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Abstract

The integration of artificial intelligence (AI) applications in the healthcare sector is ushering
in a significant transformation, particularly in developing more effective strategies for early
diagnosis and treatment of contagious diseases like tuberculosis. Tuberculosis, a global
public health challenge, demands swift interventions to prevent its spread. While deep
learning and image processing techniques show potential in extracting meaningful insights
from complex radiological images, their accuracy is often scrutinized due to a lack of
explainability.
This research navigates the intersection of AI and tuberculosis diagnosis by focusing on
explainable artificial intelligence (XAI). A meticulously designed deep learning model for
tuberculosis detection is introduced alongside an exploration of XAI to unravel complex
decisions.
The core belief is that XAI, by elucidating diagnostic decision rationale, enhances the
reliability of AI in clinical settings. Emphasizing the pivotal role of XAI in tuberculosis
diagnosis, this study aims to impact future research and practical implementations, fostering
the adoption of AI-driven disease diagnosis methodologies for global health improvement.

1. Introduction

In today’s healthcare landscape, the integration of artificial intelligence (AI) applications is heralding a significant transformation. This
transformation is particularly focused on developing more effective strategies for the early diagnosis and treatment of contagious diseases,
such as tuberculosis. Tuberculosis, as a global public health challenge, requires rapid diagnosis and effective treatment to prevent its spread.
In this context, the potent capabilities of deep learning and image processing techniques to extract meaningful insights from complex
radiological images come to the forefront. However, the accuracy of these sophisticated models and their roles in disease diagnosis processes
are frequently scrutinized due to a lack of explainability.
This research endeavors to navigate the intersection of AI and tuberculosis diagnosis by delving into the realm of explainable artificial
intelligence (XAI). The study is grounded in the premise that elucidating the decision-making processes of AI models is imperative, especially
in critical domains like healthcare. Our exploration unfolds with the introduction of a meticulously designed deep learning model tailored for
tuberculosis detection. Concurrently, in this study an investigative journey into the realm of XAI is embarked upon, with methods being
sought to unravel the intricate decisions formulated by the model.
The crux of our inquiry lies in the conviction that XAI, by shedding light on the rationale behind diagnostic decisions, holds the potential to
augment the dependability and acceptance of AI applications in clinical settings. By accentuating the pivotal role of explainable artificial
intelligence in the context of tuberculosis diagnosis, this study aspires to cast a meaningful ripple effect on forthcoming research endeavors
and practical implementations in the field. The broader embrace of AI-driven methodologies for disease diagnosis holds promise in advancing
global initiatives aimed at curtailing the impact of tuberculosis through the optimization of early intervention and treatment protocols.
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2. Related Works

The TX-CNN method is a proposed approach for detecting tuberculosis in chest X-ray images [1]. In this method, convolutional neural
networks are trained to learn and detect the characteristic features of TB in chest X-ray images. It is believed that TX-CNN has the potential
to surpass existing methods in TB screening and diagnosis.

Pre-trained CNNs are convolutional neural networks trained on large datasets beforehand and successful in general object recognition tasks.
In this study, pre-trained CNNs have been utilized as feature extractors for TB detection, and competitive results have been achieved when
used for this purpose [2]. Pre-trained models can be trained with less labeled data and can yield successful results on more general datasets as
well. Due to these characteristics, they require fewer computational resources and can be applied more quickly compared to models trained
from scratch, especially for specific tasks such as TB detection.

The potential of XAI within the industry has been thoroughly examined, particularly focusing on the implementation of natural language
processing solutions at companies like Trivago, shedding light on the challenges faced by commercial AI solutions in this field [3].

Research on the use of chest X-ray images for tuberculosis diagnosis and localization has been reviewed [4]. In these studies, the value and
effectiveness of chest X-rays as a primary screening tool for tuberculosis diagnosis have been addressed. Additionally, emphasis has been
placed on how chest X-ray images can be utilized to determine the localization of TB lesions and monitor the progression of the disease.

It demonstrates the significant role that Convolutional Neural Networks (CNNs) can play in the accurate and automatic detection and
classification of TB. The use of pre-trained CNNs highlights the potential applications for early and accurate diagnosis of TB [5]. This
approach may enable healthcare professionals and medical systems to identify and manage TB cases more effectively, leading to faster
treatment of patients and preventing the spread of the disease.

They have presented an innovative methodology for the temporal and spatial characterization of toxic substances known as BTEX. Utilizing
receptor-oriented air circulation modeling and AI techniques, they have demonstrated the possibility of extracting valuable information from
a single measurement point [6].

