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Abstract  Öz 

Thermal analysis of serrated fins which are consist of annular and plain 
sections are investigated. Serrated fin’s thermal conductivity is assumed 
to change linearly with temperature. Nonlinear differential equations 
are obtained by applying the energy balance equation for both sections 
of the serrated fin and these equations are solved by applying homotopy 
perturbation method. Insulated fin tip, constant fin base temperature 
and common boundary conditions between the interface of two sections 
are considered. Serrated fin radii ratio (𝜀), segment height ratio (𝛿), 
thermo-geometric fin parameter (𝜓) and thermal conductivity 
parameter (𝛽) effecting the thermal performance and temperature 
distribution are investigated. The results showed that the homotopy 
perturbation is a reliable method for the solutions of such nonlinear 
differential equations. A very good agreement with the homotopy 
perturbation method and the numerical finite difference method are 
obtained. It is seen that, serrated fin efficiency lays between annular and 
rectangular fins and increases with the increase of segment height ratio 
and thermal conductivity parameter. Such as, fin efficiency values under 
the condition of 𝜀 = 2, 𝜓1 = 1.0 and 𝛽 = 0 for 𝛿 = 0, 0.5, and 1 are 
0.692, 0.718, and 0.762, respectively. 

 Bu çalışmada, dairesel ve düz kısımlardan oluşan kesikli dairesel 
kanatçıkların ısıl performansları incelenmiştir. Kanatın ısı iletim 
katsayısının lineer olarak sıcaklığa bağlı olduğu kabul edilmiştir. 
Doğrusal olmayan diferansiyel denklemler, kesikli dairesel kanadın her 
iki bölümü için enerji dengesi denklemi uygulanarak elde edilmiş ve bu 
denklemler homotopi pertürbasyon yöntemi uygulanarak çözülmüştür. 
Yalıtılmış kanat ucu, sabit kanat taban sıcaklığı ve iki bölümün ara yüzü 
arasındaki ortak sınır koşulları göz önünde bulundurulmuştur. Isıl 
performansı ve sıcaklık dağılımını etkileyen kesik kanat yarıçap oranı 
(𝜀), kesik kanat yükseklik oranı (𝛿), termo-geometrik kanat 
parametresi (𝜓) ve ısıl iletkenlik parametresi (𝛽) incelenmiştir. 
Sonuçlar, homotopi pertürbasyon yönteminin, bu tür doğrusal olmayan 
diferansiyel denklemlerin çözümleri için güvenilir bir yöntem olduğunu 
göstermiştir. Homotopi pertürbasyon yönteminin sonuçları ile sayısal 
sonlu farklar yönteminin sonuçları arasında çok iyi bir uyum elde 
edilmiştir. Kesikli dairesel kanat veriminin dairesel ve dikdörtgen 
kanatçıklar arasında yer aldığı ve kesik kanat yükseklik oranının 
artmasıyla arttığı görülmektedir. Örneğin 𝜀 = 2, 𝜓1 = 1.0 ve 𝛽 = 0 
durumunda 𝛿 = 0, 0.5 ve 1 için kanat verimi değerleri sırasıyla 0.692, 
0.718 ve 0.762'dir. 

Keywords: Homotopy perturbation method, Serrated fin, Variable 
thermal conductivity. 

 Anahtar kelimeler: Homotopi pertürbasyon yöntemi, Kesikli 
dairesel kanat, Değişken ısıl iletkenlik. 

1 Introduction 

Fins enhance the heat transfer between the solid and ambient 
fluid by increased surface area. Increased heat transfer surface 
areas can also be observed in nature, for example, the large ears 
of African elephants and rabbits, dolphin’s dorsal fins, and 
flukes help to control body temperature by releasing excess 
heat. Heat exchangers have extensively used in the heating and 
cooling applications, for example in air conditioning, space 
heating and waste heat recovery systems, power and industrial 
plants, refrigerators, cooling of electronic devices. Various fin 
geometries such as rectangular, pin, helical, disk type, annular 
or radial plain fins are used in heat exchangers as an extended 
surface. An extensive review on the analysis of heat transfer in 
expanded surfaces has been presented by Kraus et al. [1]. Heat 
exchangers manufactured by using the serrated finned tubes 
are widely used for cooling and heating gases in cross-flow heat 
exchangers. Serrated fin geometry consists of two sections, 
namely, annular and segmented segments. There are many 
advantages to use serrated fined tubes over the other common 
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plain or solid fined tubes [2]. Higher heat transfer convection 
coefficient required less heat transfer area for the same amount 
of heat transfer, better geometry to achieve turbulence regime, 
higher heat transfer, and hence lighter, smaller weight are some 
of the advantages of the serrated fins. An analytical study on the 
efficiency of the serrated fin is firstly performed by Hashizume 
et al [3]. Fin efficiency was derived analytically in terms of 
modified Bessel functions. In their analysis, the side edges of 
the segmented section of the serrated fin are assumed to be 
insulated and a uniform heat transfer coefficient is considered. 
They also performed experiments to determine the effect of 
assumptions. An experimental correction factor was 
determined to obtain actual fin efficiency. 

