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ABSTRACT The aim of this study is to forecast the amount of tax complaints filed with the Turkish Ombudsman
in the future and whether or not policymakers require a specific tax Ombudsman. The polynomial regression for
discrete data set is proposed to fit the number of events of tax complaints in the period from years 2013 to 2021.
The artificial data set is generated by models which are polynomial regression and parametric distribution. The
location, scale and shape parameters are determined according to the smallest value between the observed
and predicted dependent variable. After determining the smallest value for the tried values of shape parameter
and the parameters of polynomial regression, the best value determined by grid search for shape parameter is
around 1.07. Thus, the heavy-tailed from of exponential power distribution is gained. The artificial data sets
are generated and sorted from the smallest to biggest ones. The maximum values are around 700 and 800
which can be regarded as future prediction because the distance among observations is taken into account
by models from polynomial regression and parametric distribution. Since the polynomial regression and the
parametric models are used simultaneously for modelling, the distance among observations can also be
modelled by parametric model as an alternative approach provided.
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INTRODUCTION

Estimation is a challenging topic that needs to be improved by ad-
vancing the tools in the statistical literature. Many data sets in the
applied sciences should be modelled efficiently. For example, the
number of Ombudsman who hear complaints from citizens about
failures, actions and decisions by public authorities is discrete data
such that natural numbers are used to represent these kind of data
sets. The main aim of the Ombudsman is to fight against abuse of
rights, omissions, wrong decisions and delays for citizens. As the
institution of the ombudsman is important, a design for estimating
the number of Ombudsman will be an important issue in the near
future. A combination of polynomial regression as a parametric
model based on the regression case and the parametric distribu-
tion, for example the exponential power distribution, based on the
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distributional form of dependent variable or any variable can be
proposed to set an approach for forecasting (Mineo and Ruggieri
2005). Note that if the data set is discrete, the discrete models
such as binomial, generalized form of binomial, etc. can be used
to fit the data set. If the data set is continuous, the continuous
parametric model such as exponential power distribution and its
variants such as skew, model, trimodal family for a known para-
metric models can be generated and used. The compound forms of
distributions are also derived to model the data set more efficiently
as far as we can do (Balakrishnan and Nevzorov 2004).

In the working principle of nature providing the observed val-
ues after the experiment has been performed, it is not easy to imply
that a data set can be only one parametric model. There is a hard
indeterminacy in the nature of data formation. For this reason, the
regression form can be a bridge for us to fit the data if we insist
on driving the tools as alternative objectives in this study. Since
estimation is a fluctuation around function f used for the represen-
tation of parametric model such as exponential power distribution,
that is, we can get f̂ representing the estimated form of f due to the
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finite sample points of f , it is logical to suggest that a regression
form can be used for data to perform a modelling instead of using
directly parametric model to fit the data set (Vila et al. 2020, 2022).

Especially, since we have small sample size of data, it can be a
gate for us to overcome the problem about the case where we have
few data that will be needed to fit precisely as far as we can achieve
the joint work between polynomial regression as a parametric
model and the parametric distribution when compared by the
non-parametric forms (Härdle et al. 2004; Hunter 2023). Thus, we
can have an applicable form when we use the computational tool
for this marriage. Especially when the sample size is small, the
parametric models cannot be very powerful because we do not
have enough data where the data set comes from or it is very rough
to know how the real data set has occurred while the experiment
is being conducted.

Note that a data set can show a regression or a polynomial
movement/pattern. Since we are proposing to use the regression
equation in order to model the data set observed over time, the
time series form can be suggested as a regression case. On the
other hand, the bulk of the data at each time throughout the time
period cannot be a fixed variance. In particular, it is reasonable
to observe that a non-identical distributed data throughout time
is indispensable observed in the nature of the data set. That is,
there may be heteroscedasticity (Mokhtari et al. 2022). Such non-
identical movement or heteroscedasticity can be modelled by using
the peakedness parameter p in the exponential power distribution
when the regression case is used. On the other hand, there is a
struggle between the chosen parametric model for the distribution
of the error term of the regression equation to determine whether
or not there is heteroscedasticity in reality. There may be another
reason to imply the existence of heteroscedasticity if we change
the analytical form of the regression model.