A method for predicting the impact of climate change on building cooling energy consumption using XAI has been developed. Through
scenario-based approaches, meaningful and reliable projections have been provided to decision-makers, aiming to achieve climate-resilient
and sustainable development goals [7].

The application of XAI in deep learning-based medical image analysis has been extensively explored. Emphasizing the importance of
transparency, particularly in high-risk areas such as medical image analysis, their overview highlights the increasing demand in this field [8].

The use of machine learning techniques as a tool for tuberculosis (TB) diagnosis represents a significant advancement in the healthcare
sector [9]. It suggests that machine learning algorithms could be utilized to provide additional assistance to healthcare professionals in TB
diagnosis, thereby improving the treatment process by enabling faster and more accurate recognition of TB.

Automated machine learning models have also been successful in predicting TB [10]. Machine learning models trained on synthetic data
have shown the ability to predict TB with high accuracy and sensitivity. This could play a crucial role in the early detection and treatment of
the disease.

TB-Net is a proposed deep learning model for screening high-risk populations and early detection of TB using chest X-ray imaging
[11]. This customized deep learning model could be integrated into widespread screening programs for TB and play a significant role in
community-based healthcare services. TB-Net is considered to be a critical tool in ensuring early diagnosis and initiating treatment.

They have examined a new dataset using deep learning algorithms and visualized outputs with Grad-CAM, demonstrating the application of
XAI in diagnosing paratuberculosis from histopathological images [12].

Three different XAI methods have been evaluated on CNN models designed for classifying lung cancer from histopathological images.
These studies are considered a significant step towards transparency in black-box models [13].

A clinician-assisted intelligent workflow for retinal imaging has been proposed. This approach aims to enhance transparency in decisions
related to systemic disease detection, thereby increasing reliability in clinical practice [14].

Tuberculosis detection in chest X-rays is an important method for recognizing the disease [15]. Machine learning and deep learning methods
have been systematically addressed in this area. This study may facilitate the development of new and improved algorithms for accurately
identifying TB in chest X-rays.

Efforts have been made to develop multi-scale Local Interpretable Model-Agnostic Explanations (LIME) for image classification. This work
demonstrates the ability of XAI methods applied to CNN models to provide explanations through heatmaps at coarse to finer scales [16].

The utility of current neuroscience knowledge in designing biologically hierarchical and modular architecture (BHMA) models of the brain
has been the focus. This perspective offers insights into the use of these models in spatial learning tasks [17].
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Modern deep learning methods and XAI approaches have been employed to address skin cancer detection. These studies are evaluated as a
significant step in improving diagnosis in medical image analysis and laying the groundwork for future developments [18].

3. Materials and Methods

3.1. Dataset

A collaborative team of researchers from Qatar University in Doha, Qatar, and Dhaka University in Bangladesh, in partnership with
collaborators from Malaysia and medical experts from Hamad Medical Corporation and Bangladesh, has created a comprehensive chest
X-ray database. This database encompasses a collection of images, including Tuberculosis (TB) positive cases as well as Normal images. In
our latest release, 700 TB images are publicly available, while an additional 2800 TB images can be accessed through a straightforward
negotiation process via the NIAID TB portal [19]. Additionally, the database contains 3500 images representing normal cases. Image
samples from the dataset are provided, as seen in Figure 3.1.

Figure 3.1: Tuberculosis (TB) Chest X-ray Database dataset examples

3.2. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) play a critical role, especially in medical imaging applications. Despite their effectiveness in learning
complex patterns from image data, understanding the internal decision-making processes of these networks is challenging [20]. Therefore,
the internal decision-making processes of these networks are referred to as a ”black box” and criticized. For example, an illustration of a
”black box” example of this Convolutional Neural Network model is seen in Figure 3.2.
In the model used in our research, there are three Convolutional Layers (Conv2D). The sizes of these layers are 32, 64, and 128 respectively.
These layers are used to extract feature maps of size (3x3) from input images of size (150x150) and to learn these features hierarchically.
Following each convolutional layer, there is a MaxPooling Layer (MaxPooling2D). Max pooling is applied to reduce the size of feature
maps and focus on important features. Subsequently, Fully Connected Layers (Dense) come into play. The Flatten layer flattens the feature
maps extracted by the convolutional layers, making these features suitable for the utilization of fully connected layers. The location of these
layers is referred to as a ”black box.” The output layer of the model includes a sigmoid activation function for the binary classification task,
allowing the model to express the result as a probability between 0 and 1. For a better understanding of the model used in this study, it is
modeled as seen in Figure 3.3.
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Figure 3.2: Example of the ”black box” model of Convolutional Neural Network

