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Abstract: Torrefaction is a type of thermo-chemical pretreatment process to enhance 

energy density of lignocellulosic fuels. For a torrefaction process, a key challenge is to 

develop efficient thermal conversion technologies for torrefied fuels which can compete 

with fossil fuels. The calculation of chemical exergy is an essential step for designing 

efficient thermal conversion systems. However, there is a few correlations to predict the 

chemical exergy of solid fuels has been published so far.  This study deals with a new 

method to characterize the chemical exergy of different kinds of torrefied lignocellulosic 

fuels by using Bayesian trained artificial neural network (ANN). The proposed model based 

on proximate analysis and higher heating values of torrefied fuels. Use of the artificial 

neural network method is encouraged to reduce variance in model results. The results 

indicate that the proposed model offers a high degree of correlation (R2=0,9999) and its 

robustness and capability to compute the chemical exergy of any torrefied lignocellulosic 

fuels from its proximate analysis and heating value. 
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INTRODUCTION 

 

Environmental and economic concerns of fuel supply have been motivating the torrefied 

fuel for thermal conversion systems. Torrefaction is a thermochemical process in which 

raw biomass is heated under atmospheric pressure, at a temperature range of 200–300 

°C, in the absence of oxygen or under low oxygen concentrations (1). An efficient 

technology for torrefaction process which can produce torrefied fuel to substitute fossil 

fuels is a key challenge. Exergy analysis is commonly accepted as the most natural way to 

evaluate the performance of different processes and calculation of chemical exergy is the 

first step of exergy evolution (2). However, there is a few correlations to predict the 

chemical exergy of solid fuels have been published so far. These correlations are based on 

ultimate analysis of fuels. However, the ultimate analysis requires very expensive 

equipment and highly trained analysts. The proximate analysis on the other hand only 

requires standard laboratory equipment and can be run by any competent scientist or 

engineer (3). 

 

Artificial neural network is an effective alternative of linear and nonlinear correlations in 

that they can represent highly complex and nonlinear processes. Furthermore, they are 

quite flexible and robust against input noise and, once developed and their coefficients 

determined, they can provide a rapid response for a new input (4). 

 

In this study, a new artificial neural network model was developed to evaluate the chemical 

exergy of torrefied biomass fuel, which is based on higher heating value and torrefied fuel 

content obtained by proximate analysis.  

 

MATERIAL AND METHODS 

 

Samples 

 

The data of 116 torrefied biomass samples with their proximate and ultimate analysis were 

taken from the study of Daya Ram Nhuchhen (5), who acquired the data from previous 

studies in this field (6 - 16). In order to develop a predictive model, the dataset used in 

this study was divided into two parts: the first part for training the model and the second 

for assessing the estimation capability of the obtained neural network architecture (called 

the “testing set”). All 116 torrefied biomass samples as well as a split of the samples into 

a training set with 97 samples and a testing set with 19 samples were randomly selected 
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by using the MATLAB software. Description of torrefied biomass samples was given Table 

1. 

Table 1. Torrefied Biomass Samples (5). 
 

Minimum (%) Maximum (%) 

Oxygen (% DAF*) 7,23 44,35 

Nitrogen (%DAF) 0,00 2,65 

Hydrogen (%DAF) 3,24 7,50 

Carbon (%DAF)  49,25 88,50 

Total sulfur (%DAF)   0,00   0,26 

VM (%DAF) 15,71 87,37 

FC  (%DAF) 12,67 84,29 

HHV (MJ/kg) 16,63 33,30 

*DAF = Dry Ash free VM: Volatile Matter HHV: Higher Heating Value 

 

In order to validate the artificial neural network model, un-torrefied biomass samples from 

the study of Chun-Yang Yin (17) also were tested to measure the extensity of the proposed 

exergy model in this study. Description of biomass samples used in this study for 23 

samples was given Table 2. 

 

Table 2. Biomass Samples (17). 
 

Minimum (%) Maximum (%) 

Oxygen (% DAF*) 33,02 48,99 

Nitrogen (%DAF) 0,30 5,49 

Hydrogen (%DAF) 4,49 7,34 

Carbon (%DAF) 42,26 56,73 

Total sulfur (%DAF) 0,02 0,85 

VM (%DAF) 71,38 87,16 

FC  (%DAF) 12,84 28,57 

HHV (MJ/kg) 15,09 21,95 

*DAF = Dry Ash free VM: Volatile Matter HHV: Higher Heating Value 

 

Artificial Neural Networks 

 

An ANN is a massively parallel-distributed information processing system that simulates 

the functions of neurons using artificial neurons inspired from the studies of the brain and 

the nervous system (18). An artificial neuron is the fundamental processing element of 

ANN and can be implemented in many different ways. The general architecture of an 

artificial neuron is shown in Figure 1 (18,19). 
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Figure 1.  Architecture of an artificial neuron  

 

In this figure, input from the output (outi) of the preceding layer neuron is multiplied by 

its weight value (Wji). Then, results of these multiplications are summed with bias value 

(Bj). The initial weights and biases are usually assigned randomly. The output of a neuron, 

which is in Figure 1, can be described by Equation 1. 

