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Abstract: The boron co-doped CoNb2O6:xEu3+, yB3+ (x=1, 3, 6, 9, 12 mol%, y=10 mol%) ceramics were 
obtained by the molten salt method, which has advantageous properties such as short reaction time, low 
sintering temperature, improved homogeneity, and crystallinity. The ceramic samples were examined by 
structural and dielectric analyses. In X-ray diffractions, the orthorhombic columbite type CoNb2O6 structure 
was obtained, and also a minor EuNbO4 phase was detected with increasing Eu3+ doping concentrations. 

Additionally, increasing Eu3+ concentration led to a slight increase in crystallite size, and two theta peak shifts 
occurred towards higher angles associated with shrinkage in the lattice or reduction in the lattice constant. 
In SEM examinations, a slight increase was observed in grain sizes from 1 to 9 mol% Eu3+ in the range of 1-

30 m, while some decrease occurred in grain sizes at 12 mol%, and there was an evident increase in plate-
shaped and elongated grains. The dielectric constant (ε') of the ceramic samples increased with increasing 
Eu3+ concentration and reached approximately 35 and 0.24 at 20 Hz for 9 mol% Eu3+, respectively. The 
increase in dielectric loss with increasing Eu3+ was associated with an increase in ionic conductivity, in which 
Eu3+ substitution does not suppress oxygen vacancies or make them more ordered. 
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1. INTRODUCTION 
 
Materials exhibiting high dielectric constant are 

widely used in electronic industries such as 

capacitors, memory devices, and filters. In practical 
applications, materials with a high dielectric constant 
are desired to exhibit low dielectric loss and relatively 
weak frequency and temperature dependence (1-3). 
Luminescent dielectrics can be obtained from host 
materials doped with RE ions. Among the rare earth 

(RE) ions, the trivalent europium ion is considered an 
excellent red activator for the luminescence centers 
of red phosphors due to its 5D0 -7FJ  (J=0, 1, 2, 3, 4) 
transitions (4-6) and is also widely used in dielectric-
related research (7-10). There are some studies on 
the secondary phase effect on the dielectric 
properties of rare earth ion-doped host materials. 

Wang et al (11) investigated the microstructure, and 
dielectric properties of (Nd0.5Nb0.5)xTi1-xO2 ceramics, 
and revealed that the secondary phase is beneficial 

to increase the grain boundary resistance and the 
material keeps low dielectric loss and improved the 
temperature stability. In another study, Zhao and Wu 

(12) examined the dielectric behavior of the 

(Dy0.5Nb0.5)xTi1–xO2 structure, where the secondary 
phases are induced by Dy enrichment, and largely 
facilitate the decreased dielectric loss. 
 
The columbite-type structure with orthorhombic 
symmetry can be expressed as MNb2O6 (M= Co, Mg, 

Sr, Mn, Ni, Cd, etc). The MNb2O6 structure has a 
significant advantage in that it can host guest ions 
with ionic sizes comparable to the Nb and divalent 
M2+ ions found in the structure. As MNb2O6 structure, 
cobalt niobate (CoNb2O6) has been studied due to its 
magnetic (13-16), neutron scattering (17), 
luminescence (18-21), dielectric (22,23) gas sensing 

(24,25) and magnetic-thermodynamic (26,27) 
properties. Singh et al (22) reported the dielectric 
and ferroelectric properties of Ti4+ doped CoNb2O6 
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where Ti4+ substitution in CoNb2O6 lattice enhances 
the dielectric constant of the material. The dielectric 
constant (ɛ′) for undoped CoNb2O6 is found to be 

500, whereas CoNb1.95Ti0.05O6 is 700 and 
CoNb1.9Ti0.1O6 is 14000 at 100 Hz frequency at 200 
oC. Zhang et al (23) also studied the sintering 

behavior and microwave dielectric properties of B2O3 
doped CoNb2O6, where the 1.5 wt% B2O3 doped 
CoNb2O6 sintered at 1000 °C exhibited microwave 
dielectric properties with an ɛ′ of 22.4, a high Qxf of 
43.979 GHz, and a τf of -46.2 ppm/°C. In addition, 

there are studies on the effect of boron on grain 
morphology and its improvement in dielectric 
properties in which the doping of boron has the effect 
of increasing the bulk properties to some extent and 
can reduce the grain boundaries in the structure (28-
30). Moreover, there are also studies on the 
morphology of lanthanide ion-doped structures with 

boron addition and the luminescence-enhancing 

properties of boron (31-33). 
 
