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Abstract

In this article, we introduced higher order Lucas hybrid quaternions with the help of higher order Lucas numbers. We also examined some
algebraic properties of these quaternions. By obtaining the recurrence relation, we found the Binet formula, the generating function and the
exponential generating function. Finally, we calculated the Vajda identity for the higher order Lucas hybrid quaternions and obtained the
Catalan, Cassini and d’Ocagne identities with the help of this identity.
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1. Introduction

The real quaternions were first described by Irish mathematician William Rowan Hamilton in 1843. Hamilton [1] introduced the set of
quaternions which can be represented as

H = {q = q0 + iq1 + j q2 + k q3 | q0, q1, q2, q3 ∈ R} (1.1)

where

i2 = j2 = k2 =−1 , i j =− j i = k , j k =−k j = i , k i =−i k = j . (1.2)

In 1963, Horadam [2] defined Fibonacci and Lucas quaternions as follows:

Qn = Fn +Fn+1 i+Fn+2 j+Fn+3 k , (1.3)

Kn = Ln +Ln+1 i+Ln+2 j+Ln+3 k , (1.4)

respectively. In 2012, Halıcı [3] has derived generating functions and some important identities of these quaternions. Other studies on the
generalizations of Fibonacci and Lucas quaternions are available in references[4, 5, 6, 7, 8, 9, 10].
The higher order Fibonacci numbers defined by Özvatan [11] in 2018 as follows:

F(s)
n =

Fns

Fs
=

(αs)n− (β s)n

αs−β s (1.5)

Since Fns is divisible by Fs , the ratio Fns
Fs

is an integer. So, all higher order Fibonacci numbers are integer. Note that for s = 1 , higher order

Fibonacci number F(1)
n is the ordinary Fibonacci numbers.

In 2021, the higher order Fibonacci quaternions defined by Kızılateş [12] as follows:

Q(s)
n = F(s)

n +F(s)
n+1 i+F(s)

n+2 j+F(s)
n+3 k. (1.6)

In 2022, the higher order Jacobsthal-Lucas quaternions defined by Uysal et al. [13] as follows:

j(s)n = j(s)n + j(s)n+1 i+ j(s)n+2 j+ j(s)n+3 k. (1.7)
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x 1 i ε h
1 1 i ε h
i i −1 1−h ε + i
ε ε 1+h 0 −ε

h h −ε− i ε 1

Table 1: Multiplication scheme of hybrid numbers [15]

In 2023, the higher order Jacobsthal quaternions defined by Özkan et al. [14] as follows:

J(s)n = J(s)n + J(s)n+1 i+ J(s)n+2 j+ J(s)n+3 k. (1.8)

The hybrid number system can be accepted as a generalization of the complex, dual and hyperbolic number systems. In 2018, firstly, set of
hybrid numbers was introduced by Özdemir [15] as follows:

K={a+bi + cε +d h |a,b,c,d ∈ R, i2 =−1 ,ε2 = 0 ,h2 = 1},

where units satisfy the rules

ih =−hi = ε + i .

The set K of hybrid numbers forms non-commutative ring with respect to the addition and multiplication operations. Accordingly, we will
use table above (Table 1) for the multiplication of any two hybrid numbers. This table shows us that the multiplication operation in the
hybrid numbers is not commutative. But it has the property of associativity.
There are several studies on hybrid quaternions for example Horadam hyrid [16], Leonardo hybrid [17].

The aim of this work is to present new quaternions whose components are higher order Lucas hybrid numbers and derive some al-
gebraic properties of these quaternions. In addition, Binet’s Formula, generating function, exponential generating function, Vajda’s identity,
Catalan’s identity, the d’Ocagne’s identity, Cassini’s identity for higher order Lucas hybrid quaternions are given.

