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AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL

EUCLIDEAN SPACE SATISFYING ∆ri = λiri

BENDEHIBA SENOUSSI AND MOHAMMED BEKKAR

Abstract. In this paper we study the affine translation surfaces in 3-dimensional

Euclidean space E3 under the condition ∆ri = λiri, where λi ∈ R and ∆ de-
notes the Laplace operator. We obtain the complete classification for those

ones.

1. Introduction

Let E3 be the three-dimensional Euclidean space. An Euclidean submanifold
is said to be of Chen finite type if its coordinate functions are a finite sum of
eigenfunctions of its Laplacian ∆ [4].

First we recall some well-known formulas for the surfaces in E3.
Let r = r(u, v) be an isometric immersion of a surface M2 in E3.
The inner product on E3 is

g(X,Y ) = x1y1 + x2y2 + x3y3,

where X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3.
The Euclidean vector product X ∧ Y of X and Y is defined as follows:

X ∧ Y =
(
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

)
.

The notion of finite type immersion of submanifolds of a Euclidean space has been
widely used in classifying and characterizing well known Riemannian submanifolds
[4]. B.-Y. Chen posed the problem of classifying the finite type submanifolds in
the 3-dimensional Euclidean space E3. These can be regarded as a generalization
of minimal submanifolds.

The notion of finite type immersion has played an important role in classifying
and characterizing the submanifolds in Euclidean space.

Since then the theory of submanifolds of finite type has been studied by many
geometers.
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A well known result due to Takahashi [19] states that minimal surfaces and
spheres are the only surfaces in E3 satisfying the condition

∆r = λr, λ ∈ R.

In [8] Ferrandez, Garay and Lucas proved that the surfaces of E3 satisfying

∆H = AH, A ∈Mat(3, 3)

are either minimal, or an open piece of sphere or of a right circular cylinder.
In [7] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in E3

satisfying

∆r = Ar +B, A ∈Mat(3, 3), B ∈Mat(3, 1),

are the minimal surfaces, the spheres and the circular cylinders.
In [1], the authors classified the factorable surfaces in the three-dimensional

Euclidean and Lorentzian spaces, whose component functions are eigenfunctions of
their Laplace operator. The authors in [2] studied the translation surfaces in the
3-dimensional Euclidean and Lorentz-Minkowski space under the condition

∆IIIri = µiri, µi ∈ R,

where ∆III denotes the Laplacian of the surface with respect to the third funda-
mental form III.

In this paper we study the affine translation surfaces in the three-dimensional
Euclidean space E3 under the condition

∆ri = λiri, λi ∈ R.

2. Preliminaries

A submanifold M2 of a 3-dimensional Euclidean space E3 is said to be of finite
type if each component of its position vector field r can be written as a finite sum
of eigenfunctions of the Laplacian ∆ of M2, that is, if

r = r0 +

k∑
i=1

ri,

where ri are E3 −valued eigenfunctions of the Laplacian of (M2, r) [4]:

∆ri = λiri,

where λi ∈ R, i = 1, 2, .., k. If λi are different, then M2 is said to be of k-type.
The coefficients of the first fundamental form and the second fundamental form

are

E = g(ru, ru), F = g(ru, rv), G = g(rv, rv),

L = g(ruu,N), M = g(ruv,N), N = g(rvv,N),

where ru = ∂r
∂u , rv = ∂r

∂v and N is the unit normal vector to M2.

The Laplace-Beltrami operator of a smooth function ϕ : M2 → R, (u, v) 7→
ϕ(u, v) with respect to the first fundamental form of the surface M2 is the operator
∆, defined in [18] as follows:

(2.1) ∆ϕ =
−1√

|EG− F 2|

[
∂

∂u

(
Gϕu − Fϕv√
|EG− F 2|

)
+

∂

∂v

(
Eϕv − Fϕu√
|EG− F 2|

)]
.



AFFINE TRANSLATION SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE .. 49

The mean curvature H and the Gaussian curvature KG are, respectively, defined
by

H =
EN +GL− 2FM

2(EG− F 2)

and

KG =
LN −M2

EG− F 2
.