Fin problems with temperature dependent properties are 
highly nonlinear problems. In most cases, temperature 
dependent thermal conductivity generally is assumed in 
problem formulation. Depending on the variation of 
temperature, the flow of free electrons and the amplitude of 
lattice vibrations change in solids such as metals and alloys. 
Therefore, the thermal conductivity increases or decreases 
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with increasing in the temperature. Exact analytical solutions of 
such nonlinear fin problems are not possible, semi-analytical, 
approximation or numerical methods are used in these cases. 
Adomian decomposition method, variational iteration method, 
homotopy analysis method, homotopy perturbation method, 
variation of parameters method are some of these 
approximation methods. From these methods, homotopy 
perturbation method (HPM) is among the effective methods 
used to solve these type nonlinear differential equations. HPM 
is first proposed by He in 1999. It is a semi-analytical method 
which problem solution is obtained as a power series. 
Advantages of this method over other methods, it is not 
requiring a small parameter. HPM are used to solve many 
different non-linear and linear differential equations or 
problems [4]-[7]. Ganji [8] compared the HPM results with 
numerical and the perturbation methods in some heat transfer 
equations. Two different cases, namely cooling of a lumped 
system and temperature distribution in a thick rectangular fin 
are considered in the analysis. In their analysis, a variable 
specific heat capacity is considered. It is found that there is a 
noticeable difference between the HPM and perturbation 
method results when the effect of the nonlinear term is not 
negligible. Rajabi et al. [9] determined the temperature 
distribution in a lumped system of combined radiation-
convection and a non-linear equation of the steady conduction 
in a slab with variable thermal conductivity by using HPM. The 
obtained results are compared with perturbation method and 
it is seen that nearly the same results were obtained in both 
methods. Hosseini et al. [10] applied homotopy perturbation 
method to obtain temperature distribution within a radiating 
rectangular fin with constant emissivity and variable thermal 
conductivity. Obtained results are compared with the results of 
Adomian decomposition method and a very good agreement is 
found. Chowdhury and Hashim [11] determined the 
temperature distribution of a rectangular fin by using HPM. It 
is considered a power-law temperature dependent surface heat 
flux. Obtained results with six terms are compared to Adomian 
decomposition solution with 13 terms. Domairry and Nadim 
[12] applied homotopy analysis method to solve nonlinear 
differential heat transfer equations. Results from homotopy 
analysis method are compared with the numerical and HPM 
results. Arslantürk [13] proposed a modified fin geometry with 
a change in thickness for better utilization of fin material. 
Temperature distribution inside the fin is estimated by using 
HPM. An optimum geometry has been also found for a given 
volume to maximizes the heat transfer. Ganji et al. [14] analyzed 
the temperature distribution of the annular fin by using HPM. 
Saedodin and Shahbabaei [15] applied HPM to analyze the 
performance of a porous rectangular fin. The dependence of 
temperature distribution on the convection parameter and 
porous parameter are investigated. Roy et al. [16] analyzed the 
heat transfer rates and local temperature distribution in a 
convective radiative fin by using HPM. In their analysis, both 
thermal conductivity and surface emissivity were assumed to 
vary with temperature. Cuce and Cuce [17] determined 
dimensionless temperature distribution, fin effectiveness, and 
efficiency expressions for rectangular porous fin via HPM as a 
function of convection and porosity parameters. It is found that 
porous fin temperature quickly decreases and fin rapidly 
reaches the ambient temperature when the convection and 
porous parameter increases. Arslantürk [18] proposed 
correlation equations for the rectangular profile annular fins. 
Optimization calculation was obtained by solving the nonlinear 
fin equation with the variation of parameters. Venkitesh and 

Mallick [19] studied the thermal characteristics of annular 
porous fins with hyperbolic and rectangular cross sections and 
internal heat generation by using HPM. Heat transfer through 
porous media is modelled by employed Darcy’s model. It is 
found that the annular fin with a hyperbolic cross-sectional 
profile was more efficient than the fin with a uniform cross-
section. 

Within the scope of this study, thermal analyses of the serrated 
fin with temperature dependent of thermal conductivity are 
analyzed by using homotopy perturbation method. 
Dimensionless temperature distribution and fin efficiency are 
determined based on dimensionless parameters, that are 
serrated fin radius ratio, segment height ratio, thermal 
conductivity parameter and thermo-geometric parameter. 
Since serrated fin consists of annular and segmented sections, 
the problem formulation is performed in two steps. Two non-
linear differential equations obtained from problem 
formulation are solved via HPM by defining appropriate 
boundary conditions. After that effects of some dimensionless 
geometric and thermal parameters on the thermal performance 
of fin are investigated. Results obtained for HPM are also 
compared with numerical finite difference results with variable 
thermal parameters and exact solution with constant thermal 
conductivity. Obtained results from HMP is consistent with 
numerical and exact results. It is also observed that 
dimensionless fin parameters have an important effect on the 
thermal performance of fin. The main contribution of this study 
is also to show how to apply the HPM to a system of nonlinear 
differential equations with common boundary condition. 

2 Problem formulation 

Schematics of serrated fin geometry is shown in Figure 1. Since 
serrated fin geometry consists of two sections, namely annular 
and plain sections as seen in Figure 1 (a)-(b), problem 
formulation has been carried out in two parts by considering 
these sections. 

 

(a) 

 

(b) 

Figure 1. Schematics of serrated fin geometry. (a): Perspective 
view and (b): Top view. 
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The following assumptions are made in mathematical model of the 
serrated fin problem: 

 One dimensional, steady-state heat conduction, 

 Constant fin base temperature and thickness, 

 No internal heat generation, 

 Thermal conductivity is linearly dependent on 
temperature, 

 No heat loss edge sides of serrated sections, 

 Constant heat transfer coefficient and surrounding 
temperature, 

 Convection from the fin surface. 

