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Abstract

In this manuscript, we consider almost Hermitian manifolds and almost contact metric manifolds. We construct almost Hermitian manifolds
from the product of almost contact metric manifolds with R by warped product. Depending on the function of warped product, we investigate
the curvature properties of the almost Hermitian manifolds obtained in this way. In particular, we study Einstein almost Hermitian manifolds
obtained from Einstein almost contact metric manifolds. In addition, we study the relationships between some classes of almost contact
metric manifolds and almost Hermitian manifolds.
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1. Introduction

Almost contact metric structures are odd dimensional counterparts of almost Hermitian structures. Manifolds with almost Hermitian
structures were classified by [11] according to properties of Levi-Civita covariant derivative of the Kaehler form. The classification of
manifolds with almost contact metric structures was first done in [13] by considering the canonical almost Hermitian structure on M×R and
new classes of almost contact metric structures were obtained together with several examples. A complete classification of almost contact
metric manifolds was given in [2, 8] by considering the symmetry of the Levi-Civita covariant derivative of the fundamental 2-form of the
almost contact metric structure.
In the literature there are papers on constructing a structure from another on a product manifold, for example, see [14] and references
therein for almost Hermitian structures obtained from two almost contact metric structures. In [5], Kaehlerian structures obtained from two
trans-Sasakian structures were considered. In [4], D-homothetic warping was introduced and studied. In [6], the idea of D-homothetic
warping was generalized and relations between some classes of almost contact structures and almost Hermitian structures was studied. For
recent progress on relations between almost contact metric structures and almost Hermitian structures, also see [10, 7, 3, 19] and related
references. In addition to the almost contact case, almost parahermitian manifolds were constructed by multiplying almost paracontact metric
manifolds with R in [15]. A similar study has been carried out for almost contact (complex) B-metric structures in [17]. In this study, we
focus on to construct an almost Hermitian structure on M×R by an almost contact metric structure on M and a smooth function σ on R by
warped product. The function σ enables one to obtain various almost Hermitian structures from a given almost contact metric structure.
We also obtain results about curvature properties on M×R and state theorems about the existence of certain structures such as Einstein
manifold, a structure with zero scalar curvature, by specifying the function σ . We also give examples supporting our results.

2. Preliminaries

An ordered triple (ϕ,ξ ,η), where ϕ is an endomorphism, ξ is a vector field, η is a 1-form is called an almost contact structure on a smooth
manifold M2n+1 if

η(ξ ) = 1, (2.1)

ϕ
2 =−I +η⊗ξ . (2.2)
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6 Konuralp Journal of Mathematics

If there also exists a compatible Riemannian metric g with the property that

g(ϕX ,ϕY ) = g(X ,Y )−η(X)η(Y ), (2.3)

where X ,Y are smooth vector fields on M, then (M,ϕ,ξ ,η ,g) is called an almost contact metric manifold. Identities (2.1), (2.2), (2.3) imply

η ◦ϕ = 0, ϕξ = 0, η(X) = g(X ,ξ ), g(ϕX ,Y ) =−g(X ,ϕY ).

The fundamental 2-form Φ is defined by Φ(X ,Y ) = g(ϕX ,Y ).
We denote smooth vector fields and also tangent vectors by letters X ,Y,Z.
There are 212 classes of almost contact metric manifolds. Note that the non-existence of certain classes in dimensions higher than 3 is shown
in [20]. Let α be the tensor

α(X ,Y,Z) = g((∇X ϕ)(Y ),Z),

for all X ,Y,Z ∈ TpM where TpM is the tangent space at p and ∇ denotes the covariant derivative of g. By (2.1), (2.2), (2.3), the tensor α

satisfies the followings:

α(X ,Y,Z) =−α(X ,Z,Y ) (2.4)

α(X ,Y,Z) =−α(X ,ϕY,ϕZ)+η(Y )α(X ,ξ ,Z)+η(Z)α(X ,Y,ξ ). (2.5)

The following 1-forms are associated with α:

f (X) = ∑
i

α(ei,ei,X), f ∗(X) = ∑
i

α(ei,ϕei,X), ω(X) = α(ξ ,ξ ,X),

where X ∈ TpM, {ei,ξ} is an orthonormal basis for TpM.
Let F be the set of all (0,3) tensors over TpM having properties (2.4) and (2.5). Then F is the direct sum of twelve subspaces Fi,
i = 1, . . . ,12. The defining conditions of the classes we consider are listed below [2, 8].