In the regression equation, the square of the error term, known
as the estimated variance, is used to generate the artificial dataset,
that is, we want to estimate the scale parameter for the dataset
using the regression approach with parametric model based on
the peakedness parameter p. This approach is an alternative if
we want to estimate the scale parameter for the data set. Since
the discrepancy can be detected by the error term in the regres-
sion, the generation for artificial data can also be done by using
the peakedness parameter of the exponential power distribution
(Mineo and Ruggieri 2005). On the other hand, it is reasonable
to expect that the peakedness (p) and scale (σ) parameters can
interact, because they are parameters which are responsible for
changing the shape of the function. Note that the interaction can
lead to occur the heteroscedasticity. The main problem is about
the future prediction of tax complaints when the polynomial re-
gression and parametric model are used together. Thus, we can
perform an efficient fitting by using not only a trend as regression
(location) but also the error terms of polynomial regression model
which are modelled by exponential power distribution. It should
be noted that heteroscedasticity can be modelled as an alternative
approach if the parametric distribution is used.

Taxation is an important and effective way to manage govern-
ment resources fairly. There are many studies to model the tax of
governments which use the distribution assumption to model the
tax managed by governments. The role of tax is investigated and
the different suggestion on the tax regulation in the management
modelling or planning in the government have been carried out
in the different and directions which are still investigating what
the government policy should be or some markers in the finan-
cial markets push or drive the policy management to increase the

efficiency and correctness on the process improvement (Bala and
Biswas 2005). It is generally accepted that the tax management is
very problematic and the Ombudsman is an inevitable community
for the set and built law system to touch the correct and effective
decision in the timing period in the tax system. We believe that
the Ombudsman should be supported and improved by means of
using different directions. Thus, the role of tax management can
be improved and more accurate decision can be reached by the
responsible drivers in the system of government policy.

These improvements, such as rotations, directions, suggestions,
etc., make an automatic control and checked feedback in the work-
ing principle of the set system, which should be improved simulta-
neously, no matter when it finally stops. In other words, it should
be a system which is a rounding around itself and it should be
controlled by independent communities which can work out inde-
pendently and put their suggestions briefly touching every point
of the picture carefully and do not cover any potential uncov-
ered parts in the tax system management. Such a situation can be
achieved by carrying out the stricter effective analysing procedure
which will not be influenced and touched. The reality of the cur-
rent system should have its clarifications in order to discover the
hidden parts in the system. For this purpose, the Ombudsman is
a key institute for us to round up the system and so the quality
control can be tried to be guaranteed (Serrano 2007).

Basically, this institution listens to taxpayers’ complaints and
solves their problems. It also improves the organisation of the tax
service. In America, for example, the name is even more different.
The Taxpayer Advocate Service is an institution in the US that
intervenes when the Internal Revenue Service does not want to
do so. There is at least one local Taxpayer Advocate in every state.
There is no such thing as a tax ombudsman in US tax law. In Spain,
as in other countries, there is a tax ombudsman who depends on
the government. He balances the relationship between the tax-
payer and the administration. In the Law of Taxpayers’ Rights
there are five functions of the Tax Ombudsman. These are; infor-
mative action, democratic control, alternative dispute resolution,
and improving the moving legal system (Bala and Biswas 2005).

The organization of the paper is as follows: Section for pre-
liminaries introduces the parametric model and the estimation
method. In next section, the problem is solved by using models
from polynomial regression and parametric distribution. The nu-
merical results and figures are given as a separate section. The last
section is divided for the conclusions.

PRELIMINARIES

Parametric model
The normal distribution is commonly used and it is a popular
distribution. The generalisation of the normal distribution and
the different probable directions are proposed by (Çankaya 2018).
The exponential power distribution is one of them and it has a
peakedness parameter being responsible for determining the peak
of the function. The empirical distribution of the data can be a way
to observe how the shape of the function behaves.