2. Higher order Lucas numbers

Definition 2.1. The higher order Leonardo numbers described by

L(s)
n =

Lns

Ls
=

αns +β ns

αs +β s . (2.1)

Since Lns is divisible by Ls , the ratio Lns
Ls

is an integer. So, all higher order Lucas numbers are integer. Note that for s = 1 , higher order

Lucas number L(1)
n is the ordinary Lucas numbers.

Theorem 2.2. The higher order Lucas numbers provide the following identity.

L(s)
n+1 = Ls L(s)

n − (−1)s L(s)
n−1 , (2.2)

where (α β )s = (−1)s .

Proof.

L(s)
n+1 =

(αs)(n+1)+(β s)(n+1)

αs+β s

= α(ns+s)+α(s)β (ns)+β (s)α(ns)−α(ns)β (s)−β (ns)α(s)+β (ns+s)

αs+β s

= (αs +β s)(α(ns)+β (ns)

αs+β s )− (αβ )s (α(ns−s)+β (ns−s)

αs+β s )

= Ls L(s)
n − (−1)s L(s)

n−1 .

Thus, the proof is completed.
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3. Higher order Lucas hybrid quaternions

In this section, we we define the higher order Lucas hybrid quaternions and derive some algebraic properties of these quaternions.

Theorem 3.1. The higher order Lucas hybrid quaternions is denoted by Q(s)
n and defined as follows:

Q(s)
n = L(s)

n +L(s)
n+1 i+L(s)

n+2 ε +L(s)
n+3 h. (3.1)

where {i,ε,h} are hybrid quaternion units and L(s)
n is higher order Lucas numbers. The real and imaginary parts of the higher order Lucas

hybrid quaternions in Eq.(3.1) are as follows:

Re(Q(s)
n ) = L(s)

n .

and

Im(Q(s)
n ) = u = L(s)

n+1 i+L(s)
n+2 ε +Le(s)n+3 h .

Thus, we have

Q(s)
n = L(s)

n +u . (3.2)

The conjugate of the higher order Lucas hybrid quaternion Q(s)
n is denoted by Q(s)∗

n as

Q(s)∗
n = L(s)

n −u . (3.3)

Theorem 3.2. For the higher order Lucas hybrid quaternions, we have

Q(s)
n +Q(s)∗

n = 2L(s)
n . (3.4)

Proof.

Q(s)
n +Q(s)∗

n = L(s)
n +L(s)

n+1 i+L(s)
n+2 ε +L(s)

n+3 h+(L(s)
n −L(s)

n+1 i−L(s)
n+2 ε−L(s)

n+3 h)

= 2L(s)
n .

Thus, the proof is completed.

Theorem 3.3. For the higher order Lucas hybrid quaternions, we have

Q(s)
n .Q(s)∗

n = (L(s)
n )2 +(L(s)

n+1)
2− (L(s)

n+3)
2−2L(s)

n+1 L(s)
n+2 . (3.5)

Proof.

Q(s)
n .Q(s)∗

n = (L(s)
n +L(s)

n+1 i+L(s)
n+2 ε +L(s)

n+3 h).(L(s)
n −L(s)

n+1 i−L(s)
n+2 ε−L(s)

n+3 h)

= (L(s)
n )2 +(L(s)

n+1)
2− (L(s)

n+3)
2−2L(s)

n+1 L(s)
n+2 .

Theorem 3.4. For the higher order Leonardo hybrid quaternions, we have

(Q(s)
n )2 =−Q(s)

n .Q(s)∗
n +2L(s)

n .Q(s)
n . (3.6)

Proof.

(Q(s)
n )2 = L(s)

n )2− (L(s)
n+1)

2 +(L(s)
n+3)

2 +L(s)
n (L(s)

n+1 i+L(s)
n+2 ε +L(s)

n+1 h)+2L(s)
n+1 L(s)

n+2

= −(L(s)
n )2− (L(s)

n+1)
2 +(L(s)

n+3)
2 +2L(s)

n (L(s)
n +L(s)

n+1 i+L(s)
n+2 ε +L(s)

n+1 h)+2L(s)
n+1 L(s)

n+2

= −Q(s)
n .Q(s)∗

n +2L(s)
n .Q(s)

n .

where Eq.(3.5) is used.