F1 : α(X ,Y,Z) = η(X)η(Y )ω(Z)−η(X)η(Z)ω(Y ) (2.6)

F2 : α(X ,Y,Z) =
f (ξ )
2n
{η(Z)g(X ,Y )−η(Y )g(X ,Z)}, (2.7)

F2 is the class of γ-Sasakian manifolds, where γ =
f (ξ )
2n . Note that γ-Sasakian manifolds are usually denoted by α-Sasakian. However we

use γ since α is used for the (0,3) tensor of the almost contact structure in this paper.

F3 : α(X ,Y,Z) =− f ∗(ξ )
2n
{η(Z)g(X ,ϕY )−η(Y )g(X ,ϕZ)},

F3 is the class of γ-Kenmotsu manifolds, where γ =− f ∗(ξ )
2n .

F8 : α(hX ,hY,hZ) = α(X ,Y,ξ ) = 0, hX =−ϕ
2X

F11 : α(ξ ,Y,Z) = α(X ,Y,ξ ) = 0, α(X ,X ,Z) = 0

F11 is the class of nearly-K-cosymplectic manifolds.
The class of cosymplectic manifolds is characterized by α = 0 and is contained in all Fi, i = 1, . . . ,12.
An almost contact metric manifold is said to be in the class Fi⊕F j, etc if the tensor α is in the class Fi⊕F j over TpM for all p ∈M.
Note that the classes F1, . . . ,F12 correspond to classes C12, C6, C5, C7, C8, C9, C10, C11, C4, C3, C1, C2 in the classification of [8],
respectively. We use the classification of [2] and classes Wi in [2] are denoted by Fi.
An almost Hermitian manifold is an even dimensional Riemannian manifold (N,h) together with an almost complex structure J (i.e. J2 =−I)
such that

h(J(X),J(Y )) = h(X ,Y ),

for all vector fields X ,Y in N. The Kaehler form of an almost Hermitian manifold (N,h,J) is defined by

F(X ,Y ) = h(J(X),Y ).

The fundamental (0,3) tensor β of the structure is

β (X ,Y,Z) = (∇X F)(Y,Z) = h((∇X J)(Y ),Z).

In [11], almost Hermitian manifolds were classified into four U(n)−irreducible invariant subspaces W1,W2,W3,W4, depending on the vector
space of the fundamental tensors of almost Hermitian structures. Thus there are 16 invariant subspaces, each corresponding to a different
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class of almost Hermitian manifolds. The defining condition of the classes we study are:

W4 : β (X ,Y,Z) =
−1

2(n−1)
{h(X ,Y )δF(Z)−h(X ,Z)δF(Y )−h(X ,JY )δF(JZ)+h(X ,JZ)δF(JY )} (2.8)

W1⊕W4 : β (X ,X ,Y ) =
−1

2(n−1)
{h(X ,X)δF(Y )−h(X ,Y )δF(X)−h(JX ,Y )δF(JX)} (2.9)

W1⊕W2⊕W3 = S K : δF = 0

W1⊕W2⊕W4 : β (X ,Y,Z)+β (JX ,JY,Z)

=
−1

n−1
{h(X ,Y )δF(Z)−h(X ,Z)δF(Y )−h(X ,JY )δF(JZ)+h(X ,JZ)δF(JY )}

W1⊕W3⊕W4 = G1 : β (X ,X ,Y )−β (JX ,JX ,Y ) = 0 (2.10)