𝑑

𝑑𝑟
(𝑘𝐴𝑐1

𝑑𝑇1

𝑑𝑟
) 𝑑𝑟 − 2ℎ(𝑇1 − 𝑇𝑎)𝑑𝐴𝑠1 = 0,

𝑟𝑜 ≤ 𝑟 ≤ 𝑟1 
(1) 

𝑑

𝑑𝑟
(𝑘𝐴𝑐2

𝑑𝑇2

𝑑𝑟
) 𝑑𝑟 − 2ℎ(𝑇2 − 𝑇𝑎)𝑑𝐴𝑠2 = 0,

𝑟1 ≤ 𝑟 ≤ 𝑟2 
(2) 

and boundary conditions can be expressed as, 

𝑇1(𝑟) = 𝑇𝑏      𝑎𝑡     𝑟 = 𝑟𝑜   

𝑇1(𝑟) = 𝑇2(𝑟)   𝑎𝑛𝑑  
𝑑𝑇1

𝑑𝑟
=

𝑑𝑇2

𝑑𝑟
   𝑎𝑡    𝑟 = 𝑟1 

𝑑𝑇2

𝑑𝑟
= 0        𝑎𝑡     𝑟 = 𝑟2 

(3) 

Where, 𝑘 is the thermal conductivity depended on temperature, 
𝑑𝐴𝑐2, 𝑑𝐴𝑠2, 𝐴𝑐1 and 𝐴𝑠1, are the elemental surface and cross 
sectional areas of the annular and rectangular sections, 
respectively. 𝑇𝑏 is the base temperature of the serrated fin. 
Surface and cross-sectional areas will be 𝑑𝐴𝑠1 = 2𝜋𝑟𝑑𝑟, 𝑑𝐴𝑠2 =
2𝜋𝑟1𝑑𝑟, 𝐴𝑐1(𝑟) = 2𝜋𝑟𝑡, 𝐴𝑐2 = 2𝜋𝑟1𝑡. 

Thermal conductivity is assumed to change linearly with 
temperature as, 

𝑘(𝑇) = 𝑘𝑎(1 + (𝑇 − 𝑇𝑎) 𝜆) (4) 

Where 𝜆 is a parameter which indicates the variation of thermal 
conductivity and 𝑘𝑎  is the serrated fin’s thermal conductivity at 
ambient temperature. 

Dimensionless variables can be defined as, 

𝜃 =
𝑇1 − 𝑇𝑎

𝑇𝑏 − 𝑇𝑎
, 𝜙 =

𝑇2 − 𝑇𝑎

𝑇𝑏 − 𝑇𝑎
,     𝛽 = 𝜆(𝑇𝑏 − 𝑇𝑎) 

𝜉 =
𝑟 − 𝑟𝑜

𝑟𝑜
,    𝜁 =

𝑟 − 𝑟1

𝑟1
 ,   𝛾1 =

𝑟1

𝑟𝑜
,    𝛾2 =

𝑟2

𝑟1
 

𝜓1
2 =

2ℎ𝑟𝑜
2

𝑡𝑘𝑎
,       𝜓2

2 =
2ℎ𝑟1

2

𝑡𝑘𝑎
= 𝜓1

2𝛾1
2 

(5) 

and fin radii ratio and segment height ratio are defined 
respectively as, 

𝜖 =
𝑟2

𝑟𝑜
≡ 𝛾1𝛾2, 𝛿 =

𝑟2 − 𝑟1

𝑟2 − 𝑟𝑜
≡

𝛾1(𝛾2 − 1)

𝛾1𝛾2 − 1
 (6) 

Thermo-geometric fin parameter (𝜓2) can also be written in 
terms of dimensionless parameters as 

𝜓2 ≡ 𝜓1(𝜖 − 𝛿(𝜖 − 1)) (7) 

Substituting dimensionless variables into Eqs. (1-2) and Eq.(3), 
the energy equation and boundary conditions reduces to, 

𝑑2𝜃

𝑑𝜉2
+ 𝛽𝜃

𝑑2𝜃

𝑑𝜉2
+

1

𝜉 + 1

𝑑𝜃

𝑑𝜉
+

𝛽

𝜉 + 1
𝜃

𝑑𝜃

𝑑𝜉
+ 𝛽 (

𝑑𝜃

𝑑𝜉
)

2

− 𝜓1
2𝜃 = 0 ,     0 ≤ 𝜉 ≤ 𝛾1 − 1    

(8) 

𝑑2𝜙

𝑑𝜁2 + 𝛽𝜙
𝑑2𝜙

𝑑𝜁2 + 𝛽 (
𝑑𝜙

𝑑𝜁
)

2

− 𝜓2
2𝜙 = 0    ,

0 ≤ 𝜁 ≤ 𝛾2 − 1 

(9) 

𝜃 = 1     𝑎𝑡    𝜉 = 0 

𝜃 = 𝜙     𝑎𝑛𝑑    𝛾1

𝑑𝜃

𝑑𝜉
=

𝑑𝜙

𝑑𝜁
       𝑎𝑡  

𝜉 = 𝛾1 − 1     𝑎𝑛𝑑    𝜁 = 0 

𝑑𝜙

𝑑𝜁
= 0    𝑎𝑡    𝜁 = 𝛾2 − 1 

(10) 

3 Theory of homotopy perturbation method 

To describe the concept of HPM, consider the nonlinear 
differential equation in the form [4]: 

𝐴(𝑢) − 𝑓(𝑟) = 0,   𝑟 ∈ 𝛺 (11) 

With the boundary condition of 

𝐵 (𝑢,
𝜕𝑢

𝜕𝑛
) = 0,   𝑟 ∈ 𝛤 (12) 

Where A is a general differential operator, B is a boundary 
operator, f(r) is a known analytic function and Γ is the boundary 
of the domain Ω. 