Theorem 3.5. (Binet’s Formula) The Binet formula of the higher order Lucas hybrid quaternions as follows:

Q(s)
n =

α̂ (αs)n + β̂ (β s)n

αs +β s (3.7)

where α̂ = (1+αs i+α2sε +α3s h) and β̂ = (1+β s i+β 2sε +β 3s h) .
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Proof.

Q(s)
n = L(s)

n +L(s)
n+1 i+L(s)

n+2 ε +L(s)
n+3 h

= (
(αs)n+(β s)n

αs+β s )+(
(αs)(n+1)+(β s)(n+1)

αs+β s ) i+(
(αs)(n+2)+(β s)(n+2)

αs+β s )ε +(
(αs)(n+3)+(β s)(n+3)

αs+β s )h

= 1
αs+β s {(αs)n (1+αs i+α2sε +α3s h)+(β s)n (1+β s i+β 2sε +β 3s h)}

=
α̂ (αs)n+β̂ (β s)n

αs+β s .

Thus, the proof is completed.

Theorem 3.6. There is the following recurrence relation for higher order Lucas hybrid quaternions

Q(s)
n+1 = Ls Q(s)

n +(−1)s+1 Q(s)
n−1 . (3.8)

Proof.

Q(s)
n+1 =

α̂(αs)(n+1)+β̂ (β s)(n+1)

αs+β s

= α̂α(sn+s)+β̂β (sn+s)+β̂β (sn)αs+α̂α(sn)β s−β̂β (sn)αs−α̂α(sn)β s

αs+β s

= (αs +β s)( α̂α(sn)+β̂β (sn)

αs+β s )− (αβ )s ( α̂α(sn−s)+β̂ β (sn−s)

αs+β s )

= (αs +β s)Q(s)
n − (−1)s Q(s)

n−1

= Ls (Q
(s)
n )− (−1)s Q(s)

n−1 .

Thus, the proof is completed.

Theorem 3.7. By extending n and s to negative integer numbers for higher order Lucas hybrid quaternions Qs
n; the following identities can

be derived as

Q(s)
−n = (−1)(−sn) α̂(β s)n + β̂ (αs)n

αs +β s , (3.9)

Q(−s)
−n = (−1)s Q(s)

n , (3.10)

Q(−s)
n = (−1)s Q(s)

−n . (3.11)

Proof. By using Eq.(3.7), we have

Q(s)
−n = (

α̂(αs)(−n)+β̂ (β s)(−n)

αs+β s )

= (
α̂

(αs)n +
β̂

(β s)n

αs+β s )

= (
α̂(β s)n+β̂ (αs)n

(αs)n (β s)n(αs+β s)
)

= (−1)−sn α̂(β s)n+β̂ (αs)n

αs+β s .

Q(−s)
−n = (

α̂(α(−s))(−n)+β̂ (β (−s))(−n)

α(−s)+β (−s) )

=
α̂(αs)n+β̂ (β s)n

β s+αs
αs β s

= (−1)s α̂αsn+β̂β sn

αs+β s

= (−1)s Q(s)
n .
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Q(−s)
n = ( α̂α(−sn)+β̂β (−sn)

α−s+β−s )

=
α̂(αs)−n+β̂ (β s)−n

β s+αs
αsβ s

= (−1)s α̂(αs)−n+β̂ (β s)−n

αs+β s

= (−1)s Q(s)
−n .