W2⊕W3⊕W4 = G2 : SXY Z {β (X ,Y,Z)−β (JX ,JY,Z)}= 0

W : No condition

It is well known that if (M,ϕ,ξ ,η) is an almost contact manifold, then M×R is canonically an almost complex manifold with the almost
complex structure

J(X ,a
d
dt

) =

(
ϕ(X)−aξ ,η(X)

d
dt

)
defined by [16]. If g is the associated Riemannian metric of an almost contact structure, then two Riemannian metrics are defined on M×R
by

h
(
(X ,a

d
dt

),(Y,b
d
dt

)

)
= g(X ,Y )+ab

and

h0 = e2 f h,

where f : M×R−→ R is defined by f (X , t) = t. Then h and h0 are Hermitian metrics on (M×R,J) and

(M×R,J,h), (2.11)

(M×R,J,h0) (2.12)

are almost Hermitian manifolds [13]. In [13], the relation between the almost contact structure on M and the almost Hermitian structure on
M×R is studied. There are several other ways of obtaining an almost Hermitian structure on a product manifold [4, 6, 3, 19]. In the next
section, we will use warped product to construct an almost Hermitian structure.

3. Construction of Almost Hermitian Structures

Let (M,ϕ,ξ ,η ,g) be an almost contact metric metric manifold and consider the product manifold M×R. We consider the almost complex
structure J on M×R obtained in the following way.

J(X ,a
d
dt

) =

(
ϕ(X)− e−σ aξ ,eσ

η(X)
d
dt

)
, (3.1)

where (X ,a d
dt ) is a vector field on M×R, X ∈ χ(M), t is the coordinate of R, a ∈ C∞(M×R) and σ is a function of t. The warped

Riemannian metric h on M×R given by

h
(
(X ,a

d
dt

),(Y,b
d
dt

)

)
= e2σ g(X ,Y )+ab

is a Hermitian metric on (M×R,J), that is,

h(J(X ,a
d
dt

),J(Y,b
d
dt

)) = h((X ,a
d
dt

),(Y,b
d
dt

)).

The Kaehler form F of (M×R,J,h) is

F((X ,a
d
dt

),(Y,b
d
dt

)) = h(J(X ,a
d
dt

),(Y,b
d
dt

)).

The Levi-Civita covariant derivative ∇̃ of the metric h is evaluated from the Kozsul’s formula as follows:
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∇̃(X ,a d
dt )
(Y,b

d
dt

) =

(
∇XY +

dσ

dt
(aY +bX)

{
X [b]+a

db
dt
− e2σ dσ

dt
g(X ,Y )

}
d
dt

)
. (3.2)

Unless otherwise stated, throughout the paper, we will use the notation X̃ ,Ỹ , Z̃, ... for the vector fields (X ,a d
dt ),(Y,b

d
dt ),(Z,c

d
dt ), ... on the

product manifold, respectively.
By choosing (Y,b d

dt ) = (ξ ,0 d
dt ) in (3.2), one can see that, if ξ is a parallel vector field, then (ξ ,0) need not be parallel.

In [6], it is proved that for a D-homothetic bi-warping, if the integral curves of ξ are geodesics (i.e. dη(ξ ,X) = 0 for all vector fields X),
then ξ̃ = (ξ ,0) is Killing if and only if ξ is Killing. In warped product case, the integral curves of ξ need not be geodesics. If ξ is a Killing
vector field, then (3.2) implies that ξ̃ = (ξ ,0) is a Killing vector field.
In addition the vector field Ỹ = (0, d

dt ) satisfies the property h(∇̃X̃Ỹ , Z̃) = h(∇̃Z̃Ỹ , X̃).
Now we evaluate the Riemannian curvature tensor R̃ of the product manifold in terms of the curvature tensor R of the almost contact metric
manifold. For curvature properties of warped products, see for example [9]. Note that in our case, we consider the warped product of R with
an almost contact metric manifold.

