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ABSTRACT

We prove Maximal Diameter Theorems for pointed Riemannian manifolds which are compared to
surfaces of revolution with weaker radial attraction.
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1. Introduction

The papers [1] and [5] provide generalized maximal diameter theorems for pointed n–dimensional
Riemannian manifolds (M, o) whose radial curvature along geodesics emanating from o is bounded from below
by that of a closed model surface, the model surface M̃ being a closed, simply–connected two–dimensional
Riemannian manifold which is rotationally symmetric about a vertex õ and whose metric takes the form:

ds2 = dr2 + y(r)2dθ2

in a geodesic polar coordinate system (r, θ) about õ with 0 ≤ r ≤ ℓ, 0 ≤ θ ≤ 2π. These theorems assert, under
different additional technical assumptions on M̃ , that the diameter of M is less than or equal to ℓ, and if
the diameter equals ℓ, then M is isometric to the n–model associated to M̃ , that is, to an n–sphere whose
Riemannian metric in geodesic polar coordinates about o takes the form:

ds2 = dr2 + y(r)2dθ2n−1

where dθ2n−1 is the standard metric on Sn−1 where 0 ≤ r ≤ ℓ.
The maximal diameter theorem for noncompact manifolds proved in [7] asserts that if (M,o) is a complete

noncompact Riemannian manifold whose radial curvature is bounded from below by that of a complete,
rotationally symmetric surface M̃ with vertex õ, whose metric takes the form

ds2 = dr2 + y(r)2dθ2

in a geodesic polar coordinate system (r, θ) about õ with 0 ≤ r, 0 ≤ θ ≤ 2π, and if∫ ∞

1

y(r)−2 dr = ∞,

then M is isometric to the n–model associated to M̃ , that is, to Rn whose Riemannian metric in geodesic polar
coordinates about o, takes the form:

ds2 = dr2 + y(r)2dθ2n−1

where dθ2n−1 is the standard metric on Sn−1 and 0 ≤ r.
The proofs of these theorems utilize different versions of the generalized Toponogov triangle theorem

[8, 5, 6]. In a pair of papers [3, 4], the authors proved a version of the Toponogov Triangle Theorem in which
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the hypothesis of bounding radial curvature from below is replaced by a weaker condition. Here we apply this
theorem [4, Theorem 1.3] to generalize the maximal diameter theorems found in [1, 5, 7].

We begin by reviewing the material from [3, 4] that we will need.
Given a complete pointed Riemannian manifold (M,o) and a complete simply–connected model surface

(M̃, õ) which is rotationally symmetric about õ, [4, Theorem 1.3] provides necessary and sufficient conditions
so that for every geodesic triangle △opq in M there exists a corresponding Alexandrov triangle △õp̃q̃ in M̃ .
The conditions are two–fold: (i) M̃ has weaker radial attraction than M and (ii) no minimizing geodesic in M

has a bad encounter with the cut locus in M̃ . In other words, the assumption of (i) and (ii) is equivalent to the
existence of corresponding Alexandrov Triangles in M̃ for every geodesic triangle △opq in M .

The notion of weaker radial attraction was introduced in [3, Definition 4.1] as a hinge comparison. It is
equivalent to a comparison of the Hessians of the the distance functions from the base points [3, Theorem 5.3].
One should note that the assumption of radial curvature being bounded from below implies having weaker
radial attraction, but not conversely [3].

The condition that no minimizing geodesic in M has a bad encounter with the cut locus in M̃ was introduced
in [4, Definition 4.1]. Its purpose is to avoid obvious obstructions to the existence of corresponding Alexandrov
triangles when the cut locus of a point in M̃ is not contained in the meridian opposite. It is in the spirit of
condition (2.1) of [5, Theorem 5], but is not equivalent to it. Note, in particular, that the assumption of no
bad encounters is automatically satisfied whenever the cut loci of points in M̃ are contained in the opposite
meridians, e.g., when M̃ is a von Mangoldt surface.

The gist of [4, Theorem 1.3] is that the triangle △opq and its corresponding Alexandrov triangle △õp̃q̃ satisfy
the conditions:

1. Equality of Corresponding sides:

d(o, p) = d(õ, p̃), d(o, q) = d(õ, q̃), d(p, q) = d(p̃, q̃).

2. Alexandrov convexity:

(a) from o: d(õ, σ̃(t)) ≤ d(o, σ(t)) ∀t ∈ [0, d(p, q)].