In this paper, the structural and dielectric properties 
of CoNb2O6:xEu3+,yB3+

 (x=1, 3, 6, 9, 12 mol%, y=10 
mol%) ceramics fabricated at 900 °C were 
investigated by doping boron to CoNb2O6:xEu3+ 

(x=1, 3, 6, 9, 12 mol%) powders produced by the 
molten salt method at 800 °C. The structural and 
dielectric analyses were performed by XRD, SEM-
EDS, and impedance analyzer. 
 
2. EXPERIMENTAL 

 
The CoNb2O6:xEu3+

 (x=0.01, 0.03, 0.06, 0.09, and 
0.12 or x=1, 3, 6, 9, 12 mol%) powders were 
fabricated by the molten salt route. In the synthesis, 

cobalt nitrate hexahydrate (Co(NO3)2.6H2O) (Sigma-
Aldrich, 98.5%), niobium oxide (Nb2O5) (Alpha 
Aesar, 99.9%), and europium oxide (Eu2O3) (Alpha 

Aesar, 99.9%) were used. For the synthesis, 
Li2SO4/Na2SO4 (salt/salt), and 
Li2SO4+Na2SO4/CoO+Nb2O5+Eu2O3 (salt/oxide) 
molar ratio were taken as 0.635/0.365 and 2/1 
weight ratio, respectively. The oxide mixtures and 
salt mixtures were prepared according to their 
stoichiometric ratios and mixed well in an agate 

mortar to provide homogeneity. The resulting 
mixtures were subsequently placed in an alumina 
crucible and sintered for 4 h at 800 °C in an air 
atmosphere using an electric furnace. After the 
sintering, the ceramic powders were washed down 
several times with bi-distilled water to get rid of the 

ionic salts and filtered using a vacuum pump several 
times. The remnants of Cl- ions in the solution were 
controlled by qualitative analysis. To investigate the 
structural and dielectric properties, the 10 mol% 
boron in the form of H3BO3 was added to the 
synthesized powders, pelletized, and sintered in an 
electric furnace at 900 °C for 6 hours. 

 
The phase structure of the ceramics was investigated 
by X-ray diffractometer (XRD; Panalytical Emperial, 

Malvern Panalytical Ltd., UK) using Cu-K (1.5406 Å) 

radiation in between 2θ=20-70 °C with scan speed 2 
°C/min. The grain morphology of the ceramics was 
examined by scanning electron microscopy (FE-SEM; 
Gemini 500, Zeiss Corp., Germany). The elemental 

compositions were determined by scanning electron 
microscopy (SEM, JEOL, Tokyo, Japan, JSM-5910LV) 
equipped with energy dispersive spectroscopy (EDS, 

OXFORD Instruments, Abingdon, England, INCAx-
Sight 7274; 133 eV resolution 5.9 keV) after Au 
(gold) coating. Frequency-dependent changes of real 
and imaginary permittivity and loss factor were 

investigated using dielectric equations: 
 

𝜀′ =
𝐶

𝐶0
,           𝜀′′ =

𝐺

𝜔𝐶0
,           𝐶0 = 𝜀0

𝐴

𝑑
    and         𝑡𝑎𝑛𝛿 =

𝜀′′

𝜀′  

 
where C0 is vacuum capacitance, C is capacitance, w 
is angular frequency and G is conductance. The 

dielectric properties of the ceramic samples were 
carried out using an impedance analyzer (Wayne 
Kerr 6500 B Precision; between frequency 40 Hz–100 
kHz, UK) at 1 Vrms potential at room temperature. 
 

3. RESULTS AND DISCUSSION 
 

3.1. XRD and SEM-EDS Results 
Figure 1 presents the X-ray diffraction patterns of 
Eu3+, and B3+ co-doped CoNb2O6 samples. XRD 
results of the ceramic samples were defined by 
orthorhombic columbite symmetry (JCPDS no: 32-
0304) with space group Pbcn60. As seen in Figure 1, 
while 1 mol% concentration exhibits a single-phase 

CoNb2O6 structure, the EuNbO4 secondary phase 
(JCPDS no: 22-1099) appears with increasing Eu3+ 
concentration. Additionally, the absence of boron-
related reflections in the XRD results may be 
attributed to the dissolution of boron in the columbite 
structure, and similar studies have been reported 

(32,33). The schematic representation of the 

CoNb2O6 crystal structure consisting of corner-
shared and edge-shared NbO6 and CoO6 octahedral 
is shown in Figure 2. In the columbite structure, 
there are three vacant octahedral sites labeled 4a, 
4b, and 8d, where the 4a sites are the most favorable 
for Eu3+ occupancy (32-35). The XRD peaks of the 

(131) reflection are shown in Figure 3. With 
increasing Eu3+ concentration, a shift of the (131) 
peak to higher two theta angles was observed, which 
may be associated with a decrease in the lattice 
constant or the shrinkage of the lattice. The decrease 
in the lattice continued up to 9 mol%, while the shift 
to the left at 12 mol% indicated an expansion. 