R̃(X̃ ,Ỹ )Z̃ =

(
R(X ,Y )Z +

(
(

dσ

dt
)2c+ c

d2σ

dt2

)
(aY −bX) − e2σ (

dσ

dt
)2 (g(Y,Z)X−g(X ,Z)Y ) ,

{
e2σ ((

dσ

dt
)2 +

d2σ

dt2 )g(−aY +bX ,Z)
}

d
dt

)
.

To calculate the Ricci curvature Q̃ of the product manifold, we use that for any local orthonormal frame {ei,ξ} of the almost contact metric
manifold M, the set

{ẽ1, . . . , ẽ2n+2}= {e−σ (e1,0), . . . ,e−σ (e2n,0),e−σ (ξ ,0),(0,
d
dt

)}

is a local h-orthonormal frame of M×R. Then since

Q̃(X̃ ,Ỹ ) =
2n+2

∑
i=1

h(R̃(ẽi, X̃)Ỹ , ẽi),

the Ricci curvature Q̃ of the product manifold is

Q̃(X̃ ,Ỹ ) = Q(X ,Y )− (2n+1)ab
{
(

dσ

dt
)2 +

d2σ

dt2

}
− e2σ g(X ,Y )

{
(2n+1)(

dσ

dt
)2 +

d2σ

dt2

}
, (3.3)

where Q is the Ricci curvature of the almost contact metric manifold.
It is known that a warped product N× f M of a 1-dimensional manifold N and an (n-1)-dimensional Einstein manifold M, where n≤ 4 is
quasi-Einstein (that is, rank(Ric−λg)≤ 1) [9]. In our case, if N = R and M is an almost contact metric manifold, it is possible to obtain
Einstein almost-Hermitian manifolds from Einstein almost contact metric manifolds by choosing the function σ appropriately.

Theorem 3.1. Let (M,ϕ,ξ ,η ,g) be an Einstein almost contact metric manifold with Einstein constant λ . If the function σ satisfies the
differential equation

− λ

2n
= e2σ d2σ

dt2 , (3.4)

then the almost-Hermitian manifold M×R is also Einstein.

Proof. Let (M,ϕ,ξ ,η ,g) be Einstein with Einstein constant λ , that is
Q(X ,Y ) = λg(X ,Y ). To obtain an Einstein product manifold, from (3.3), the equation

Q̃(X̃ ,Ỹ ) = g(X ,Y )
{

λ − e2σ (2n+1)(
dσ

dt
)2− e2σ d2σ

dt2

}
− (2n+1)ab

{
(

dσ

dt
)2 +

d2σ

dt2

}
= νh(X̃ ,Ỹ )

= ν

(
e2σ g(X ,Y )+ab

)
should be satisfied for a constant ν and for all vector fields X̃ ,Ỹ . In particular, for any X̃ ,Ỹ such that a = b = 0, we get

νe2σ = λ − e2σ (2n+1)(
dσ

dt
)2− e2σ d2σ

dt2 . (3.5)

On the other hand if X̃ = Ỹ = (0, d
dt ), that is, if X = Y = 0 and a = b = 1, we obtain

ν =−(2n+1)
{
(

dσ

dt
)2 +

d2σ

dt2

}
. (3.6)

Comparing (3.5) and (3.6), we have

ν = e−2σ
λ − (2n+1)(

dσ

dt
)2− d2σ

dt2 =−(2n+1)
{
(

dσ

dt
)2 +

d2σ

dt2

}
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and thus

λ

2n
+ e2σ d2σ

dt2 = 0.

If the function σ is chosen so that − λ

2n
= e2σ d2σ

dt2 , then it can be seen that

Q̃(X̃ ,Ỹ ) = νh(X̃ ,Ỹ )

for all vector fields X̃ ,Ỹ on the product manifold.