(b) from p: d(p̃, γ̃(s)) ≤ d(p, γ(s)) ∀s ∈ [0, d(o, q)].

(c) from q: d(q̃, τ̃(s)) ≤ d(q, τ(s)) ∀s ∈ [0, d(o, p)].

3. Angle Comparison:

(a) The base angle: ∡õ ≤ ∡o.

(b) The top left and right angles: ∡p̃ ≤ ∡p, and ∡q̃ ≤ ∡q.

(Here σ denotes the side p̂q joining p to q, γ the side ôq joining o to q and τ the side ôp joining o to p, and the
corresponding sides in △õp̃q̃ are denoted σ̃, γ̃ and τ̃ respectively.)

We will also have need of the following theorem proved in [4, Theorem 1.5]:

Theorem 1.1 (Maximal Radius Theorem). Suppose (M̃, õ) is a compact model surface with radius ℓ < ∞, whose
metric takes the form

ds2 = dr2 + y(r)2dθ2

in polar coordinates (r, θ) about õ. Suppose that every geodesic triangle △opq in M has a corresponding Alexandrov
triangle △õp̃q̃ in M̃ . If there is a point q in M with d(o, q) = ℓ, then M is diffeomorphic to Sn and its metric takes the
form

ds2 = dr2 + y(r)2dθ2n−1

in geodesic coordinates about o where dθ2n−1 is the standard metric on the unit (n− 1) sphere.

In Section 2 we prove facts about a closed model surface. Sections 3, 4, and 5 are devoted to proving the
maximal diameter and maximal perimeter theorems.
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2. Diameter in a Model Surface

Throughout this section let M̃ be a closed simply–connected surface of revolution with Riemannian metric

ds2 = dr2 + y(r)2dθ2

in a geodesic polar coordinate system (r, θ) about the vertex õ with 0 ≤ r ≤ ℓ, 0 ≤ θ ≤ 2π. The distance between
two points p̃, q̃ ∈ M̃ will be denoted d(p̃, q̃).

Proposition 2.1. For any two points p̃ and q̃ in M̃ ,

d(p̃, q̃) ≤ ℓ

and the perimeter of the geodesic triangle △õp̃q̃ satisfies

d(õ, p̃) + d(p̃, q̃) + d(õ, q̃) ≤ 2ℓ

where õ is the vertex r = 0 of M̃ . Moreover, if d(p̃, q̃) = ℓ holds, then

ℓ = d(p̃, q̃) = d(õ, p̃) + d(õ, q̃).

Furthermore the perimeter of △õp̃q̃ equals 2ℓ if and only if

d(õ′, p̃) + d(õ′, q̃) = d(p̃, q̃)

where õ′ is the antipode r = ℓ of õ.

Proof. For p̃, q̃ ∈ M̃ , we have
d(õ′, p̃) = ℓ− d(õ, p̃), d(õ′, q̃) = ℓ− d(õ, q̃).

Thus by the triangle inequality
d(p̃, q̃) ≤ d(õ, p̃) + d(õ, q̃) (2.1)

and
d(p̃, q̃) ≤ d(õ′, p̃) + d(õ′, q̃) = 2ℓ− (d(õ, p̃) + d(õ, q̃)). (2.2)

Adding the inequalities (2.1) and (2.2) gives
2d(p̃, q̃) ≤ 2ℓ

from which the result follows. Clearly from the proof, if d(p̃, q̃) = ℓ, then equality holds in (2.1) and (2.2). Thus
ℓ = d(p̃, q̃) = d(õ, p̃) + d(õ, q̃).

Furthermore, rearranging (2.2), gives

d(õ, p̃) + d(p̃, q̃) + d(õ, q̃) ≤ 2ℓ

which shows that the perimeter equals 2ℓ if and only if equality holds in (2.2).

Some of the results in Proposition 2.1 can also be found in [1, Lemmas 2.1 and 2.2].

Proposition 2.2. Suppose d(p̃, q̃) = ℓ with 0 < d(õ, p̃) < ℓ and 0 < d(õ, q̃) < ℓ, then p̃ and q̃ are on opposite meridians.
If z̃ is on the meridian containing p̃ with d(õ, p̃) < d(õ, z̃) < ℓ, then d(p̃, z̃) + d(z̃, q̃) = ℓ. This shows that the minimizing
geodesic from z̃ to q̃ must pass through õ′.