 

                                             𝑜𝑢𝑡𝑗 = ℎ(∑ (𝑊)
𝑗𝑖
𝑋𝑖 + 𝐵𝑗

𝑁
𝑖=1 )                         (Eq. 1) 

 

where h is the activation (transfer) function. The activation function can be found in 

different forms, either linear or non-linear. In this work, logarithmic sigmoid, h(x), function 

was used an activation function which defines as: 

 

                                                h(x)= 1/(1+exp(-x))                                        (Eq. 2) 

Bayesian methods are the ideal methods for solving learning problems of neural network 

(20), which can automatically select the regularization parameters and integrate the 

properties of high convergence speed of traditional BP and prior information of Bayesian 

statistics (21). The Bayesian Regularization method changes the error performance 

function by attaching a standard deviation of the weights and the thresholds (22) and can 

be expressed by (23): 

  

             F=βED+αEw                                              (Eq. 3) 

 

where α and β are the regularization parameters. Using (Equation 3) to minimize the 

performance error, enables the network to possess less weights and thresholds. This is 
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equivalent to reducing the size of the network in such a way that it can respond smoothly, 

thus reducing overfitting (23). 

 

ANN Model 

The exergy value of a solid fuel is related to higher heating values and proximate analysis. 

Therefore, the correlation between the exergy values of torrefied fuels and their proximate 

analysis with higher heating values has been examined to develop an artificial neural 

network model. There are several classes of neural network architectures, classified 

according to a number of layers, neurons, and their interconnections. In this paper, we 

adopt a single-output three-layered BP neural network with Bayesian regularization to 

predict the dry ash free based chemical exergy (𝑒𝐷𝐴𝐹
𝐶𝐻 ) of the torrefied fuels. Figure 2 

presents the neural network structure of proposed model. 

 

 
 

Figure 2. ANN Model 

 

Validation of the correlations 

 

In this study, Coefficient of determination (R2) is employed to assess correlations for the 

chemical exergy of torrefied biomass, which is computed as follows: 

 

                                                       R2=1 −
∑ (𝑐𝑖−𝑒𝑖)

2𝑛
𝑖

∑ (𝑐𝑖−𝑐)̅
2𝑛

𝑖

                                            (Eq. 4) 

 

Where e and c denote the estimated and calculated values, respectively. 𝑐̅ is the calculated 

average value. R2 is used as a universal parameter to measure the accuracy of any model. 

A higher R2 value means a better estimation and fitting. 

 

RESULTS AND DISCUSSIONS 

 

In order to use an artificial neural network model, one needs first to train the proposed 

model with training dataset. Figure 3 showed the quality of fit between the chemical exergy 

values and predicted chemical exergy values of torrefied fuels for training dataset. 
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Figure 3. Training dataset 

 

The artificial neural network model was also tested for reliability using the testing dataset 

(Figure 4). 

 

 
Figure 4. Test dataset 

 

In this study, a high degree of correlation (R2 = 0,9999) between actual and predicted 

chemical exergy was observed, as shown in Figure 4, for test datasets of the torrefied 

lignocellulosic fuels. It can thus be apprehensible that the ANN model used in this study 

possesses good accuracy and generalization performance.    
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To ensure the capability and predictive ability of the model, biomass fuel dataset also were 

used for the robustness of the proposed model. Figure 5 shows plots of the chemical exergy 

values and corresponding ones estimated by the model in this study. 

 

CONCLUSIONS 
 

A model for chemical exergy prediction of lignocellulosic fuels was developed using artificial 

neural networks. The high R2 values and the good fit in testing dataset lead to the 

conclusion that the artificial neural network model provides accurate predictions of the 

chemical exergy for a variety of torrefied lignocellulosic fuels. The major advantage of this 

model is its capability to compute chemical exergy of any torrefied fuels simply from its 

proximate analysis instead of ultimate analysis. Thereby provides a useful tool for exergy 

analysis of thermal conversion processes. 
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