Lemma 3.8. The following identities hold:

α̂ + β̂ = 2+Ls i+L2sε +L3sh , (3.12)

α̂− β̂ = (αs−β
s) [ i+Ls ε +(L2s +(−1)s)h ] , (3.13)

α̂β
s− β̂α

s = (−1)s(αs−β
s) [(−1)s+1 + ε +(Ls h ] , (3.14)

α̂β
s + β̂α

s = Ls +2(−1)s i+(−1)s Ls ε +(−1)s L2sh , (3.15)

α̂αs− β̂β s = (αs−β s) [1+Ls i+(L2s +(−1)s)ε +(L3s +(−1)s(αs +β s))h ] . (3.16)

where α̂ = 1+αs i+α2sε +α3s h and β̂ = 1+β s i+β 2sε +β 3s h .

Proof. From the definitions of α̂ and β̂ , we have

α̂ + β̂ = (1+αs i+α2sε +α3s h)+(1+β s i+β 2sε +β 3s h)
= 2+(αs +β s) i+(α2s +β 2s)ε +(α3s +β 3s)h
= 2+Ls i+L2sε +L3sh ,

α̂− β̂ = (1+αs i+α2sε +α3s h)− (1+β s i+β 2sε +β 3s h)
= (αs−β s) i+(α2s−β 2s)ε +(α3s−β 3s)h
= (αs−β s)[ i+(αs +β s)ε +(α2s +β 2s +αsβ s)h ]
= (αs−β s)[ i+Ls ε +(L2s +(−1)s)h ] ,

α̂β s− β̂αs = (1+αs i+α2sε +α3s h)β s− (1+β s i+β 2sε +β 3s h)αs

= (β s−αs)+(α2sβ s−β 2sαs)ε +(α3sβ s−β 3sαs)h
= (β s−αs)+(αβ )s (αs−β s)ε +(αβ )s (α2s−β 2s h
= (β s−αs)+(−1)s (αs−β s)ε +(−1)s (α2s−β 2s h
= (αs−β s) [−1+(−1)s ε +(−1)s Ls h ] ,

α̂β s + β̂αs = (1+αs i+α2sε +α3s h)β s +(1+β s i+β 2sε +β 3s h)αs

= (β s +αs)+(α2sβ s +β 2sαs)ε +(α3sβ s +β 3sαs)h
= Ls +2(−1)s i+(−1)s Ls ε +(−1)s L2sh ,

α̂αs− β̂β s = (1+αs i+α2sε +α3s h)αs− (1+β s i+β 2sε +β 3s h)β s

= (αs−β s)+(α2s−β 2s i+(α3s +β 3s,ε +(α4sβ 4s h
= (β s−αs)+(αβ )s (αs−β s)ε +(αβ )s (α2s−β 2s h
= (αs−β s) [1+(αs−β s) i+(α2s +β 2s +αsβ s)ε

+(α3s +β 3s +α2sβ s +αsβ 2s)h
= (αs−β s) [1+Ls i+(L2s +(−1)s)ε

+(L3s +(−1)s(αs +β s))h ] .
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Theorem 3.9. (Generating function) The generating function of the higher order Lucas hybrid quaternions Q(s)
n as follows:

G(s)(x) =
∞

∑
n=0

Q(s)
n xn =

(2+Ls i+L2sε+L3sh)−x [Ls+(−1)s (2 i+Ls ε+L2sh) ]
Ls (1−Ls x+(−1)s x2)

. (3.17)

Proof. By using Eq.(3.7), we have

∞

∑
n=0

Q(s)
n xn =

∞

∑
n=0

(L(s)
n +L(s)

n+1 i+L(s)
n+2 ε +L(s)

n+3 h)xn

= α̂

αs+β s

∞

∑
n=0

(αs)n xn + β̂

αs+β s

∞

∑
n=0

(β s)n xn

= α̂

αs+β s
1

1−αs x +
β̂

αs+β s
1

1−β s x

=
α̂(1−β s x)+β̂ (1−αs x)

(αs+β s)(1−αs x)(1−β s x)

=
α̂+β̂−(α̂ β s+β̂ αs)x

(αs+β s)(1−Ls x+(−1)s x2)

=
(2+Ls i+L2sε+L3sh)−[Ls+(−1)s(2 i+Ls ε+L2sh) ]x

Ls (1−Ls x+(−1)s x2)
.