Proof. We have by hypothesis d(õ, z̃) = d(õ, p̃) + d(p̃, z̃). By Proposition 2.1,

d(õ, p̃) + d(p̃, z̃) + d(z̃, q̃) + d(õ, q̃) = d(õ, z̃) + d(z̃, q̃) + d(õ, q̃) ≤ 2ℓ,

and
d(õ, p̃) + d(õ, q̃) = ℓ.

Subtracting we obtain
d(p̃, z̃) + d(z̃, q̃) ≤ ℓ.

By the triangle inequality
ℓ = d(p̃, q̃) ≤ d(p̃, z̃) + d(z̃, q̃).

Therefore d(p̃, z̃) + d(z̃, q̃) = ℓ.
Thus z̃ lies on a minimizing geodesic joining p̃ to q̃. However, since the minimizing geodesic from p̃ to z̃ is

unique and lies in the meridian containing p̃, its extension to the minimizing geodesic joining p̃ to q̃ passing
through z̃ must therefore pass through õ′. Thus q̃ lies in the opposite meridian from p̃.
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3. A Maximal Diameter Theorem

Theorem 3.1 (Maximal Diameter Theorem). Let (M,o) be a complete pointed Riemannian manifold, and let (M̃, õ) be
a closed simply–connected surface of revolution. Assume that M̃ has weaker radial attraction than M and no minimizing
geodesic in M has a bad encounter with the cut locus in M̃ . Then the diameter of M is less than or equal to ℓ, the
perimeter of any geodesic triangle △opq in M is ≤ 2ℓ. Moreover, if the diameter of M is equal to ℓ then, M is isometric to
the n–dimensional model based on M̃ .

Proof. The inequalities on the diameter and the perimeter follows from Proposition 2.1 and the existence of
Alexandrov triangles △õp̃q̃ to every geodesic triangle △opq in M .

Suppose that the diameter on M is equal to ℓ. By hypothesis there exist p and q in M such that d(p, q) = ℓ. If
d(o, p) or d(o, q) is equal to ℓ the result follows from the generalized Maximal Radius Theorem [4, Theorem 1.5]
cited above as Theorem 1.1. If not we can suppose that 0 < d(o, p) < ℓ and 0 < d(o, q) < ℓ. The idea of the proof
is to show that there exists a point in M whose distance from o is ℓ so we may apply the generalized Maximal
Radius Theorem.

Consider the Alexandrov triangle △õp̃q̃ in M̃ corresponding to the geodesic triangle △opq in M . Then
d(p̃, q̃) = d(p, q) = ℓ. Thus, by Proposition 2.1,

d(p, o) + d(o, q) = d(p̃, õ) + d(õ, q̃) = ℓ = d(p, q). (3.1)

Thus any minimizing geodesic from p to o followed by a minimizing geodesic from o to q, must be an unbroken
minimizing geodesic from p to q. Thus the minimizing geodesic from o to p is unique, for otherwise we can
construct a broken geodesic from p to q of length ℓ showing that d(p, q) < ℓ. Moreover o and p are not conjugate,
else by the Morse index theorem the minimizing geodesic from p to q passing through o could not minimize.
Thus p /∈ C(o), the cut locus of o in M . Thus the geodesic from o to p minimizes beyond p.

Thus there is a point z lying beyond p on the minimizing geodesic starting from o which minimizes from
o to z and hence d(o, z) = d(o, p) + d(p, z) and d(o, p) < d(o, z) < ℓ. By the triangle inequality d(p, z) + d(z, q) ≥
d(p, q) = ℓ. Since the perimeter of △ozq is ≤ 2ℓ,

d(o, p) + d(p, z) + d(z, q) + d(o, q) = d(o, z) + d(z, q) + d(o, q) ≤ 2ℓ.

Subtracting equation (3.1), gives d(p, z) + d(z, q) ≤ d(p, q) = ℓ. Therefore d(p, z) + d(z, q) = d(p, q) = ℓ which
shows that the minimizing geodesic from p to z followed by the minimizing geodesic from z to q is a minimizing
geodesic from p to q. Thus d(z, q) = ℓ− d(p, z).

