drug design and development 

processes. 

 

 
Figure 5. Graphical representation of actual and predicted solubility values (Gerçek ve tahmin edilen 

çözünürlük değerlerinin grafiksel gösterimi)

The real and predicted solubility graphs are 

essential tools for evaluating the performance of 

different models used in drug solubility prediction. 

Figure 5 visually represents how well each model 

predicts the actual solubility and the extent of 

deviation between their predictions and the actual 

values. 
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4.DISCUSSION AND CONCLUSION (Tartışma 

ve Sonuç) 

This study was conducted to evaluate the 

performance of different ML algorithms in 

predicting drug solubility. Solubility prediction 

holds critical importance in drug development 

processes and pharmaceutical design. Therefore, 

accurate and reliable solubility prediction models 

play a significant role in the success of the 

pharmaceutical industry. 

At the outset of the study, the ESOL dataset was 

employed. This dataset encompasses 

experimentally measured solubility values of 

various drug molecules. In the preprocessing and 

preparation phase of the dataset, molecular graph 

features were extracted, and the data was partitioned 

into training and test sets. 

In the first stage of the study, the GNN model was 

utilized. GNN is a AI-based approach used for drug 

solubility prediction. However, when the 

performance of the GNN model was compared to 

other ML models in this study, it was found to be 

inferior. Upon examination of performance metrics 

such as RMSE, MAE, and R², it was observed that 

the GNN model's predictions contained more errors 

compared to other models. These results indicate 

that the GNN model was not effective for solubility 

prediction in this specific dataset. 

In the second stage, the MLP model and traditional 

ML algorithms (RF, GB, XGBoost) were employed. 

These models are commonly used ML approaches 

for regression tasks. The results show that these 

traditional ML algorithms achieved higher success 

in solubility prediction. Particularly, algorithms like 

RF, GB, and XGBoost performed better with lower 

RMSE and MAE values and higher R² scores, 

indicating more accurate predictions. 

These findings suggest that traditional ML 

algorithms may be more effective than AI-based 

approaches (such as GNN) in regression tasks like 

drug solubility prediction. However, these results 

can vary depending on factors like the dataset, 

feature engineering, hyperparameter tuning, and 

model selection. Therefore, further research and 

consideration of different model structures and data 

characteristics may be necessary for drug solubility 

prediction. 

In conclusion, this study provides a comparative 

analysis of ML and artificial intelligence models 

used in drug solubility prediction. It emphasizes that 

traditional ML algorithms may perform better for a 

specific dataset and should be considered in model 

selection. Accurate solubility predictions can offer 

a significant advantage in the design and discovery 

of new drugs in pharmaceutical development 

processes. 
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