Note that the differential equation (3.4) has the solution

σ(t) = ln

(√
2c(1− cosh(2

√
k1t +

√
k1k2))

2
√

k1

)
,

where k1 > 0, k2 are constants and c =− λ

2n and if λ > 0, then σ is defined for all real numbers t.
It is known that any 3-Sasakian manifold M is Einstein with positive Einstein constant [12] and scalar curvature s = 42 [1]. By Theorem 3.1,
M×R is also Einstein.
The scalar curvature s̃ of the product manifold is

s̃ = e−2σ s− (2n+1)(2n+2)(
dσ

dt
)2−2(2n+1)

d2σ

dt2 (3.7)

from (3.3). The equation (3.7) implies

Proposition 3.1. Let (M,ϕ,ξ ,η ,g) be an almost contact metric manifold with scalar curvature s = 0. Then the scalar curvature of the
product manifold is nonzero for a nonconstant function σ .

Proof. Let s = 0. By equation (3.7), s̃ = 0 if and only if the function σ satisfies

(
dσ

dt
)2 =− 1

n+1
d2σ

dt2 .

If σ is nonconstant, the solution of this differential equation is

σ(t) =
1

n+1
ln
(

1
n+1

k1 + t
)
+ k2

for constants k1, k2. Since σ is not defined for all real numbers, there can not be obtained a function defined for all real numbers such that
the scalar curvature of the product manifold is zero.

Now we study the relations between some classes of almost-Hermitian manifolds and almost contact metric manifolds. For this we evaluate
the covariant derivative of the almost complex structure J by (3.2) and (3.1).(

∇̃(X ,a d
dt )

J
)
(Y,b

d
dt

) =

(
(∇X ϕ)(Y )−be−σ

∇X ξ −b
dσ

dt
ϕ(X) + eσ dσ

dt
(η(Y )X−g(X ,Y )ξ ),

{
eσ (∇X η)(Y )− e2σ dσ

dt
g(X ,ϕ(Y ))

}
d
dt

)
.

Then the covariant derivative of the Kaehler form F is

β (X̃ ,Ỹ , Z̃) = (∇̃X̃ F)
(
Ỹ , Z̃

)
= h

(
(∇̃X̃ J)(Ỹ ), Z̃

)
(3.8)

= e2σ
α(X ,Y,Z)+ eσ (c(∇X η)(Y )−b(∇X η)(Z))+ e2σ dσ

dt
(cg(ϕ(X),Y )−bg(ϕ(X),Z))+ e3σ dσ

dt
(η(Y )g(X ,Z)−η(Z)g(X ,Y )) .

Also the co-derivative of the Kaehler form is

δF(X̃) =− f (X)+ eσ dσ

dt
2nη(X)−ae−σ f ∗(ξ ). (3.9)

It is known that the almost contact structure is Sasakian if and only if (M×R,J,h0) is Kaehlerian according to construction in [13]. In
addition, in [6], D-homothetic bi-warped metric g̃ = dt2 + f 2g+ f 2(h2−1)η⊗η is studied on R×M, where M is an almost contact metric
manifold and it is proved that if f f

′ 6= 0, then M is Sasakian if and only if R×M is Kaehlerian. Our next two results show that for warped
product if M is Sasakian, then the product manifold need not be Kaehlerian. Conversely if M×R is Kaehlerian, then M can be γ-Sasakian
depending on σ .

Theorem 3.2. If the product manifold M×R is Kaehlerian (trivial class) and eσ dσ

dt =
f (ξ )
2n , then the almost contact metric manifold M is

in F2.

Proof. If M×R is Kaehlerian, then β = 0. Replacing X̃ = (X ,0), Ỹ = (Y,0), Z̃ = (Z,0) in (3.8) implies

α(X ,Y,Z) = eσ dσ

dt
{η(Y )g(X ,Z)−η(Z)g(X ,Y )}

and since eσ dσ

dt =
f (ξ )
2n , M satisfies the defining relation (2.7) of F2.
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The converse also holds depending on σ .