The analytical expression of the exponential power distribution
is given by the following form:

f (x; µ, σ, p) =
1

2σp1/pΓ(1 + 1/p)
exp{−

∣∣∣∣ x − µ

p1/pσ

∣∣∣∣p
} (1)

µ ∈ R, σ > 0, p > 0 represents parameters for location, scale and
peakedness of the function, respectively. The exponential power
distribution is the special form of asymmetric bimodal exponential
power distribution (Mineo and Ruggieri 2005; Çankaya 2018).
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Estimation method: Maximum likelihood estimation
If there is a distribution of the error terms in the regression model,
or the error terms are assumed to have a distribution such as
normal, Student t, exponential power, asymmetric bimodal expo-
nential power distribution (Çankaya 2018) etc., then the error terms
can be a member of a parametric model. If a distribution is used in
the regression model as the location of the parametric model, then
maximum likelihood estimation is preferred to estimate the pa-
rameters of the regression model. There are important properties
which are efficiency, consistency, minimum variance, etc. when
maximum likelihood estimation method is used (Lehmann and
Casella 2006).

The function lmp in ’normalp’ at RStudio 2023.09.1+494 free
open statistical software is used to fit a regression model with the
dependent variable y and the independent variables x1, x2, · · · , xk.
It can be used when the errors are distributed as an exponen-
tial power distribution (Mineo and Ruggieri 2005; Lehmann and
Casella 2006). The maximum likelihood estimation method gives
us advantage of using the assumed parametric model to estimate
the regression parameters when the errors are distributed as the
corresponding parametric model. Each observation can be consid-
ered as an output, i.e. there can be a regression expression that
can be applied to find the relationship between the observations
in the period. The next section provides the detailed discussion
and methodological contribution to assess the distribution of the
variable y and the variable ε. Thus, the regression expression, as
a fixed part that tries to represent how a real relationship exists
between variables, can be used to determine the distribution of the
error term ε.

DESCRIPTION OF THE PROBLEM

There is a potential overlap between the chosen regression model,
with its corresponding distribution of the error term of the regres-
sion model, and the chosen kernel smoothing techniques which
are based on the parametric or semi-parametric approaches. In
modelling, not only the assumed regression model but also the
distribution of the error terms are two components that influence
each other. Thus, if we can determine what the distribution of the
error term can be, then the distribution of the observation term y
as a dependent variable will also be determined. Each data is the
replication of the previous case or there is a potential dependence
among the previous cases of the data set, as in the case of the ran-
dom walk in the stochastic process (Iacus et al. 2008). The data set
can be reorganised by using the regression approach which we can
consider to apply. It is logical to expect that a data set can be repre-
sented by a polynomial approach. Since a polynomial approach
can be performed on the data set, the future prediction can be
performed by polynomial regression. In the context of the artificial
data set, it is reasonable to perform a random number generation
procedure to observe which data can be artificially observed.

In order to fit the data set via the proposed function, the poly-
nomial regression approach can be used. Secondly, a parametric
model for error term of regression can be suggested. After the
regression case can be done, the peakedness parameter of the ex-
ponential power distribution can be determined by using the grid
search approach. Since we perform such an approach to deter-
mine the value of the peakedness parameter p for peakedness,
the computational cost of simultaneously estimating the location,
scale and peakedness parameters can be solved as an alternative
approach for modelling. This is an important contribution when
the sample size is small and we need to use a parametric model
to generate the artificial dataset. Why do we need to generate an

artificial dataset? The future prediction or the probable numerical
values for the questionnaire of phenomena can be determined,
as an alternative approach if the regression case is not the only
solution for the future prediction.

In other words, it is logical to observe that each data can be a
member of a polynomial movement in the forthcoming situation
in an experiment. Even if we assume that each data is indepen-
dently distributed, it is reasonable to perform a polynomial motion
among the data set. Independence can be a restrictive approach,
or an alternative comment, is that it is already well known that
a number can be made to belong to a polynomial function. A
rounding around a data can be produced by another data, which
shows that it is possible to carry out modelling using a polynomial
approach based on the regression case. In the statistical literature,
this approach should be preferred when the computational cost
increases as the number of parameters to be estimated increases.
In our approach, the first step was to determine the peakedness
parameter using the grid search algorithm. The second step is the
estimation of the location and scale parameters when the peaked-
ness parameter p is given as a fixed value determined by using
the case of regression with polynomial motion. Finally, random
numbers are generated for the estimated values of the position and
scale parameters. The maximum likelihood estimation method
is used to obtain the estimators of the parameters when the fixed
value of the peakedness parameter p determined by the polyno-
mial approach is given.