Accordingly, the doping of Eu3+ ions will likely affect 
the charge balance due to the shrinkage of the lattice 
and cause some defects in the structure. Table 1 
summarizes the lattice parameters of the samples, in 

which the a, b, c, and V data from 1 to 12 changed 
to 14.4995, 5.5857, 5.0559 Å, 409.47 Å3 and 

14.2362, 5.6138, 4.9888 Å, 398.70 Å3, respectively. 
In addition, the cell data of orthorhombic CoNb2O6 
are reported as a=14.167 Å, b=5.714 Å, c=5.046 Å, 
and V=408.47 Å3 (27), which are consistent with the 
lattice parameters in this study. The average 
crystallite sizes of the samples from the Scherrer Eq. 
were found between 28.07 and 33.91 nm. The slight 

increase in crystallite size can be associated with the 
formation of a secondary EuNbO4 phase due to the 
increased presence of Eu3+ and thus the 
development of crystallinity as a result of 
maintaining the charge balance in the structure.
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Table 1: Cell parameters and crystallite sizes for Eu3+, B3+ co-doped CoNb2O6 ceramics. 

Sample 
(mol%) 

Lattice parameters Crystallite size 

a 
(Å) 

b 
(Å) 

c 
(Å) 

c/a 
V 

(Å)3 
D 

(nm) 

Ref. [27] 14.1670 5.7140 5.0460 - 408.47 - 

1 Eu3+, 10 B3+ 14.4995 5.5857 5.0559 0.3487 409.47 28.07 

3 Eu3+, 10 B3+ 14.4058 5.5927 5.0492 0.3505 406.80 28.08 

6 Eu3+, 10 B3+ 14.2683 5.6033 5.0391 0.3532 402.87 29.79 

9 Eu3+, 10 B3+ 14.1471 5.6208 4.9822 0.3522 396.18 33.92 

12 Eu3+, 10 B3+ 14.2362 5.6138 4.9888 0.3504 398.70 33.91 

 

 
Figure 1: X-ray diffractions of CoNb2O6:xEu3+,yB3+

 (x=1, 3, 6, 9, 12 mol% Eu3+
 , y=10 mol%) co-doped 

CoNb2O6 samples. 
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Figure 2: Schematic illustration of the CoNb2O6 crystal structure. 

 

 
Figure 3: XRD two theta angles (131) shifted to higher angles with Eu3+ concentration. 

 
Figure 4(a-e) shows the SEM micrographs at 5000x 

magnification for 1, 3, 6, 9 and 12 mol% Eu3+, B3+ 

co-doped samples, respectively. In SEM 

micrographs, there was a slight increase in the grain 

sizes of the ceramic samples with the increasing Eu3+ 

concentration from 1 to 9 mol% which ranged 

between 1-30 m. There was some decrease in grain 

sizes at 12 mol% concentration, while an increase 
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occurred in plate-shaped and elongated grains. Also, 

as seen in SEM micrographs in Figure 4(a-e), 

increasing Eu3+ concentration promotes the 

formation of collapses and holes in the grains. 

Moreover, it has been previously reported that the 

grain sizes of powder samples produced by the 

molten salt method at 800 °C are in the range of 

0.05-2 m (20). However, in this study, boron was 

subsequently added and the temperature was 

increased to 900 °C after pelletization. As a result, 

the morphology of the grains was affected by the 10 

mol% boron doping, and increasing the temperature 

from 800 to 900 °C, a significant increase in grain 

sizes occurred.

 

 
Figure 4: SEM micrographs of (a) 1, (b) 3, (c) 6, (d) 9, (e) 12 mol% Eu3+, 10 mol% B3+ co-doped samples 

at 5000× magnifications and 5 kV acceleration voltage. 
 