The differential operator A may be expressed in two parts in 
terms of linear L(u) and nonlinear operators N(u) as follows: 

𝐴(𝑢) = 𝐿(𝑢) + 𝑁(𝑢) (13) 

Then, the Eq. (11) may be written as: 

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0 (14) 

A homotopy 𝑣(𝑟, 𝑝): Ω × [0,1] →  ℛ can be defined which 
satisfies the following equations as: 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢𝑜)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)]
= 0 

(15) 

or 

𝐻 (𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢𝑜) + 𝑝𝐿(𝑢𝑜) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)]
= 0 

(16) 

Where 𝑝 ∈ [0,1] is an embedded homotopy parameter and 𝑢𝑜is 
the first approximation of Eq. (11) that satisfy the boundary 
conditions. 

Eq. (17) and Eq. (18) can be written by using Eq. (15) and Eq. 
(16) as, 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢𝑜) (17) 

and 
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𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) (18) 

The changing of parameter 𝑝 from 𝑝 = 0 to 𝑝 = 1, the 𝑣(𝑟, 𝑝) 
solution series is changing from 𝑢𝑜(𝑟) to 𝑢(𝑟) solution of 
equation. In topology, this is called deformation. Solution of 
equation may be written as power series of the powers of p. 

𝑣 = 𝑣𝑜 + 𝑝𝑣1 + 𝑝2𝑣2 + 𝑝3𝑣3 + ⋯ (19) 

and 𝑝 parameter approaches 1, the approximation solution can 
be expressed as follows: 

𝑢 = 𝑙𝑖𝑚
𝑝→1

𝑣 = 𝑣𝑜 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯ (20) 

4 Serrated fin temperature distribution 

Eq. (8) can be rearranged as: 

(𝜉 + 1)
𝑑2𝜃

𝑑𝜉2 + 𝛽(𝜉 + 1)𝜃
𝑑2𝜃

𝑑𝜉2 +
𝑑𝜃

𝑑𝜉
+ 𝛽𝜃

𝑑𝜃

𝑑𝜉
+ 𝛽(𝜉

+ 1) (
𝑑𝜃

𝑑𝜉
)

2

− 𝜓1
2(𝜉 + 1)𝜃 = 0 

(21) 

Then, linear and non-linear parts of Eq. (21) can be defined as, 

𝐿(𝜃) = (𝜉 + 1)
𝑑2𝜃

𝑑𝜉2 +
𝑑𝜃

𝑑𝜉
 (22) 

𝑁(𝜃) = 𝛽(𝜉 + 1)𝜃
𝑑2𝜃

𝑑𝜉2 + 𝛽𝜃
𝑑𝜃

𝑑𝜉
+ 𝛽(𝜉 + 1) (

𝑑𝜃

𝑑𝜉
)

2

− 𝜓1
2(𝜉 + 1)𝜃 

(23) 

Also, linear and non-linear parts of Eq. (9) can be written as 

𝐿(𝜙) =
𝑑2𝜙

𝑑𝜁2
 (24) 

𝑁(𝜙) = 𝛽𝜙
𝑑2𝜙

𝑑𝜁2
+ 𝛽 (

𝑑𝜙

𝑑𝜁
)

2

− 𝜓2
2𝜙 (25) 

According to the homotopy perturbation method, Eq. (21) can 
be expressed by using Eq. (16) as: 

𝐿(𝜃) + 𝑝𝐿(𝜃𝑜) − 𝐿(𝜃𝑜)

+  𝑝 [𝛽(𝜉 + 1)𝜃
𝑑2𝜃

𝑑𝜉2 + 𝛽𝜃
𝑑2𝜃

𝑑𝜉2 + 

𝛽(𝜉 + 1) (
𝑑𝜃

𝑑𝜉
)

2

− 𝜓1
2(𝜉 + 1)𝜃] = 0 

(26) 

With boundary conditions at the fin base,  

𝜃 = 1    𝑎𝑡   𝜉 = 0,    
𝑑𝜃

𝑑𝜉
= 𝑎    𝑎𝑡    𝜉 = 0 (27) 

Where, 𝑎 is a constant represents dimensionless temperature 
gradient at the fin base.  