Econometricians search for regression models to fit the data
set based on the time series sense. Statisticians make the overlap
between the chosen regression model and the error term (ε) of the
regression model. Both scientists try to find the best strategy for
modelling the data set. The advantage of being a statistician may
be more beneficial because a statistician focuses on the distribution
of the error term. The distribution of the error term in the equation
(2) corresponds to the distribution of the variable y which repre-
sents the observed value. Even if the nature of the observed value
of tax complaints is discrete, the polynomial regression model can
also be proposed to fit the number of events in the period. In this
case, since the events y(t) := yt, where t represents time, depend
on time as in the case of the random walk in the stochastic process,
there can be a potential correspondence from the discrete data to
the continuous data.

For further discussion, the tax complaints occur due to many
reasons based on the continuous observations from the govern-
ment money process. The currency and the economic indicators
are responsible tools that lead to have the continuous observations.
That is, in other words, when we make a projection where the
discrete data comes from, it is observable to detect that the con-
tinuous observations touch occurring the discrete data sets. Even
if the binomial regression or the corresponding counterparts are
used to model the discrete data sets, the continuous case is more
flexible to generate artificial data sets; because the peakedness pa-
rameter is more important to determine the distribution of the data
set. On the other hand, the continuous data already represents
the discrete data as a neighbourhood framework. In addition, the
binomial distribution converges to the normal distribution with
peakedness parameter p = 2 in the exponential power distribution.
In this direction, there can be a transfer from the discrete data to
the continuous data (Sicuro et al. 2015).

It should be noted that even if the discrete data are analysed in
the regression case, the continuous distribution can be used for the
application; because there is a correspondence between the polyno-
mial function and the gamma function (Alzer and Grinshpan 2007).
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In this sense, as discussed above, the peakedness parameter plays
a key role in determining the distribution of the data. The exponen-
tial power distribution is symmetric around the location parameter
and so the general tendency of the economic indicators is assumed
to be symmetric due to the nature of the experiments; because the
government applies the tax rule equally balanced on the people in
the country and the symmetric distribution can play the role for
modelling the data sets output by many reasons occurred on the
economic indicators (Haberman 1989; Coles et al. 2001; Mineo and
Ruggieri 2005; Çankaya 2018; Çankaya and Arslan 2020).

Materials and Methods

Regression model Regression models are generally used to set
the relationship between at least two variables. The nature of the
dependent and independent variables can be determined accord-
ing to what a researcher investigates. When the observations from
the experiments are measured, they are analysed according to the
researcher’s objective. In our framework, a polynomial regression
equation is used to model the observations by using the sequence
occurred over time. In other words, in mathematical terms, the set
of data or observations can be expressed in terms of the movement
over time.

The assumed regression model for representation of reality is
as follow:

y = a0 + a1xp1 + a2xp2 + a3xp3 + ε (2)

where ε is a random variable assumed to have an exponential
power distribution. The parameters p1, p2 and p3 are responsible
for the different degrees of the polynomial function in the equa-
tion (2). a0, a1, a2 and a3 are regression parameters estimated
using the lmp function with different trial values of the peakedness
parameter p.

The sampling form of the equation (2) is given by

yt = a0 + a1xp1
t + a2xp2

t + a3xp3
t + εt, t = 1, 2, · · · , n (3)

where xt = t as an explanatory variable representing the time
(year) and n is the number of sample size.

It should be noted that since the polynomial movement among
the data sets is assumed to be expressed by the polynomial regres-
sion case, it should be preferred to model the upcoming events.
It is important to note that the distribution of the error term ε
begins to play a role in determining the value of the peakedness
parameter in the parametric model used. In the general setting,
it is logical to propose a parametric model that has a peakedness
parameter. Thus, using the role of the peakedness parameter will
give us an advantage in determining the tail movement and thus
we can have a chance for future prediction instead of using the
regression case in future prediction. Such an approach makes an
alternative suggestion/contribution to the statistical literature to
determine the value of the peakedness parameter p as an alterna-
tive approach. On the other hand, the peakedness parameter p and
the powers p1, p2 and p3 in the regression model can play same
role when there is a conceptual equivalence and the definition
of the regression, i.e., E(Y/X = x) with the non-fixed value of
scale parameter (or with heteroscedasticity), takes into account, i.e.,
Y ∼ D(E(Y/X = xt), σ(X = xt)). Since the number of samples
is small, it will not be easy to determine the almost exact peaked-
ness of the assumed parametric model. For this reason, we have
provided an alternative approach to determine the peakedness pa-
rameter from the data set. The assumed model for the distribution
of ε is the exponential power one.