3. Affine translation surfaces in E3

Let M2 be a 2-dimensional surface, of the Euclidean 3-space E3. Using the
standard coordinate system of E3 we denote the parametric representation of the
surface r(u, v) by

r(u, v) = (x(u, v), y(u, v), z(u, v)).

In E3, a surface is called a translation surface if it is given by an immersion

r : Ω ⊂ R2 → R3 : (u, v) 7→ (u, v, f(u) + g(v)),

where f and g are smooth functions on opens of R. One of the famous examples
of minimal surfaces in 3-dimensional Euclidean space E3 is a Scherk’s minimal
translation surface. In fact, Scherk showed in 1835 that except the planes, the only
minimal translation surfaces are the surfaces given by

r(u, v) = (u, v,
1

λ
log cos(λv)− 1

λ
log cos(λu)),

where λ is a nonzero constant. This surface is called a Scherk’s minimal translation
surface.

R. López [12] studied translation surfaces in the 3-dimensional hyperbolic space
H3 and classified minimal translation surfaces. R. López and M. I. Munteanu [13]
constructed translation surfaces in Sol3 and investigated properties of minimal one.

In a different aspect, H. Liu [10] considered the translation surfaces with constant
mean curvature in 3-dimensional Euclidean space and Lorentz-Minkowski space.

Recently, K. Seo [16] gave a classification of the translation hypersurfaces with
constant mean curvature or constant Gauss-Kronecker curvature in space forms.

Related works on minimal translation surfaces of E3 are [[10], [14], [20]].

Definition 3.1 ([11]). An affine translation surface in E3 is defined as a parameter
surface M2 in E3 which can be written as

(3.1) r(u, v) = (u, v, f(u+ av) + g(v)),

for some non zero constant a and functions f(u+ av) and g(v).

The coefficients of the first and the second fundamental forms are:

E = 1 + f2u , F = fu(afv + gv), G = 1 + (afv + gv)
2;

L =
fuu
W

, M =
afuv
W

, N =
a2fvv + gvv

W
.

The mean curvature H and the Gaussian curvature KG of M2 are given by

(3.2) H =
(1 + f2u)(a2fvv + gvv) + fuu(1 + (afv + gv)

2)− 2afufuv(afv + gv)

2W 3
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and

(3.3) KG =
fuu(a2fvv + gvv)− (afuv)

2

W 4
,

where W =
√

1 + f2u + (afv + gv)2.
By a transformation

(3.4)

{
x = u+ av
y = v,

and ∂(x,y)
∂(u,v) 6= 0.

From (3.4) we have

E = 1 + f2x , F = −a+ fxgy, G = 1 + a2 + g2y;

L =
fxx
W

, M = 0, N =
gyy
W

.

From (3.2) and (3.3) we get

(3.5) H =
(1 + f2x)gyy + (1 + a2 + g2y)fxx

2W 3

and

(3.6) KG =
fxxgyy
W 4

,

where W =
√

1 + f2x + (afx + gy)2.

Theorem 3.1 ([11]). Let r(x, y) = (x, y, z(x, y) = f(x) + g(ax+ y)) be a minimal
affine translation surface. Then either z(u, v) is linear or can be written as

(3.7) z(u, v) =
1

c
log

∣∣∣∣∣cos(c
√

1 + a2x)

cos[c(ax+ y)]

∣∣∣∣∣ .
Remark 3.1. If a = 0, the minimal affine translation surface given by (3.7) is the
classical Scherk surface.

Definition 3.2 ([11]). The minimal affine translation surface (3.7) is called gener-
alized Scherk surface or affine Scherk surface in Euclidean 3 - space.

4. Affine translation surfaces satisfying ∆ri = λiri in E3

In this part we explore the classification of the affine translation surfaces M2 of
E3 satisfying the condition

(4.1) ∆ri = λiri.

The Laplacian ∆ of M2 can be expressed as follows:

(4.2) ∆ϕ =
−1

W 3
[W (Gϕxx + Eϕyy − 2Fϕxy) +Q(x, y)ϕx + P (x, y)ϕy] ,

where

Q(x, y) = −H1(fx+a(afx+gy)), P (x, y) = −H1(afx+gy), H1 = EN+GL−2FM.
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Applying (4.2) on the coordinate functions x − ay, y and z(x, y) = f(x) + g(y) of
the position vector r we find

(4.3)


∆(f + g) = −2H

W

∆(x− ay) = 2Hfx
W

∆(y) =
2H(afx+gy)

W .