Let △õp̃q̃ be the Alexandrov triangle in M̃ corresponding to the geodesic triangle △opq in M . Let z̃ be
the point on the meridian through p̃ such that d(õ, z̃) = d(o, z). By Proposition 2.2, d(z̃, q̃) = ℓ− d(p̃, z̃) =
ℓ− d(p, z) = d(z, q). Thus △õz̃q̃ is the Alexandrov triangle corresponding to △ozq. By Proposition 2.2, the
minimizing geodesic from z̃ to q̃ must pass through õ′ which has distance ℓ from õ. Thus by Alexandrov
convexity 2(a), the minimizing geodesic from z to q must contain a point at a distance ℓ from o. The generalized
Maximal Radius Theorem (Theorem 1.1) applies and M is isometric to the n–dimensional model based on M̃ .

4. A Maximal Perimeter Theorem

Let M̃ be a closed simply–connected surface of revolution with Riemannian metric

ds2 = dr2 + y(r)2dθ2

in a geodesic polar coordinate system (r, θ) with 0 ≤ r ≤ ℓ, 0 ≤ θ ≤ 2π. A geodesic triangle △õp̃q̃ in M̃ whose
perimeter is 2ℓ is said to be of maximal perimeter. A geodesic triangle △õp̃q̃ of maximal perimeter is standard if
either the three sides lie in the union of two opposite meridians or one of the three sides has length ℓ.

Lemma 4.1. Let △õp̃q̃ be a standard geodesic triangle in M̃ of maximal perimeter all of whose sides have length strictly
less than ℓ. Then the side ̂̃pq̃ must pass through the antipode õ′ of õ.

Proof. Since △õp̃q̃ is a standard geodesic triangle in M̃ of maximal perimeter all of whose sides have length
strictly less than ℓ, the three sides are contained in the union of two opposite meridians. The points p̃ and q̃
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must lie in opposite meridians, for if the were both on the same meridian, we may assume, without loss of
generality, that d(õ, p̃) < d(õ, q̃). Then we would have d(õ, p̃) + d(p̃, q̃) = d(õ, q̃), and thus

2ℓ = d(õ, p̃) + d(p̃, q̃) + d(õ, q̃) = 2d(õ, q̃)

contradicting d(õ, q̃) < ℓ. By Proposition 2.1, d(õ′, p̃) + d(õ′, q̃) = d(p̃, q̃), which shows that a minimizing geodesic
from p̃ to q̃ passes through õ′. It remains to prove that the minimizing geodesic ̂̃pq̃ does not pass through õ. If it
did, then d(õ, p̃) + d(õ, q̃) = d(p̃, q̃), and thus

2ℓ = d(õ, p̃) + d(p̃, q̃) + d(õ, q̃) = 2d(p̃, q̃)

contradicting d(p̃, q̃) < ℓ. We conclude that the side ̂̃pq̃ passes through õ′.

Theorem 4.1 (Maximal Perimeter Theorem). Let (M, o) be a complete pointed Riemannian manifold, and let (M̃, õ)
be a closed simply–connected surface of revolution which has no nonstandard triangles of maximal perimeter. Assume
that M̃ has weaker radial attraction than M and no minimizing geodesic in M has a bad encounter with the cut locus in
M̃ . If M contains a geodesic triangle △opq with perimeter 2ℓ, then M is isometric to the n–dimensional model based on
M̃ .

Proof. If one of the sides of △opq has length ℓ, then M is isometric to the n–dimensional model based on M̃ by
the Maximal Diameter Theorem. Thus we may suppose that the three sides of △opq have length less than ℓ.
Let △õp̃q̃ be the Alexandrov Triangle corresponding to △opq. Then △õp̃q̃ has maximal perimeter and thus must
be standard. Its three sides lie in the union of two opposite meridians. By Lemma 4.1, the side ̂̃pq̃ must pass
through õ′. By Alexandrov convexity, then the side p̂q must contain a point at a distance ℓ from o. Hence M

is isometric to the n–dimensional model based on M̃ by the generalized Maximal Radius Theorem (Theorem
1.1).

Theorem 4.1 can be compared to [5, Corollary 33].
If M is a complete Riemannian manifold with sectional curvature bounded from below by K > 0 and M̃

is the two–sphere of constant curvature K, then the hypothesis of Theorem 4.1 is obviously satisfied for any
choice of base points. We immediately obtain the following:

Corollary 4.1. If M is a complete Riemannian manifold with sectional curvature bounded from below by K > 0, then
M is isometric to a sphere of constant curvature K if and only if there exists a geodesic triangle of perimeter 2π/

√
K in

M .

Many model surfaces of revolution have only standard triangles of maximal perimeter. These include round
spheres, ellipsoids of revolution, λ–spheres, etc. On the other hand one can construct a surface of revolution
that contains nonstandard triangles of maximal perimeter.