Theorem 3.10. (Exponential generating function) The exponential generating function of the higher order Lucas hybrid quaternions Q(s)
n as

follows:

∞

∑
n=0

Q(s)
n

xn

n!
=

α̂ eαs x + β̂ eβ s x

αs +β s . (3.18)

Proof.

∞

∑
n=0

Q(s)
n

xn

n! =
∞

∑
n=0

(
α̂(αs)n+β̂ (β s)n

αs+β s ) xn

n!

= α̂

αs+β s (
∞

∑
n=0

(αs)n xn

n! )+ β̂

αs+β s (
∞

∑
n=0

(β s)n xn

n! )

= α̂ eαs x+β̂ eβ s x

αs+β s .

Thus, the proof is completed.

Theorem 3.11. For m,n ∈ Z , the generating function of the higher order Lucas hybrid quaternions Qs
n is

∞

∑
n=0

Q(s)
m+n xn =

(Q(s)
m )+(−1)s+1 Q(s)

m−1 x
1−Ls x+(−1)s x2 . (3.19)

Proof.

∞

∑
n=0

Q(s)
m+n xn =

∞

∑
n=0

(
α̂(αs)(m+n)+β̂ (β s)(m+n)

αs+β s )xn

= 1
αs+β s [ α̂

∞

∑
n=0

(αs)(m+n) xn + β̂
∞

∑
n=0

(β s)(m+n) xn ]

= 1
αs+β s [ α̂(αs)m

∞

∑
n=0

(αs)n xn + β̂ (β s)m
∞

∑
n=0

(β s)n xn ]

= 1
αs+β s [ α̂(αs)m 1

1−αs x + β̂ (β s)m 1
1−β s x ]

= 1
αs+β s [

α̂(αs)m(1−β s x)+β̂ (β s)m(1−αs x)
(1−αs x)(1−β s x) ]

=
α̂(αs)m+β̂ (β s)m

(αs+β s)(1−Ls x+(−1)s x2)
− αs β s ( α̂(αs)(m−1)+β̂ (β s)(m−1) )x

(αs+β s)(1−Ls x+(−1)s x2)

= Q(s)
m

1−Ls x+(−1)s x2)
− (α̂(αs)(m−1)+β̂ (β s)(m−1))x

αs+β s
(−1)s

(1−Ls x+(−1)s x2)

=
(Q(s)

m )
(1−Ls x+(−1)s x2)

− (Q(s)
m−1)(−1)s x

(1−Ls x+(−1)s x2)

=
Q(s)

m +(−1)s+1 Q(s)
m−1 x

1−Ls x+(−1)s x2 .

Thus, the proof is completed.
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4. Some Identities for Higher Order Lucas Hybrid Quaternions

In this section, we derive some identities of higher order Lucas hybrid quaternions. We will give the following Lemma to calculate our next
result.

Lemma 4.1. The following equations hold:

α̂ β̂ = A−∆B , (4.1)

and

β̂ α̂ = A+∆B . (4.2)

where

A = [1+(−1)s Ls +Ls i+L2s ε +L3s h ] ,

B = [(−1)s(Ls i+(Ls−1)ε −h) ,

∆ = (αs−β
s) .

Proof.