The nature of the occurred phenomena tricks our approach,
because tax complaints can have a heavy tailed distribution due to
the nature of the tax complaints (Jenkins 2017).

Algorithmic schema for computational procedure The following
steps show the schematic algorithm how the computational proce-
dure is conducted to reach the value of peakedness of parameter
p if the polynomial regression in equation (2) is used (see Appen-
dices).

1. Determine the peakedness parameter p by using lmp function
in the normalp package in RStudio 2023.09.1+494 software

2. Try different values of the parameters p to get the different
probable the smallest difference between the predicted y, i.e.
ŷ, and the observed y as data

3. Use the polynomial regression in equation (2)

4. Set a vector for the tried values of peakedness parameter p

5. For each values of p1, p2 and p3 which are (0, 75, 1.25],
(1.75, 2.25] and (2.75, 3.25], respectively, the values of peaked-
ness parameter p are determined according to the smallest
value, i.e. predicted error (ε̂ = y − ŷ), of the distance between
the predicted y, i.e. ŷ, and the observed y. If an appropriate
p value which satisfies the smallest value for ε̂ is determined,
then the determined value of p in the 125 000 times due to
set1=50, set2=50 and set3=50 makes the probable appropri-
ate values of p, which is obtained by each values of p1, p2 and
p3

If the number of degree of power parameter in the polynomial
regression in equation (3) is increased according to for loop given
above, the different forms of the values of p1, p2 and p3 in regres-
sion equation can be tried to model the movement among the
observations. The role of sensitivity of higher order powers p2
and p3 should be applied to fit the observations more precisely,
because the degree of polynomial regression can be versatile due
to the chosen values of p2 and p3 especially. Note that it is pos-
sible to apply different polynomial regression with higher order
polynomial power; however, the dependence structure among the
right hand side of regression equation (3) can start to be a problem,
leading to a multicollinearity problem. The dependence can be
tricked according to the chosen values of parameters p1, p2 and
p3. To avoid the more biased estimation for the parameters a0, a1,
a2 and a3 due to the probable structure of the dependence among
the variables xp1 , xp2 and xp3 , we continue to follow the regression
equation in (3). That is, the new variable xp4 or other variables
have not been added to the regression model, because the degree
of perturbation should be avoided for mathematical reasons as
well (Montgomery et al. 2021).

Since the nature of the polynomial approach can have the nega-
tive estimated values for the parameters, the forecast in the forth-
coming numbers for the occurred events from tax complaints can-
not be determined by using the regression approach directly. On
the other side of the picture, since we have few data sets for ap-
plying the regression case, the rank problem can occur due to the
number of regression parameters starting to be close to the number
of sample size n = 9 in our case (Stanimirović 2017). For this
reason, we prefer to use two steps for the approach in the future
prediction instead of doing the prediction using the regression
equation.
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NUMERICAL RESULTS

Tools: polynomial regression and correlation
The numerical results with illustrative representations are pro-
vided to observe how the regression equation produces the results
which are the estimated values for correlation, standard deviation
and their empirical probability density function (pdf) computed
by means of the EnvStats package with kernel functions (such as
Refs. (Härdle et al. 2004; Hunter 2023)) in RStudio 2023.09.1+494
software.

The parameters a0, a1, a2 and a3 in regression model at equation
(3) can be estimated and provided by the following form:

ŷ = â0 + â1xp1 + â2xp2 + â3xp3 (4)

where x is independent variable having numerical values from 1 to
the sample size n and p1, p2 and p3 are power parameters which
are responsible to make a flexible fitting on the data.

The equation (4) is used to get the predicted ŷ. The correlation
values are computed by using the correlation formula for the ob-
served y and the predicted ŷ values (Lehmann and Casella 2006).
According to the codes in appendix, the estimated values for the
correlation coefficient are given by figure 1. Figure 1 informs us
for the estimated values of correlation coefficients between the ob-
served values of y and the estimated values of ŷ given by equation
4.