Theorem 3.3. Let (M,ϕ,ξ ,η ,g) be in F2. If eσ dσ

dt =
f (ξ )
2n , then M×R is Kaehlerian (trivial class). If eσ dσ

dt 6=
f (ξ )
2n , then M×R is in W4.

Proof. Since α satisfies the defining relation (2.7), from (3.8), we get

β (X̃ ,Ỹ , Z̃) = e2σ (
f (ξ )
2n
− eσ dσ

dt
)(η(Z)g(X ,Y )−η(Y )g(X ,Z)). (3.10)

Then it is clear that if eσ dσ

dt =
f (ξ )
2n , then M×R is Kaehlerian. Otherwise, if eσ dσ

dt 6=
f (ξ )
2n , it can be checked that (3.10) satisfies the defining

relation (2.8) of W4.

Note that in [10], the warped product metric g̃ = f 2g+dt2 is considered on M×R, where M is a γ-Sasakian manifold and it is proved that
the product manifold is locally conformal Kaehler (a subclass of W4). The complex structure J on the product manifold in [10] satisfies
J(0, d

dt ) = (ξ ,0) and J(ξ ,0) =−(0, d
dt ). In our case, J(0, d

dt ) =−(e
−σ ξ ,0) and J(ξ ,0) = (0,eσ d

dt ).

It is known that S2n+1 has a Sasakian (1-Sasakian) structure [18]. Since eσ dσ

dt = 1 =
f (ξ )
2n , then σ(t) = ln(k1 + t) for k1 constant. Since σ(t)

is not defined for all real numbers, S2n+1×R is not Kaehlerian for any function σ . If for example σ(t) = t, then S2n+1×R is in W4 by
Theorem 3.3.
Let (M,ϕ,ξ ,η ,g) be in F3, that is, γ-Kenmotsu. It is known that if γη is closed, then the warped product manifold is locally conformal
Kaehler [3]. We also have the following.

Theorem 3.4. Let (M,ϕ,ξ ,η ,g) be in F3, that is, γ-Kenmotsu. Then M×R is in W4 for all functions σ .

Corollary 3.5. Let (M,ϕ,ξ ,η ,g) be in F2⊕F3, that is, M is trans-Sasakian. Then M×R is in W4.

The converse also holds.

Theorem 3.6. If the product manifold M×R is in W4, then M is in F2⊕F3.

Proof. Let M×R be in W4. Then the defining relation (2.8) of W4 holds. For X̃ = (0, d
dt ), Ỹ = (0, d

dt ), Z̃ = (Z,0), we evaluate the left and
right handsides of (2.8) by using (3.2) and we obtain

f (Z) = η(Z) f (ξ ) (3.11)

and thus

f (ϕ(Z)) = 0. (3.12)

Doing similar calculations for X̃ = (X ,0), Ỹ = (Y,0), Z̃ = (Z,0) and using (3.11) and (3.12) yields

α(X ,Y,Z) =
f (ξ )
2n
{η(Z)g(X ,Y )−η(Y )g(X ,Z)}− f ∗(ξ )

2n
{η(Z)g(X ,ϕY )−η(Y )g(X ,ϕZ)},

which is the defining relation of the class F2⊕F3.

The results for trans-Sasakian manifolds are in accordance with [13]. However warped product gives an almost-Hermitian manifold for any
function σ defined on R.
It is known that an almost contact metric structure is nearly-K-cosymplectic if and only if the almost Hermitian structure (2.11) is W1 (nearly
Kaehlerian) [13]. For the almost Hermitian structure (3.1), we have

Theorem 3.7. Let (M,ϕ,ξ ,η ,g) be in F11, that is, M is nearly-K-cosymplectic. Then M×R is in W1⊕W4 and not in a subclass.

Proof. From (3.8), it can be seen that β satisfies the defining relation (2.9) of W1⊕W4. In addition β does not satisfy defining relation of
any subclass of W1⊕W4.