Figure 3.3: Used convolutional neural network (CNN) model

3.3. Explainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) is an effort aimed at elucidating the internal workings of complex artificial intelligence models,
often referred to as black boxes. Understanding these models can be challenging due to their intricate structures and millions of parameters
[21]. XAI has been developed to overcome this challenge and make the decisions of these models transparent and understandable for humans.
Transparency contributes significantly to reliability and broader acceptance, particularly in industries like healthcare. The example illustrated
in Figure 3.4 visually depicts the impact of Explainable Artificial Intelligence on a black box model.
While advanced deep learning models, particularly in fields like medical imaging, can be effective, uncertainties about how these models
make decisions may undermine their reliability. XAI techniques, such as SHAP and LIME, are employed to reduce these uncertainties and
elucidate the internal decision processes of black box models. In this context, techniques like SHAP and LIME provide effective tools to
understand which features a model focuses on when making a specific prediction or diagnosis.

Figure 3.4: The impact of explainable AI on the black box
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3.4. SHAP (SHapley Additive exPlanations)

Explainable Artificial Intelligence (XAI), particularly when using SHAP (SHapley Additive exPlanations), allows us to discern the
contribution of each feature in chest X-ray data to the model’s predictions. For example, in the case of Tuberculosis diagnosis, SHAP can
explain pixel by pixel which features in X-ray images make the most significant contribution, either negatively or positively, to the model’s
decision [22]. Transparency in this decision-making process reinforces confidence in the capabilities of the artificial intelligence model.

φi = ∑
S⊆N{i}

|S|!(M−|S|−1)!
M!

[ fx(S∪ i)− fx(S)] (3.1)

As seen in Equation 3.1, Shapley values are a method that fairly assesses the impact of a feature on the model output in the presence of other
features. ∆ωi represents the Shapley value for feature i, and to compute this value, the sum of the contributions of the feature’s impact on the
model output across coalitions is calculated. The set S represents the total number of variables affecting the model output, and N denotes
the number of levels of variables influencing the model output. M specifies the number of variable selections for a particular feature. The
calculation is performed over the entire set S, excluding the i feature, with the condition S⊆ N \{i}. The contribution of each coalition is
weighted based on the size of the S set, and the result relies on the difference between the union of the variables influencing the model output
(S∪{i}) and the previous state with the S set. These contributions are then summed with appropriate weights to obtain the Shapley value for
feature i. These computations are used to fairly measure the contribution of a feature to the model prediction.

fx(S) = E[ f (x)|xs] (3.2)

As seen in Equation 3.2, fx represents the change in the output included by Shapley values for a specific feature. xS represents the set of
observed conditions in the event of the occurrence, and E symbolizes the expectation operator. The formula is used to calculate the expected
value of the model output under a specific feature set, expressing the concept of conditional expectation in probability theory.

g(z
′
) = φ0 +

M

∑
i=1

φiZ
′
i = bias+∑ f eatureContribution (3.3)

In Equation 3.3, g(z′) represents the output of a prediction, which is computed as the sum of a constant term φ0 (usually representing a
bias value) and the contributions of each input feature Z′i , typically expressed as weights φi, multiplied and summed. This formulation is
used to understand to what extent each input feature contributes to a prediction. The SHAP method utilizes Shapley values to determine
these contributions, elucidating the net effect of an input feature on the prediction. This is a useful tool for understanding how predic-
tions are generated by a model and determining which features are important, particularly in the analysis of complex models and large datasets.

Let’s take an example from the Tuberculosis (TB) Chest X-ray Database to better understand how SHAP works. When applied to this
example, SHAP generates explanations as seen in Figure 3.5 and Figure 3.6.

Figure 3.5: SHAP interpretation of the first randomly selected image from the dataset.
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Figure 3.6: SHAP interpretation of the second randomly selected image from the dataset.

3.5. LIME (Local Interpretable Model-agnostic Explanations)

Local Interpretable Model-agnostic Explanations (LIME) is a technique specifically designed in the field of Explainable Artificial Intelligence
(XAI) to make the decisions of complex artificial intelligence models, commonly referred to as ”black boxes,” more understandable. This
method is adapted to locally explain the prediction decision of a model for a specific data point or instance.