By using (4.1) and (4.3) we have the following equations

−2H

W
= λ3(f + g)(4.4)

2Hfx
W

= λ1(x− ay)(4.5)

2H(afx + gy)

W
= λ2y.(4.6)

Therefore, the problem of classifying the affine translation surfaces M2 satisfying
(4.1) is reduced to the integration of this system of ordinary differential equations.
Next we study it according to the constants λ1, λ2, λ3.

Case 1. Let λ3 = 0.
Then, the equation (4.4) gives rise to H = 0, which means that the surfaces are

minimal. We get also, by the equations (4.5) and (4.6), λ2 = λ3 = 0.
Case 2. Let λ3 6= 0.
In this case we have four possibilities:
a) If λ1 = 0 and λ2 6= 0 equations (4.5) and (4.6) imply that

2Hfx
W

= 0

2H(afx + gy)

W
= λ2y.

It follows that f(x) = α ∈ R and gy is not the constant function.
Therefore, this system of equations is equivalently reduced to

−gyy
(1 + g2y)2

= λ3(α+ g)(4.7)

gyygy
(1 + g2y)2

= λ2y.(4.8)

Equation (4.8) gives rise to

g2y =
−1

λ2y2 + c
− 1,

where c is a constant such that −1 < λ2y
2 + c < 0.

We find

gyy =
ελ2y

(−λ2y2 − c)
3
2

√
λ2y2 + c+ 1

, − 1 < λ2y
2 + c < 0.

Using equation (4.7) we get

g(y) =
−ελ2y

√
−λ2y2 − c

λ1
√
λ2y2 + c+ 1

− α.
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So {
g(v) = −ελ2v

√
−λ2v2−c

λ1

√
λ2v2+c+1

− α
f(u+ av) = α.

Substituting these functions in (3.1), we obtain

r(u, v) =

(
u, v,

−ελ2v
√
−λ3v2 − c

λ1
√
λ2v2 + c+ 1

)
, − 1 < λ2y

2 + c < 0.

b) If λ1 6= 0 and λ2 = 0 equations (4.4), (4.5) and (4.6) imply that

−2H

W
= λ3(f + g)(4.9)

2Hfx
W

= λ1(x− ay)(4.10)

2H(afx + gy)

W
= 0.(4.11)

It follows that afx + gy = 0. On differentiating afx + gy = 0 we find fxx = 0 and
gyy = 0, which together with (3.5) leads to H = 0, a contradiction. So, in this case
there are no affine translation surfaces in this case satisfying (4.1).

c) If λ2 = 0 and λ1 = 0 equations (4.5) and (4.6) imply that

−2H

W
= λ3(f + g)

2Hfx
W

= 0

2H(afx + gy)

W
= 0.

It follows that afx + gy = 0. On differentiating afx + gy = 0 we find fxx = 0 and
gyy = 0, which together with (3.5) leads to H = 0, a contradiction. So, in this case
there are no affine translation surfaces in this case satisfying (4.1).

d) If λ2 6= 0 and λ1 6= 0 equations (4.4) and (4.5) imply that

(4.12) λ3(f + g)fx = −λ1(x− ay).

On differentiating (4.12) we find fxx = 0 and gyy = 0, which together with (3.5)
leads to H = 0. We deduce that λ2 = λ1 = 0, which is clearly a contradiction. So,
in this case there are no affine translation surfaces in this case satisfying (4.1).

Consequently, we have:

Theorem 4.1. Let M2 be a affine translation surface given by (3.1) in E3. Then
M2 satisfies the equation ∆ri = λiri (i = 1, 2, 3) if and only if the following state-
ment is true:

1) M2 has zero mean curvature everywhere.
2) M2 is parametrized as

r(u, v) =

(
u, v,

−ελ2v
√
−λ3v2 − c

λ1
√
λ2v2 + c+ 1

)
, − 1 < λ2y

2 + c < 0.
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