α̂ β̂ = (1+αs i+α2sε +α3s h)(1+β s i+β 2sε +β 3s h)

= [1− (αβ )s +(αβ )3s +(αβ )s (β s +αs) ]
+i[αs +β s +(αβ )s (β 2s−α2s)+ ε [α2s +β 2s +(αβ )s(β 2s−α2s−αsβ 2s +α2sβ s) ]+h [α3s +β 3s− (αβ )s(αs−β s) ]

= [1− (−1)s +(−1)3s +(−1)s Ls]+ i [Ls +(−1)s+1 (αs−β s)Ls]+ ε [L2s +(−1)s+1 (αs−β s)(αs +β s)− (αβ )s]
+h [L3s +(−1)s (αs−β s) ]

= [1+(−1)s Ls +Ls i+L2s ε +L3s h ]+ (−1)s+1 (αs−β s) [Ls i+(Ls +1)ε−h ]

= [1+(−1)s Ls +Ls i+L2s ε +L3s h ]−∆{(−1)s [Ls i +(Ls +1)ε −h ]}
= A−∆B .

β̂ α̂ = (1+β s i+β 2sε +β 3s h)(1+αs i+α2sε +α3s h)

= (1−β sαs +β 3sα3s +(αβ )s (αs +β s))
+i(αs +β s +(αβ )s (α2s−β 2s))+ ε (α2s +β 2s +β sα3s−β 2sα3s−β 3sαs +β 3sα2s)+h(α3s +β 3s−β sα2s +β 2sαs)

= (1+(−1)s+1 +(−1)s +(−1)s Ls)+ i [Ls +(−1)s (αs−β s)(αs +β s ]+ ε [L2s +(−1)s (αs−β s)(αs +β s− (−1)s ]
+h(L3s +(−1)s+1 (αs−β s))

= [1+(−1)s Ls +(Ls i+L2s ε +L3s h) ]+(−1)s (αs−β s [Ls i+(Ls +1)ε−h ]

= [1+(−1)s Ls +(Ls i+L2sε +L3s h) ]+∆{(−1)s [Ls i+(Ls +1)ε −h ]}

= A+∆B .

Thus, the proof is completed.

Theorem 4.2. (Vajda’s Identity) For n,m,r ∈ Z, we have

Q(s)
n+m Q(s)

n+r−Q(s)
n Q(s)

n+m+r =−(−1)(sn) ∆2 Fm
(s)(Ls)

−2 (AFr
(s)+BLrs) . (4.3)

Proof.

Q(s)
n+m Q(s)

n+r−Q(s)
n Q(s)

n+m+r = (
α̂(αs)(n+m)+β̂ (β s)(n+m)

αs+β s )(
α̂(αs)(n+r)+β̂ (β s)(n+r)

αs+β s )− (
α̂(αs)(n)+β̂ (β s)(n)

αs+β s )(
α̂(αs)(n+m+r)+β̂ (β s)(n+m+r)

αs+β s )

= 1
(αs+β s)2 [ α̂β̂ (αs)(n+m) (β s)(n+r)− α̂β̂ (αs)(n) (β s)(n+m+r)+ β̂ α̂(β s)(n+m)(αs)(n+r)− β̂ α̂(β s)(n)(αs)(n+m+r) ]

= 1
(αs+β s)2 [ α̂β̂ α(ns) β (ns+rs) ((αs)m− (β s)m)+ β̂ α̂β (ns)α(ns+rs)((β s)m− (αs)m) ]

= 1
(αs+β s)2 [ α̂β̂ (αβ )(ns) (β (rs)((αs)m− (β s)m)− β̂ α̂(αβ )(ns) α(rs)((αs)m− (β s)m)

= 1
(αs+β s)2 [ (−1)(ns) ((αs)m− (β s)m)(α̂β̂ β (rs)− β̂ α̂ α(rs)) ]

=
(−1)(ns) ((αs)m−(β s)m)

(αs+β s)2 [ (A−∆B)β (rs)− (A+∆B)α(rs) ]

= (−1)(sn)∆F(s)
m (Ls)

−2 (−A∆F(s)
r −∆BLrs )

=−(−1)(sn) ∆2 F(s)
m (Ls)

−2 (AF(s)
r +BLrs) .
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where (αs)m− (β s)m = ∆F(s)
m is used.

Thus, the proof is completed.