Substitution of 𝜃 in power form as in Eq. (19) into Eq. (26) and 
rewriting based on power of p-terms we have 

𝑝0: 

(𝜉 + 1)
𝑑2𝜃0

𝑑𝜉2 +
𝑑𝜃0

𝑑𝜉
= 0 (28) 

𝜃0 = 1    𝑎𝑡   𝜉 = 0,         
𝑑𝜃0

𝑑𝜉
= 𝑎    at   𝜉 = 0 (29) 

𝑝1:  

(𝜉 + 1)
𝑑2𝜃1

𝑑𝜉2 +
𝑑𝜃1

𝑑𝜉
+ 𝛽(𝜉 + 1)𝜃𝑜

𝑑2𝜃𝑜

𝑑𝜉2 + 𝛽𝜃𝑜

𝑑𝜃𝑜

𝑑𝜉

+ 𝛽(𝜉 + 1) (
𝑑𝜃𝑜

𝑑𝜉
)

2

− (𝜉 + 1)𝜓1
2𝜃𝑜 = 0 

(30) 

𝜃1 = 0    𝑎𝑡   𝜉 = 0,         
𝑑𝜃1

𝑑𝜉
= 0    at   𝜉 = 0 (31) 

𝑝2:  

(𝜉 + 1)
𝑑2𝜃2

𝑑𝜉2 +
𝑑𝜃2

𝑑𝜉
+ 𝛽(𝜉 + 1)𝜃𝑜

𝑑2𝜃1

𝑑𝜉2

+ 𝛽(𝜉 + 1)𝜃1

𝑑2𝜃0

𝑑𝜉2
+ 𝛽𝜃𝑜

𝑑𝜃1

𝑑𝜉

+ 𝛽𝜃1

𝑑𝜃0

𝑑𝜉

+ 2𝛽(𝜉 + 1) (
𝑑𝜃𝑜

𝑑𝜉
) (

𝑑𝜃1

𝑑𝜉
)

− (𝜉 + 1)𝜓1
2𝜃1 = 0 

(32) 

𝜃2 = 0    𝑎𝑡   𝜉 = 0,         
𝑑𝜃2

𝑑𝜉
= 0    𝑎𝑡   𝜉 = 0 (33) 

𝑝3:  

(𝜉 + 1)
𝑑2𝜃3

𝑑𝜉2
+

𝑑𝜃3

𝑑𝜉
+ 𝛽(𝜉 + 1)𝜃𝑜

𝑑2𝜃2

𝑑𝜉2

+ 𝛽(𝜉 + 1)𝜃1

𝑑2𝜃1

𝑑𝜉2

+ 𝛽(𝜉 + 1)𝜃2

𝑑2𝜃0

𝑑𝜉2 + 𝛽𝜃𝑜

𝑑𝜃2

𝑑𝜉

+ 𝛽𝜃1

𝑑𝜃1

𝑑𝜉
+ 𝛽𝜃2

𝑑𝜃0

𝑑𝜉

+ 𝛽(𝜉 + 1) [2 (
𝑑𝜃𝑜

𝑑𝜉
) (

𝑑𝜃2

𝑑𝜉
)

+ (
𝑑𝜃1

𝑑𝜉
)

2

] − (𝜉 + 1)𝜓1
2𝜃2 = 0 

(34) 

𝜃3 = 0    𝑎𝑡   𝜉 = 0,         
𝑑𝜃3

𝑑𝜉
= 0    at   𝜉 = 0 (35) 

⋮ 

𝜃𝑜, 𝜃1, 𝜃2, … can be obtained by solving the Eqs. (28)-(35). When 
𝑝 → 1, dimensionless temperature distribution of the annular 
section of the serrated fin can be expressed as: 

𝜃(𝜉) = 1 + 𝑎 𝑙𝑛(1 + 𝜉)

−
1

2
[𝑎2𝛽 𝑙𝑛(1 + 𝜉)2

−
1

2
𝜓1

2(𝑎𝜉2 + 2𝑎𝜉 + 2𝑎 − 2)

+
1

2
𝜓1

2(𝑎 − 1)(1 + 𝜉) 𝜉] ± ⋯ 

(36) 

If the same procedure is followed in Eq. (9), it can be write, 

 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 29(6), 569-576, 2023 
İ.G. Aksoy 

 

573 
 

𝐿(𝜙) + 𝑝𝐿(𝜙𝑜) − 𝐿(𝜃𝑜)

+ 𝑝 [𝛽𝜙
𝑑2𝜙

𝑑𝜁2 + 𝛽 (
𝑑𝜙

𝑑𝜁
)

2

− 𝜓2
2𝜙]

= 0 

(37) 

𝜙 = 𝑏    𝑎𝑡    𝜁 = 0,    
𝑑𝜙

𝑑𝜁
= 𝑐   𝑎𝑡    𝜁 = 0 (38) 

Where 𝑏 and 𝑐 are constants represents the dimensionless 
temperature and dimensionless temperature gradient between 
the annular and plain sections.  

Based on power of p-terms we have, 

𝑝0:  

𝑑2𝜙0

𝑑𝜁2
= 0 (39) 

𝜙0 = 𝑏    𝑎𝑡   𝜁 = 0,    
𝑑𝜙0

𝑑𝜁
= 𝑐    𝑎𝑡    𝜁 = 0 (40) 

𝑝1:  

𝑑2𝜙1

𝑑𝜁2
+ 𝛽𝜙0

𝑑2𝜙0

𝑑𝜁2
+ 𝛽 (

𝑑𝜙0

𝑑𝜁
)

2

− 𝜓2
2𝜙0 = 0 (41) 

𝜙1 = 0    𝑎𝑡   𝜁 = 0,    
𝑑𝜙1

𝑑𝜁
= 0    𝑎𝑡    𝜁 = 0 (42) 

𝑝2:  

𝑑2𝜙2

𝑑𝜁2 + 𝛽𝜙0

𝑑2𝜙1

𝑑𝜁2 + 𝛽𝜙1

𝑑2𝜙0

𝑑𝜁2 + 2𝛽 (
𝑑𝜙0

𝑑𝜁
) (

𝑑𝜙1

𝑑𝜁
)