ξ (x) = argmax
g∈G

I( f ,g,πx)+Ω(g) (3.4)

As seen in Equation 3.4, when g is selected, it chooses the best explanation model within the set G using the argmax operator. The selected
model is determined by the part I ( f ,g,πx) that measures how well g mimics f in the πx region of g. The I ( f ,g,πx) function measures how
successfully G imitates f in the region defined by πx, and demonstrates the interpretability of the model’s behavior around a specific input
example. Additionally, the Ω(g) function measures the complexity of the selected explanation model and determines how simple or complex
the explanation is.
To better understand how LIME works, the differences between the images taken from the Tuberculosis (TB) Chest X-ray Database and used
in Figures 3.5 and 3.6 are highlighted by applying LIME. The generated explanations by LIME are depicted in Figures 3.7 and 3.8.

Figure 3.7: LIME output of the image taken in figure 3.5.

Figure 3.8: LIME output of the image taken in figure 3.6
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3.6. Experimental study and results

In this study, the classified Tuberculosis (TB) Chest X-ray Database using a Convolutional Neural Network (CNN) model is used. The
interpretability of the classification model is enhanced by integrating two explainable artificial intelligence techniques, namely SHAP and
LIME. By comparing the results, it was observed that SHAP could better explain the classification of X-ray images related to Tuberculosis
(TB) compared to LIME.
The training of the proposed convolutional neural network model and the interpretability of explainable artificial intelligence models were
conducted. This process took place on a computer with the hardware specifications as seen in Table (3.1).

Class Image Number
Memory (RAM) 16GB (2x8GB) DDR4 2933MHz
Processor Intel i7-10750H-2,60GHz Turbo Boost 5,0GHz
Graphics Card, Memory Nvidia GTX1650 Ti 4GB GDDR6

Table 3.1: Hardware specifications of the computer used in the paper.

A confusion matrix is used to evaluate the performance of a classification model. This matrix is created by comparing the predictions of a
classification model on a set of test data for which the true values are known. It allows for a clear analysis of the model’s successes, errors,
and mispredictions. The confusion matrix of the model, along with the values TP (True Positive) 3494, TN (True Negative) 692, FP (False
Positive) 6, FN (False Negative) 8, is presented in Figure 3.9. These values provide detailed insights into the reliability and accuracy of the
classification model.

Figure 3.9: Convolutional neural networks confusion matrix outputs.

TP (True Positive): Instances where the model correctly predicts the positive class.
TN (True Negative): Instances where the model correctly predicts the negative class.
FP (False Positive): Instances where the model incorrectly predicts the positive class.
FN (False Negative): Instances where the model incorrectly predicts the negative class.
Performance metrics such as precision, recall, and accuracy are obtained from the confusion matrix values. Precision measures how many of
the samples predicted as positive are actually positive. It expresses the ratio of true positives to the total positive predictions, as shown in
Formula 3.5.

Precision =
T P

T P+FP
(3.5)

Recall measures how many of the true positives are detected. It expresses the ratio of true positives to the total number of positive examples,
as shown in Formula 3.6.

Recall =
T P

T P+FN
(3.6)
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Accuracy expresses the ratio of correctly predicted examples to the total number of examples. It is a metric that evaluates the overall model
performance, as shown in Formula 3.7.

Accuracy =
T P+T N

T P+T N +FP+FN
(3.7)

F1-score balances precision and recall. This metric tends to minimize both false positives and false negatives, especially in balanced
classification problems. Formula 3.8 illustrates the F1-score.

F1 = 2× Precision×Recall
Precision+Recall

(3.8)

The evaluation metrics for the Convolutional Neural Network (CNN) model used in the study, including F1 score, precision, recall, and
support, are provided in Table 3.2.

precision recall f1-score support
NORMAL 0.91 0.87 0.89 234

TUBERCULOSIS 0.93 0.95 0.94 390

Table 3.2: Classification report

An example of artificial intelligence explainable to the TP example of the confusion matrix:

Figure 3.10: Original image Figure 3.11: LIME output

Figure 3.12: SHAP output

The confusion matrix derived from the results of our CNN model applied to the Tuberculosis (TB) Chest X-ray Database is specifically
illustrated with a randomly selected example of Tuberculosis-free (TP) instances in Figure 3.10. The results obtained by applying two
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interpretable artificial intelligence models, SHAP and LIME, to this example are presented in Figures 3.11 and 3.12, respectively. As
observed in Figure 3.11, the SHAP model comprehensively explains the areas where Tuberculosis disease may exist in both negative and
positive directions, providing more detailed information about whether the individual has Tuberculosis. In Figure 3.12, the LIME model
outlines the regions where Tuberculosis disease could be present. Upon examining these results, it is observed that, compared to LIME,
SHAP provides better results in explaining Tuberculosis disease.