On the standard two–sphere S2, with south pole õ and north pole õ′, fix a point p̃ (the west pole) on the
equator, and let p̃′ (the east pole) be the antipodal point to p̃. Pick a point q̃ near p̃′ in the northern hemisphere
on the great circle passing through p̃, õ′, and p̃′. Using ideas from Gluck and Singer [2], we can deform the
metric on S2 in a neighborhood of the north pole to obtain a metric that is still rotationally symmetric about
the poles õ and õ′, and such that the arc ̂̃qp̃′ is the cut locus of p̃ and for which there is a 1–parameter family
of minimizing geodesics joining p̃ to q̃. See Figure 1. By construction each of the geodesic triangles △õp̃q̃ have
maximal perimeter no matter which of the minimizing geodesics joining p̃ to q̃ is chosen for the side ̂̃pq̃, but only
one, the one passing through the north pole õ′, is standard.Therefore the constructed surface has nonstandard
geodesic triangles of maximal perimeter.

Remark 4.1. The given proof of Theorem 4.1 requires the assumption that M̃ have no nonstandard geodesic
triangles of maximal perimeter. However it is an open question whether that assumption is actually necessary,
as we have been unable to construct a counterexample.

5. Noncompact case

One ingredient used in proving a maximal diameter theorem for noncompact manifolds is Lemma 3.1 in
[7]. This lemma states that if K and K̄ are continuous functions on [0,∞) satisfying K ≥ K̄ on [0,∞), and
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p̃ q̃ p̃′õ′

Figure 1. The northern hemisphere of a surface of revolution with nonstandard triangles of maximal perimeter viewed looking down from above the north pole.
The arc ̂̃qp̃′ is the cut locus of p̃. Outside of the small red circle the metric agrees with the standard metric on S2. The dashed curves represent minimizing geodesics.

if y and ȳ are the respective solutions of the Jacobi equations y′′ +Ky = 0 and ȳ′′ + K̄ȳ = 0 satisfying the
initial conditions y(0) = ȳ(0) = 0 and y′(0) = ȳ′(0) = 1, and if y(r) > 0 for r ∈ (0,∞) and

∫∞
1

(ȳ(r))−2dr = ∞,
then K = K̄ on (0,∞). Consequently, by uniqueness of the solutions of the Jacobi equation, y(r) = ȳ(r) for
r ∈ [0,∞). This result does not hold if the inequality on curvature is replaced by the condition of weaker radial
attraction.

The weaker radial attraction version would assume that the two functions y and ȳ with y(0) = ȳ(0) = 0 and
y′(0) = ȳ′(0) = 1 satisfy

y′(r)

y(r)
≤ ȳ′(r)

ȳ(r)
.

Following [3], set y(r) = m(r)ȳ(r), then
y′(r)

y(r)
=

ȳ′(r)

ȳ(r)
+

m′(r)

m(r)

with m(0) = 1. Thus if ȳ(r) > 0 for r ∈ (0,∞) with
∫∞
1

(ȳ(r))−2dr = ∞, and m(r) is a positive decreasing function
on [0,∞) with m(0) = 1, for example m(r) = 1

1+r2 , then y(r) = m(r)ȳ(r) will satisfy y(r) > 0 and

y′(r)

y(r)
≤ ȳ′(r)

ȳ(r)

on (0,∞) and yet y ̸= ȳ. Thus the result of [7, Lemma 3.1] does not hold. This is interesting because here is
a situation where a lower bound on curvature is needed; weaker radial attraction is not enough. (Another
example of this situation is rigidity in Toponogov’s Theorem [3]. It would be interesting to find other results
that require curvature bounded from below and not just weaker radial attraction.)

In this case we can obtain a weaker conclusion using the generalized Toponogov Theorem in [4] in place of [7,
Theorem 3.1], but because of the above example we cannot conclude the space is isometric to the n–dimensional
model.

Theorem 5.1. Let M̃ be a noncompact model surface with vertex õ that satisfies the condition that through every
p̃ ∈ M̃\{õ} there passes a unique geodesic ray. Let (M,o) be a complete noncompact pointed Riemannian manifold such
that M̃ has weaker radial attraction and none of the geodesics in M have bad encounters with cut loci in M̃ . Then M is
diffeomorphic to Rn under expo.