− 𝜓2
2𝜙1 = 0 

(43) 

𝜙2 = 0    𝑎𝑡   𝜁 = 0,    
𝑑𝜙2

𝑑𝜁
= 0    𝑎𝑡    𝜁 = 0 (44) 

𝑝3:  

𝑑2𝜙3

𝑑𝜁2 + 𝛽𝜙0

𝑑2𝜙2

𝑑𝜁2 + 𝛽𝜙1

𝑑2𝜙1

𝑑𝜁2 + 𝛽𝜙2

𝑑2𝜙0

𝑑𝜁2

+ 2𝛽 (
𝑑𝜙0

𝑑𝜁
) (

𝑑𝜙2

𝑑𝜁
) + 𝛽 (

𝑑𝜙1

𝑑𝜁
)

2

− 𝜓2
2𝜙2 = 0 

(45) 

𝜙3 = 0    𝑎𝑡   𝜁 = 0,    
𝑑𝜙3

𝑑𝜁
= 0    𝑎𝑡    𝜁 = 0 (46) 

⋮ 

𝜙𝑜 , 𝜙1, 𝜙2, … can also be obtained by solving the Eqs. (39)-(46). 
When 𝑝 → 1, dimensionless temperature distribution of the 
plain section of the serrated fin can be expressed as: 

𝜙(𝜁) = 𝑏 + 𝑐𝜁 +
1

2
(𝑏5𝛽4𝜓2

2 − 𝑏4𝑐2𝛽5 − 𝑏4𝛽3𝜓2
2 + 𝑏3𝑐2𝛽4

+ 𝑏3𝛽2𝜓2
2 − 𝑏2𝑐2𝛽3 − 𝑏2𝛽𝜓2

2

+ 𝑏𝑐2𝛽2 + 𝑏𝜓2
2 − 𝑐2𝛽)𝜁2

+
1

6
(13𝑏4𝑐𝛽4𝜓2

2 − 12𝑏3𝑐3𝛽5

− 10𝑏3𝑐𝛽3𝜓2
2 + 9𝑏2𝑐3𝛽4

+ 7𝑏2𝑐𝛽2𝜓2
2 − 6𝑏𝑐3𝛽3 − 4𝑏𝑐𝛽𝜓2

2

+ 3𝑐3𝛽2 + 𝑐𝜓2
2)𝜁3 + ⋯ 

(47) 

The constants, namely, 𝑎, 𝑏 and 𝑐 in Eq. (36) and Eq. (47) are 
determined with help of boundary conditions by applying 
Newton-Raphson method. 

5 Fin efficiency 

The ratio of the actual heat transfer rate to the ideal heat 
transfer rate from the fin is defined as fin efficiency. Ideal heat 
transfer is actually the state of maximum heat transfer which 
occurs when the entire fin surface is at the fin’s base 
temperature, 𝑇𝑏 . Serrated fin efficiency can be written as: 

𝜂 =
𝑞𝑓

𝑞𝑚𝑎𝑥
=

−𝑘𝐴𝑐
𝑑𝑇
𝑑𝑟

|
𝑟=𝑟0

2𝜋ℎ[(𝑟1
2 − 𝑟0

2) + 2𝑟1(𝑟2 − 𝑟1)](𝑇𝑏 − 𝑇𝑎)
 

(48) 

Fin efficiency can also be expressed in non-dimensioning form 
as: 

𝜂 =

2(1 + 𝛽)
𝑑𝜃
𝑑𝜉

|
𝜉=0

𝜓1
2(𝜖 − 1)(𝛿2𝜖 − 𝛿2 − 𝜖 − 1)

 
(49) 

6 Results and analysis 

Homotopy perturbation method reveals an analytical 
approximation solution to solving nonlinear differential 
equations formulated from the serrated fin problem. Accuracy 
of the results depend on the term’s number taken in the 
solution. To get the more accurate results, the first five or six 
terms are considered in the solution. Obtained results are 
compared with the numerical finite difference method (FDM) 
and exact solutions results to verify the reliability of HPM. A 
comparison of the HPM results with the numerical and exact 
solution results are given in Table 1. Numerical results are 
obtained by using Maple software which uses finite difference 
method based on the Richardson extrapolation technique. 

Table 1. The comparison of the HPM results with FDM and exact solution (in the case of 𝜖 = 2, 𝛿 = 0.5, 𝜓1 = 0.4). 