SEM-EDS analysis was performed to reveal phase 
structures and elemental compositions. Figure 5a 
shows an SEM micrograph for 6 mol% Eu3+, 10 mol% 
B3+ co-doped sample, at 15000× magnification 
under 20 kV acceleration voltage. The elemental 

composition differences between CoNb2O6 main 
phase and EuNbO4 minor phase were detected by 

EDS analysis, where the point-1 (Figure 5b) and 
point-2 (Figure 5c) show Eu3+ doped CoNb2O6 and 
EuNbO4 grains, respectively. As seen from the EDS 
results, the atomic compositions (%) of the main and 
minor phases agree with the theoretical compositions 

(%).
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Figure 5: (a) SEM micrograph, and EDS spectrums with weight%, atomic% elemental compositions, and 
theoretical atomic% values, (b) main phase-point 1 (c) EuNbO4 phase-point 2 for 6 mol% Eu3+, 10 mol% 

B3+ co-doped sample. 
 

3.2. Dielectric Behavior of Eu3+, B3+ co-doped 
CoNb2O6 Ceramics 
Figure 6 shows the dielectric constants (ε') of ceramic 
samples measured between 20 Hz–107 Hz. The 
dielectric constants of Eu3+, and B3+ co-doped 

CoNb2O6 ceramics varied between approximately 
34.8 and 24.5 at 20 Hz. As seen in Figure 6, the 
dielectric constant depends on frequency, the ε' 
value was almost constant in the high-frequency 
range, and it increased in the low-frequency range. 
Regarding this, with increasing frequency, the ability 
of electron exchange to follow the applied field, and 

therefore the dielectric constant decreases. At very 
high frequencies the field reverses before the motion 
of the space charge carriers and as a result, does not 
contribute to polarization, and so the ε' value is 
almost constant at high frequencies (36-38). In 

Figure 6, increasing Eu3+ concentration led to an 

increase in the dielectric constant up to 9 mol% and 
then decreased to 12 mol%. In a study conducted by 
Betinelli et al (39) on BaTiO3, similar to this study, 
an increase in crystallite size and ε' value occurred 
with increasing Eu3+ concentration. So, Eu3+ ions are 
introduced into the host lattice as trivalent cations, 
giving rise to more point defects when increasing the 

dopant concentration, where the increasing ε' value 
with Eu3+ doping into the BaTiO3 structure is 
attributed to the lattice defects caused by the dopant 
and is explained as the higher the lattice defects 
added to the host lattice with increasing dopant 
concentration, the higher the value of the dielectric 
constant. Accordingly, as seen in Figure 2 and Table 

1, the shift to the right in the XRD peaks with 
increasing Eu3+ concentration can be associated with 
the presence of increasing defects in the lattice and 
the dielectric property improving up to 9 mol%. 
Moreover, the c/a ratio (40.41), which can be 

attributed to the distortion in the lattice, varies 
between 0.3487 and 0.3522 from 1 mol% to 9 mol%. 
On the other hand, as seen in Figure 2, the Eu3+ ions 
included in the structure caused a shift to the left or 
smaller two theta angles in the XRD peaks and 
expansion of the lattice, so a decrease occurred in 
the ε' value and c/a ratio at 12 mol% concentration. 

Based on this result, it is likely that a decrease in the 
dielectric constant occurred at 12 mol% Eu3+ 
concentration due to the presence of reduced point 
defects in the lattice. On the other hand, since the 
dielectric constant is grain size-related or sensitive to 

grain size and is affected externally, this 

phenomenon is explained based on the Maxwell-
Wagner theory of extrinsic factors. According to this 
theory, the dielectric constant is directly proportional 
to the grain size of the sample, where an increase in 
grain size causes the polarization ability of atoms and 
the ε' value to increase (42-46). A slight increase in 
grain size in SEM examinations supports the 

improvement of the dielectric constant, which can be 
attributed to the absence of additional grain 
boundaries that prevent polarization. In addition, in 
the XRD results, it was previously stated that the 
formation of the EuNbO4 secondary phase due to the 
increased presence of Eu3+ prevents the decrease in 
grain size by maintaining the charge balance in the 
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structure. This may be associated with a slight 
increase in the crystallite size, which supports the 
improved bulk feature and increased polarization. 