By [7, Corollary to Theorem 1.1] the hypothesis that through every p̃ ∈ M̃\{õ} there passes a unique geodesic
ray is a consequence of assuming that one of the following equations holds:∫ ∞

1

(ȳ(r))−2dr = ∞ (5.1)

lim inf
r→∞

y(r) = 0. (5.2)

This leads to a question: Is there a model M̃ that satisfies the hypothesis of Theorem 5.1 but neither (5.1) nor
(5.2)? The answer is no. In [10, Theorem 1], M. Tanaka proves that if

∫∞
1

ỹ−2(t)dt < ∞ and lim inft→∞ ỹ(t) > 0,
then there is a ball about õ consisting of poles of M̃ . (For an alternative proof, see [7, Theorem 1.2].) Since
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through a pole every geodesic emanating from it is a geodesic ray, there are many points p̃ ∈ M̃\{õ} through
which pass many geodesic rays . Thus we see that the assumption that through every p̃ ∈ M̃\{õ} there passes
a unique geodesic ray is equivalent to assuming that either (5.1) or (5.2) holds.

Proof. Let X ∈ ToM be any unit tangent vector. We need to prove that t 7→ expo(tX) is a geodesic ray. Since X
is arbitrary, it follows that the cut locus C(o) = ∅ and hence that expo : ToM → M is a diffeomorphism.

Fix any small t0 > 0 so that if p = expo(t0X) then d(o, p) = t0. Since M is noncompact, there exists a geodesic
ray γ emanating from o. For each s > 0 consider the geodesic triangle △opγ(s), and let △õp̃γ̃(s) be the
corresponding Alexandrov triangle in M̃ . For each s, let αs = ∡opγ(s) and α̃s = ∡õp̃γ̃(s). Thus αs ≥ α̃s. Let
σs : [0, d(p, γ(s))] → M and σ̃s : [0, d(p, γ(s))] → M̃ denote the respective sides of △opγ(s) and △õp̃γ̃(s) joining p

to γ(s) and p̃ to γ̃(s) respectively. Set Ys = σ′
s(0) ∈ TpM and Ỹs = σ̃′

s(0) ∈ Tp̃M̃ . By the triangle inequality

L(σs) = L(σ̃s) = d(p, γ(s)) ≥ d(o, γ(s))− d(p, o) = s− t0.

Let α̃ = lim sups→∞ α̃s. We can find an increasing sequence si > 0 such that si → ∞ as i → ∞ and for
which limi→∞ α̃si = α̃. Moreover, by compactness of the unit tangent spheres we can also assume there exist
Y ∈ TpM and Ỹ ∈ Tp̃M̃ such that limi→∞ Ysi = Y and limi→∞ Ỹsi = Ỹ . It follows that the minimizing geodesics
σ̃si converge to a geodesic ray t 7→ expp̃(tỸ ) and the minimizing geodesics σsi converge to a geodesic ray
t 7→ expp(tY ) for t ∈ [0,∞). (The limit is a geodesic ray since the lengths of the minimizing geodesics become
arbitrarily large. Here is the calculation: if t > 0, then d(p, expp(tY )) = limi→∞ d(p, expp(tYsi)) = limi→∞ t = t,
and similarly for t 7→ expp̃(tỸ ).) The angle that t 7→ expp̃(tỸ ) makes with the geodesic segment from p̃ to õ
is α̃ since limi→∞ α̃si = α̃. But by hypothesis, there is a unique geodesic ray through p̃ which is the portion
of the meridian through p̃ directed away from õ. Hence expp̃(tỸ ) is that portion of the meridian, and
therefore limi→∞ α̃si = α̃ = π. Since π ≥ αsi ≥ α̃si it follows that limi→∞ αsi = π. Hence the angle Y makes
with the geodesic segment from p to o is π. This implies that the geodesic ray t 7→ expp(tY ) for t > 0 is the
portion of the geodesic t 7→ expo(tX) for t ≥ t0. Since t0 > 0 is an arbitrary small number, we conclude that
t 7→ expp(tX) for t > 0 is a geodesic ray. This follows from the calculation: for any t > 0, d(o, expo(tX)) =
limt0→0+ d(expo(t0X), expo(tX)) = limt0→0+(t− t0) = t.

The above theorem shows that if lim infr→∞ y(r) = 0, then M is diffeomorphic to Rn. Weakening the
hypothesis to lim infr→∞

y(r)
r < 2

π implies that M has at most one end by [4, Proposition 7.3].
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