An example of artificial intelligence explainable to the FP example of the confusion matrix:

Figure 3.13: Original image Figure 3.14: LIME output

Figure 3.15: SHAP output

The confusion matrix derived from the results of our CNN model applied to the Tuberculosis (TB) Chest X-ray Database specifically
showcases a randomly selected example of instances with Tuberculosis disease (FP) in Figure 3.13. The results obtained by applying
explainable artificial intelligence models, SHAP and LIME, to this example are presented in Figures 3.14 and 3.15, respectively. As seen in
Figure 3.15, the applied SHAP model elaborately explains the areas where Tuberculosis disease may be present in the positive direction,
providing more detailed information about the likelihood of the individual having Tuberculosis. In Figure 3.14, the applied LIME model
outlines the boundaries where Tuberculosis disease could exist. Upon examining these results, it is observed that SHAP performs better in
explaining Tuberculosis disease compared to LIME.
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An example of artificial intelligence explainable to the FN example of the confusion matrix:

Figure 3.16: Original image Figure 3.17: LIME output

Figure 3.18: SHAP output

An image representing a case of Tuberculosis (TB) with false predictions of the absence of the disease, randomly selected from FN instances
in the confusion matrix of our applied CNN model on the Tuberculosis Chest X-ray Database, is presented in Figure 3.16. Results obtained
by applying explainable artificial intelligence models, SHAP and LIME, to this example are shown in Figures 3.17 and 3.18, respectively. As
seen in Figure 3.18, the applied SHAP model elaborately explains the areas where Tuberculosis disease may be present in both negative and
positive directions, providing more detailed information about the individual’s likelihood of not having Tuberculosis. In Figure 3.17, the
applied LIME model outlines the boundaries where Tuberculosis disease could exist, as shown in Figure 3.16. Upon examining these results,
it is observed that SHAP performs better in explaining the absence of Tuberculosis compared to LIME.
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An example of artificial intelligence explainable to the TN example of the confusion matrix:

Figure 3.19: Original image Figure 3.20: LIME output

Figure 3.21: SHAP output

An image illustrating a case randomly selected from the TN instances of the confusion matrix of our CNN model applied to the Tuberculosis
(TB) Chest X-ray Database, where the disease is not present but a wrong prediction of the individual being diseased has been made, is
provided in Figure 3.19. Results obtained by applying explainable artificial intelligence models, SHAP and LIME, to this example are
presented in Figures 3.20 and 3.21, respectively. As seen in Figure 3.21, the applied SHAP model elaborately explains the areas where
Tuberculosis disease may be present in both negative and positive directions, providing more detailed information about the absence of
Tuberculosis in the individual. In Figure 3.20, the applied LIME model outlines the boundaries where Tuberculosis disease could exist, as
shown in Figure 3.19. Upon examining these results, it is observed that SHAP performs better in explaining the absence of Tuberculosis
compared to LIME.

4. Conclusions

In this study, artificial intelligence (AI) applications in the diagnosis of tuberculosis (TB) were examined in depth. Specifically, the focus
was on developing a Convolutional Neural Network (CNN) model for the classification of TB chest X-ray images. Explainable artificial
intelligence (XAI) techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations)
were integrated to make the decision-making processes of this model more understandable.

Such mathematical model-based techniques contribute to making models used in medical imaging applications more transparent, understand-
able, and trustworthy.

The research addressed a significant issue faced by AI applications in the healthcare domain: lack of transparency and reliability. Through
the use of XAI techniques, it was demonstrated that the decisions of AI models can be made more understandable. This increases trust in
AI-supported diagnostic systems in clinical settings and enables healthcare professionals to make more informed decisions.

In particular, through the comparison of XAI techniques such as SHAP and LIME, SHAP was found to be more effective in TB diagnosis.
SHAP provided more reliable and detailed information on the presence or absence of TB disease by offering detailed explanations in the
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classification of X-ray images.

Future research should focus on further development and integration of XAI techniques for medical imaging applications. This can enhance
the reliability of AI models and enable their more effective use in clinical applications. Additionally, conducting in-depth analyses with
larger datasets and using different XAI techniques is critical for improving the performance of AI models.

The results of this study demonstrate that enhancing the reliability and effectiveness of AI-based diagnostic methods in medical imaging can
positively contribute to patient treatment and recovery processes. Therefore, future research should focus on broader and more effective use
of XAI techniques and making AI models more reliable.
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