 𝜷 = −𝟎. 𝟑 𝜷 = 𝟎 𝜷 = 𝟎. 𝟑 

𝑅 HPM FDM HPM FDM EXACT HPM FDM 
1.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
1.1 0.973815 0.973805 0.981095 0.981095 0.981095 0.985221 0.985221 
1.2 0.952246 0.952229 0.965338 0.965338 0.965338 0.972851 0.972853 
1.3 0.934608 0.934586 0.952327 0.952327 0.952327 0.962601 0.962604 
1.4 0.920381 0.920355 0.941749 0.941749 0.941749 0.954244 0.954247 
1.5 0.909164 0.909137 0.933357 0.933357 0.933357 0.947597 0.947601 
1.6 0.900066 0.900328 0.926733 0.926733 0.926733 0.942341 0.942344 
1.7 0.893544 0.893518 0.921592 0.921592 0.921592 0.938255 0.938258 
1.8 0.888702 0.888676 0.917926 0.917926 0.917926 0.935338 0.935341 
1.9 0.885805 0.885779 0.915728 0.915728 0.915728 0.933588 0.933591 
2.0 0.884841 0.884815 0.914996 0.914996 0.914996 0.933005 0.933008 
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Nonlinear ordinary equation system are solved by using dsolve 
function with the numeric option in Maple as a real-valued two-
point boundary value problem (BVP). The dimensionless 
temperature distribution of the annular and planar sections 
was calculated dependent on dimensionless coordinates (𝜉 and 
𝜁). While showing the temperature distribution in the Table-1 
or other graphs, two dimensionless coordinates are normalized 
to a single dimensionless coordinate (𝑅), and the temperature 
distribution is given depending on normalized radial 𝑅 
coordinate. As seen in Table 1, dimensionless temperature 
distribution results obtained from homotopy perturbation 
method are in accordance with the FDM results. In addition, 
results obtained from HPM is validated with the exact results 
under the condition of 𝛽 = 0. Exact solution for serrated fin 
under the condition of constant thermal conductivity (𝛽 = 0) 
are obtained by Hashizume et al. (2002) in terms of Bessel 
functions. As seen in Table 1, almost the same results are 
obtained from all three solutions. 

The dimensionless temperature change along the serrated fin 
on condition of 𝜓1 = 1 and 𝜖 = 2 against the different values of 
segment height ratio (𝛿) are shown in Figure 2(a)-(c) for 
different thermal conductivity parameter (𝛽) values. Segment 
height ratio is the ratio of segment height to the total fin height. 
The segment height ratio equals to zero (𝛿 = 0) means that the 
fin is completely annular fin, and this ratio equals to one  
(𝛿 = 1) means that fin is the rectangular fin. The segment 
height ratio of the serrated fin varies between 0 and 1. From the 
figures, it is noted that temperature gradient throughout the 
fins decreases monotonically towards the fin tip. For all cases 
of 𝛽, temperature gradient throughout the serrated fin 
decreases with the increasing the segment height ratio. From 
the figures, it is also observed that, temperature gradient 
throughout the fin decreases with the increases conductivity 

parameter, 𝛽. This is a consequence of the nonlinearity of 
temperature dependent thermal conductivity. In the case of 
segment height ratio 𝛿 = 0.5, fin tip dimensionless 
temperatures for the 𝛽 = −0.3, 0 and 0.3 values are 
0.547, 0.616 and 0.671, respectively. 

The influence of the thermo-geometric fin variable on the non-
dimensional temperature distribution throughout the serrated 
fin under the condition of 𝜖 = 2 against different values of 
segment height ratio (𝛿) are shown in Figure 3 (a)-(c) for 
different thermal conductivity parameter 𝛽 values. Increasing 
thermo-geometric fin parameter (𝜓) causes to increase the 
temperature gradient throughout the fin. The reason is that 
increases thermo-geometric fin parameter leads to a decrease 
in the fin’s thermal conductivity. Therefore, internal resistance 
of the fin to conduction increases. As seen in figures, 
dimensionless temperature gradient stay between the annular 
(𝛿 = 0) and rectangular (𝛿 = 1) fins. In the case of 𝜓 =1 and 
𝛽 = −0.3, the fin tip non-dimensional temperatures for the  
𝛿 = 0, 0.5 and 1 values are 0.526, 0.547 and 0.579, respectively. 
As mentioned before, temperature gradient throughout the fin 
decreases with the increase of conductivity parameter, 𝛽. Such 
as, fin tip dimensionless temperatures in the case of 𝜓1 = 1 and 
𝛽 = 0.3 for the 𝛿 = 0, 0.5 and 1 is calculated as 0.646, 0.671 and 
0.701, respectively. 

Serrated fin efficiency variation with respect to thermo-
geometric fin parameter (𝜓) at different values of segment 
height ratios (𝛿) and fin radius ratio (𝜀) are shown in  
Figure 4 (a)-(c) in the case of 𝛽 = −0.3, 𝛽 = 0 and 𝛽 = 0.3, 
respectively. From the figures, it is observed that fin efficiency 
decreases with the increase of thermo- geometric fin parameter 
values, 𝜓 for a specified 𝜀, 𝛿 and 𝛽. Also fin efficiency increases 
with increasing values of segment height ratio for a specified 𝜀, 
𝜓 and 𝛽. 

 

   

(a) (b) (c) 

Figure 2. Non-dimensional temperature distribution along the serrated fin for 𝜓1 = 1, 𝜖 = 2 and different values of 𝛽. 
(a): 𝛽 = −0.3, (b): 𝛽 = 0, (c): 𝛽 = 0.3. 

   

(a) (b) (c) 

Figure 3. Non-dimensional temperature distribution along the serrated fin for 𝜀 = 2 and different values of 𝛽.  

(a): 𝛽 = −0.3, (b): 𝛽 = 0, (c): 𝛽 = 0.3. 



 
 
 
 

Pamukkale Univ Muh Bilim Derg, 29(6), 569-576, 2023 
İ.G. Aksoy 

 

575 
 

 

 
 

 

(a) (b) (c) 

Figure 4. Serrated fin efficiency variation with respect to thermo-geometric fin parameter. (a): 𝛽 = −0.3, (b): 𝛽 = 0, (c): 𝛽 = 0.3. 
 