Consider S6×R with its nearly-K-cosymplectic structure [13]. Then Theorem 3.7 implies that (S6×R)×R is in W1⊕W4 for any function
σ . Thus infinitely many almost-Hermitian manifolds of class W1⊕W4 can be obtained for any choice of σ .

Theorem 3.8. Let (M,ϕ,ξ ,η ,g) be in F1. Then M×R is in the widest class W and not in a subclass.

Proof. Let (M,ϕ,ξ ,η ,g) be in F1. Then the defining relation (2.6) is satisfied. For any orthonormal frame {e1, . . . ,e2n,ξ}, f (X) =

∑α(ei,ei,X)= 0 and f ∗(ξ )=∑α(ei,ϕ(ei),ξ )= 0 by (2.6). Then δF(X̃)= eσ dσ

dt 2nη(X) from (3.9). In particular, δF(ξ ,0)= eσ dσ

dt 2n 6= 0
for a nonconstant function σ . Thus M×R /∈W1⊕W2⊕W3 and this implies that M×R is not in any subclass of W1⊕W2⊕W3.
Assume that M×R ∈W1⊕W3⊕W4. Then from (2.10),

β (X̃ , X̃ ,Ỹ ) = β (J(X̃),J(X̃),Ỹ ) (3.13)

for all vector fields X̃ ,Ỹ . We evaluate β (X̃ , X̃ ,Ỹ ) from (3.8). In particular, for X̃ = (ξ ,0), Ỹ = (Y,0), we get β (X̃ , X̃ ,Ỹ ) = e2σ α(ξ ,ξ ,Y )
and β (J(X̃),J(X̃),Ỹ ) = 0, which yields α(ξ ,ξ ,Y ) = 0 from (3.13). Since α(ξ ,ξ ,Y ) 6= 0 in F1, this is a contradiction. Thus M×R /∈
W1⊕W3⊕W4 and M×R is not in any subclass of W1⊕W3⊕W4.
Similarly it can be seen that M×R /∈W1⊕W2⊕W4 and M×R /∈W2⊕W3⊕W4. As a result M×R is in the widest class W .
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Example 3.9. Let M = R3 with coordinates (x,y,z). Consider linearly independent vectors

e1 = ez δ

δx
, e2 = e−z δ

δy
, e3 =

δ

δ z
,

which are g-orthonormal with respect to the metric

g = e−2zdx⊗dx+ e2zdy⊗dy+dz⊗dz.

Nonzero brackets and nonzero covariant derivatives are

[e1,e2] = 0, [e1,e3] =−e1, [e2,e3] = e2,

∇e1 e1 = e3, ∇e1 e3 =−e1, ∇e2 e2 =−e3, ∇e2 e3 = e2.

Let ξ = e1, η the metric dual of ξ and ϕ be the endomorphism defined by

ϕ(e1) = 0, ϕ(e2) = e3, ϕ(e3) =−e2.

It can be checked that (ϕ,ξ ,η ,g) is a nontrivial ((∇e1 Φ)(e1,e2) 6= 0) almost contact metric structure on M which satisfies the defining
relation (2.6) of F1. Then by Theorem 3.8, M×R is a 4-dimensional almost-Hermitian manifold which is in the widest class W for any
non-constant function σ .

In a similar manner it can be seen that if M is in F8, then M×R is in W and not in a subclass. Thus infinitely many almost-Hermitian
manifolds in the widest class can be obtained from almost contact metric ones by using a function σ defined on R.

4. Conclusion

In this paper, almost Hermitian manifolds from the product of almost contact metric manifolds with R by warped product are constructed.
Depending on the function of warped product, the curvature properties of the almost Hermitian manifolds obtained in this way. In particular,
Einstein almost Hermitian manifolds are considered. In addition, the relationships between some classes of almost contact metric manifolds
and almost Hermitian manifolds are investigated.
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[14] Özdemir, N., Aktay, Ş., Solgun, M. Almost Hermitian Structures on the Products of Two Almost Contact Metric Manifolds. Differ Geom Dyn Syst. 18,
102-109 (2016).
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