So, this increase in dielectric constant is considered 
to be consistent with the increase in grain size and 
crystallite size. As the amount of dopant increases, 
the grain size decreases, and the grain boundaries 

increase. At the same time, excessive grain boundary 
barrier weakens the electron transfer between grain 
boundaries and increases the interfacial polarization 
between grain and grain boundary, leading to 
deterioration of dielectric property (11). Of course, 
increasing dopant concentration will also increase the 

possibility of secondary phase formation, as in this 
study. The secondary phase effect is emphasized in 
detail in different studies in the literature (11,12). In 

a study on (Nd0.5Nb0.5)xTi1-xO2 by Wang et al (11), 
the secondary NdTiNbO6 phase containing RE ions 
formed at x= 3% level and continued up to x= 7% 

concentration. Thus, the decrease in the dielectric 
constant after increasing up to x= 3% may be 
attributed to the tolerance of the secondary phase in 
the structure to some extent. In addition, the 

dielectric property of the secondary phase may affect 
the dielectric property of the main phase, like 
RENbO4 ceramics which offer excellent dielectric 
properties (47). Therefore, the fact that the 
secondary phase of EuNbO4 has dielectric properties, 
its increased presence in the structure or at grain 

boundaries may be ascribed to some extent being 
tolerated by the structure or reducing its 
deteriorating effect on the dielectric property.

 

 
Figure 6: Dielectric constants of CoNb2O6:xEu3+, yB3+ (x=1, 3, 6, 9, 12 mol%, y=10 mol% ceramics. 

 
Figure 7 shows the variation of dielectric loss (tan δ) 

with frequency for Eu3+ doped CoNb2O6 samples. It is 
seen that dielectric loss increases continuously as the 

frequency decreases in the range of 20-105 Hz. In the 
low-frequency range corresponding to high 
resistance, more energy is required for polarization 
due to the grain boundary, while in the high-
frequency range associated with low resistance, very 

little energy will be needed for electron transfer 
because of the grain boundary, and the energy loss 
will be less (48-50). The tan δ factor shows an 
increasing trend with increasing concentration up to 
9 mol% Eu3+. Different studies in the literature relate 
the dielectric loss factor in ferroelectrics to oxygen 

vacancies, which are responsible for dielectric loss or 
leakage current (50-53). The randomization or 

disorder of oxygen vacancies results in a decrease in 

the energy required for oxygen to jump from an 
occupied lattice site to an unoccupied site, so the 

oxygen vacancies in the structure undergo an order-
disorder transition. This situation leads to an increase 
in ionic conductivity (53). Consequently, the 
increased dielectric loss may be related to Eu3+ 
substitution, which probably does not suppress 

oxygen vacancies or make them more ordered. This 
result led to an increase in ionic conductivity, and so 
increased dielectric loss or leakage current due to 
Eu3+ substitution. In addition, the decrease in 
dielectric loss at 12 mol% Eu3+ concentration may be 
associated with the Eu3+ substitution suppressing or 

making the oxygen vacancies more ordered.

 



İlhan M et al. JOTCSA. 2024; 11(2): 765-774  RESEARCH ARTICLE 

772 

 
Figure 7: Dielectric losses of CoNb2O6:xEu3+, yB3+ (x=1, 3, 6, 9, 12 mol%, y=10 mol% ceramics. 

 
4. CONCLUSION 
 
In the study, the structural and dielectric properties 
of orthorhombic columbite Eu3+, and B3+ co-doped 
CoNb2O6 ceramics were examined. The powders 

were synthesized by the molten salt method at 800 
°C, to improve the bulk property, boron was added 

and the sintering temperature was raised to 900 oC. 
In XRD results, the CoNb2O6 phase maintained up to 
12 mol%, and also the EuNbO4 minor phase was 
detected in which ceramic samples have slightly 

enhanced crystallinity. SEM micrographs showed 
that the Eu3+ increase led to a somewhat increase in 
grain sizes, while the formation of the plate-shaped 
and elongated morphology occurred in high Eu3+ 
concentrations. In EDS results, the atomic 
compositions (%) of the main and EuNbO4 phases 
were agreed with the theoretical compositions (%). 

The dielectric constants of the Eu3+, B3+ co-doped 
CoNb2O6 were determined in the range of 34.8 and 
24.5 at 20 Hz, while increased Eu3+ caused an 
increase in the ε' value up to 9 mol% and then 
decreased for 12 mol%. Based on the evaluation of 

the Maxwell-Wagner theory, this increase in 
dielectric constant was considered to be consistent 

with the increase in grain size and crystallite size. 
The dielectric loss increased with increased Eu3+ 

concentration up to 9 mol%. The increased tan δ with 
increasing Eu3+ was attributed to Eu3+ substitution, 
which did not suppress oxygen vacancies or make 
them more ordered, and so this situation was 

associated with increased ionic conductivity and 
increased dielectric loss or leakage current. 
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