Such as, fin efficiency values under the condition of 𝜀 = 2, 𝜓1 =
1.2 and 𝛽 = −0.3 for 𝛿 = 0, 0.25, 0.5, 0.75 and 1 are 0.552, 
0.563, 0.586, 0.618 and 0.639, respectively. The minimum value 
of the fin efficiency reached under the condition of annular fin, 
𝛿 = 0. The highest value of the fin efficiency reached under the 
condition of rectangular fin, 𝛿 = 1. Serrated fin efficiency lays 
between annular and rectangular fins depending on segment 
height ratio, 𝛿. It is also observed that, efficiency of the fin 
decreases with increasing fin’s radius ratio (𝜀) for a stated 𝛿, 𝜓 
and 𝛽. Fin efficiency values under the condition of 𝛿 = 0.5, 𝜓1 =
0.8 and 𝛽 = 0.3 for 𝜀 = 1.5, 2.0 and 2.5 are 0.956, 0.831 and 
0.672, respectively. Increasing the value of 𝛽 for a specified 𝜀, 𝜓 
and 𝛿 values causes the fin efficiency to increase. For example, 
fin efficiency values for 𝛽 = −0.3, 0 and 0.3 in the case of 𝛿 =
0.5, 𝜓1 = 0.8 and 𝜀 = 2 are 0.745, 0.796 and 0.831, respectively. 
It is also noted that, the exact solution results in terms of Bessel 
functions are closely same with the results of HPM under the 
condition of 𝛽 = 0 constant thermal conductivity. 

7 Discussion and conclusion 

In the present work, homotopy perturbation method has been 
used for the nonlinear analysis of serrated fins with variable 
thermal conductivity. In problem formulation, serrated fin’s 
thermal conductivity is taken as a linear function of 
temperature. Dimensionless temperature distribution and fin 
efficiency are determined based on dimensionless parameters, 
that are serrated fin radius ratio, segment height ratio, thermal 
conductivity parameter and thermo-geometric parameter. 

The effect of these variables on the performance of serrated fin 
is investigated and given by graphs. It is observed that 
dimensionless parameters have an important effect on the 
dimensionless temperature variation along the fin and fin 
efficiency. HPM results are compared to the results obtained 
from the FDM, finite difference method. The results are also 
compared with the analytic exact solution in a specific case of 
constant thermal conductivity. A very good agreement between 
the HPM and FDM and exact results are found. The following 
outcomes of this study can be written as follows: 

• Non-dimensional temperature gradient throughout 
the fin decreases with the increasing the segment 
height ratio and thermal conductivity parameter, 

• Increasing thermo-geometric fin parameter causes 
the dimensionless temperature gradient along the fin 
to increases, 

• Serrated fin efficiency lays between annular and 
rectangular fins depending on segment height ratio. 
Such as, fin efficiency values under the condition of 

𝜀 = 2, 𝜓1 = 1.0 and 𝛽 = 0 for 𝛿 = 0, 0.5, and 1 are 
0.692, 0.718, and 0.762, respectively, 

• Serrated fin efficiency decreases with increasing the 
thermo-geometric fin parameter and fin radii ratio. 
Such as, fin efficiency values under the condition of 
𝜀 = 2, 𝛿 = 0.5 and 𝛽 = 0.3 for 𝜓1  = 0.2, 0.8, and 1.2 
are 0.987, 0.831, and 0.690, respectively, 

• Serrated fin efficiency increases with increasing the 
thermal conductivity parameter and segment height 
ratio. Such as, fin efficiency values under the condition 
of 𝜀 = 2, 𝛿 = 0.5 and 𝜓1 = 1.0 for 𝛽 = −0.3, 0 and 0.3 
are 0.662, 0.718, and 0.761, respectively. 

It should be expressed that, homotopy perturbation method 
can be applied to this type non-linear engineering problem. 

8 Nomenclatures 

𝐴𝑐 : Cross-sectional area (m2), 
𝑑𝐴𝑠 : Elemental surface area (m2), 

ℎ : Heat transfer coefficient (W/m2K), 
𝑘 : Thermal conductivity (W/mK), 
𝑟 : Radial coordinate, radius (m), 
𝑟𝑜 : Serrated fin base radius (m), 
𝑟1 : Serrated fin interface radius (m), 
𝑟2 : Serrated fin tip radius (m), 
𝑡 : Fin thickness (m), 
𝑇 : Temperature (oC), 
𝑇𝑎 : Ambient temperature (oC), 
𝑇𝑏 : Fin base temperature (oC), 
𝛽 : Thermal conductivity parameter 

𝛾1, 𝛾2 : Radius ratio of the annular and rectangular 
segments, 

𝛿 : Segment height ratio, 
𝜀 : Fin radii ratio, 
𝜉 : Dimensionless coordinate of the annular 

section, 
𝜁 : Dimensionless coordinate of the rectangular 

section, 
𝜂 : Serrated fin efficiency, 
𝜃 : annular section dimensionless temperature, 
𝜙 : Rectangular section dimensionless 

temperature, 
𝜆 : Parameter describing the variation of thermal 

conductivity, 
𝜓1, 𝜓2 : Thermo-geometric fin parameter of the 

annular and rectangular sections, 
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𝑅 : Dimensionless normalized radial coordinate 
(𝑅 = 1 +  𝜉 for annular section, 𝑅 =  𝛾1 + (2 −
 𝛾1)𝜁/( 𝛾2 − 1) for plain section). 
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