Now, we have the following identities from the Vajda’s identity:

Corollary 4.3. (Catalan’s identity) For n,r ∈ Z, we obtain

Q(s)
n−r Q(s)

n+r− (Q(s)
n )2 = −(−1)(sn) ∆2 F(s)

−r (Ls)
−2 (AF(s)

r +BLrs) . (4.4)

Proof. For m =−r, we have

Q(s)
n−r Q(s)

n+r− (Q(s)
n )2 = −(−1)(sn) ∆2 F(s)

−r (Ls)
−2 (AF(s)

r +BLrs) .

Now let’s obtain the Catalan identity using the Binet formula:

Q(s)
n−r Q(s)

n+r− (Q(s)
n )2 = (

α̂(αs)(n−r)+β̂ (β s)(n−r)

αs+β s )(
α̂(αs)(n+r)+β̂ (β s)(n+r)

αs+β s )− (
α̂(αs)(n)+β̂ (β s)(n)

αs+β s )(
α̂(αs)(n)+β̂ (β s)(n)

αs+β s )

= 1
(αs+β s)2 [ α̂β̂ (αs)(n−r) (β s)(n+r)− α̂β̂ (αs)(n) (β s)(n)+ β̂ α̂(β s)(n−r)(αs)(n+r)− β̂ α̂(β s)(n)(αs)(n) ]

= 1
(αs+β s)2 (αβ )sn [ α̂β̂ (α(−sr) β (sr)−1)+ β̂ α̂ (β (−sr)α(sr)−1) ]

= (Ls)
−2 (−1)sn (β (sr)−α(sr)) [ α̂β̂

αsr − β̂ α̂

β sr ]

= (Ls)
−2 (−1)sn (−1)(sr) ∆F(s)

−r [
α̂β̂β sr−β̂ α̂

(αβ )sr ]

= (Ls)
−2 (−1)sn ∆F(s)

−r [ (A−∆B)β sr− (A+∆B)αsr ]

= (Ls)
−2 (−1)sn ∆F(s)

−r [−A(αsr−β sr)−∆B(αsr +β sr) ]

= (−1)(sn+1) (Ls)
−2 ∆2 F(s)

−r [AF(s)
r +BLsr ] .

where (αs)r− (β s)r = ∆F(s)
r and (β s)r− (αs)r = (−1)sr∆F(s)

−r is used.
Thus, the proof is completed.

Corollary 4.4. (Cassini’s identity) For n ∈ Z, we obtain

Q(s)
n−1 Q(s)

n+1− (Q(s)
n )2 = −(−1)(sn) ∆2 F(s)

−1 (Ls)
−2 (AF(s)

1 +BLs) . (4.5)

Proof. For r =−m = 1, we have

Q(s)
n−1 Q(s)

n+1− (Q(s)
n )2 = −(−1)(sn) ∆2 F(s)

−1 (Ls)
−2 (AF(s)

1 +BLs) .

Thus, the proof is completed.

Corollary 4.5. (d’Ocagne’s identity) For n ∈ Z, we obtain

Q(s)
k Q(s)

n+1−Q(s)
k+1 Q(s)

n = −(−1)(sn) ∆2 F(s)
k−n(Ls)

−2 (AF(s)
1 +BLs) . (4.6)

Proof. For m+n = k and r = 1, we have

Q(s)
k Q(s)

n+1−Q(s)
k+1 Q(s)

n = −(−1)(sn) ∆2 F(s)
k−n(Ls)

−2 (AF(s)
1 +BLs) .

Thus, the proof is completed.

5. Conclusion

In this paper, we introduced higher order Lucas hybrid quaternions. We proved some propositions for these quaternions. Also, we obtained
the recurrence relation, the Binet formula, the generating function and exponential generating function which are basic concepts in number
sequences for these quaternions. Additionally, we gave the Vajda’s identity, which is important for higher order Lucas hybrid quaternions,
and used this identity to obtain the Catalan’s, Cassini’s and d’Ocagne’s identities.
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