The performance of future prediction depends on the degree of
the values of correlation. That is, we have success at the degree
%85 for trusting the numerical values generated artificially. For this
aim, the values at the figure 2a should be preferable to represent
the non-identically case of distributed data set, i.e., if the estimated
values of scale parameter are big, then we can have values being
far from the bulk of the data.

The estimated values for correlation coefficient
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Figure 1 ρ̂: The estimated values for the correlation coefficient

Figures 1a and 1b represent the histograms and the smoothed
form of empirical pdf according to the frequency when the band-
width from kernel estimation in EnvStats package is determined
automatically as nearly as being small. The same illustrations are
given by forthcoming figures 2-5 and 7.

The statistics for scale parameter as a dispersion measure
The following figures represent the numerical values generated
at random from the exponential power distribution with the de-
termined value of the peakedness parameter p = 1.07. These

numerical values are sorted from smallest to largest. They are
then plotted according to these sorted values. Each sorted value is
replicated and the number of replication is 10 000. Since we have
the sorted values, we have the advantage of being able to plot the
values that are the maximum and the previous ones which are
represented by (−1), (−2), (−3), etc. Thus, the probable values
which are maximum and the previous values before maximum can
be observed. It is important to note that since we are replicating,
the random data may have different values for each replication.
For such a design, there may be some cases where there are the
same numerical results in the simulation given by Figure 8.
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Figure 2 Histogram and empirical pdf for n − k in computation of
the estimated error, ε̂

Std of y and error term with bias
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Figure 3 Histogram and empirical pdf for n in computation of
the estimated error, ε̂

The distance between the observed variable y and the predicted
variable ŷ is defined as the variation. It is also called as error term ε.
The sampling form of ε, i.e., ε̂, is given by the following expression
for the exponential power distribution:

ε̂ =
1
n

n

∑
t=1

(yt − ŷt)
p̄ (5)

ε̂ =
1

n − k

n

∑
t=1

(yt − ŷt)
p̄ (6)

Comparing figures 2 and 3, the values in figure 3 are smaller
than those in figure 2 because the formula for the error term, ε, is
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1
n ∑n

t=1(yt − ŷt)
p for exponential power distribution. For the figure

(2), 1
n−k ∑n

t=1(yt − ŷt)
p, where k is the number of the estimated pa-

rameter. Note that the error term can also be considered as a scale
parameter. Then we have the estimated values of the parameter σ,
given by the figures 4 and 5.
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Figure 4 Histogram of σ̂ and empirical pdf for n − k in computa-
tion of the estimated error, ε̂

The estimated values of sigma with bias
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Figure 5 Histogram of σ̂ and empirical pdf for n in computation
of the estimated error, ε̂

Since the determined value for the parameter p is around 1.07
(see figure 7a), the behaviour of the exponential power distribution
is a heavy-tailed one. Thus, the future prediction may be more
representative for the target in which we can safely use it, taking
into account the predictive performance of our approach for the
probable cases in the future. Since the number of sample size n
is 9, it cannot be enough to suggest numerical values from the re-
gression model in equation (2), because the polynomial movement
cannot be enough to evaluate how the future occurs. It is possible
to use other methods based on the mode movement that can also
be taken into account to model and analyse the real data set. In this
case, there can be parametric and non-parametric models that can
produce the light-tailed movement. In such a case, we can have the
numerical values that cannot be far from the location as the central
tendency of the empirical data set. In our statistical analysis, the
year 2100 can also be proposed for the future prediction.

In each replication, the number of samples is 100. According to
the estimated values used for the location and scale parameters, we
can have the negative values due to the nature of the parametric
model used, which is the exponential power distribution with p =

1.07. Since the awareness of the population about the Ombudsman
system is reflected in different areas of the tax and financial system,
the numbers that represent the case of the Turkish Ombudsman
consulted for the tax complaints can be increased. It is surprisingly
important to note that the results in the 2013-2021 period provide
the analysis results that give the heavy-tailed function, which can
provide an advantage for future prediction even if the numerical
values are discrete.

It is known that the discrete data can show the representation
of a continuous case if the number of replications of events in
the experiments is increased or the big law of large numbers is
applied as an asymptotic behaviour. For example, the binomial
distribution approaches the normal distribution (Lehmann and
Casella 2006). The figure 6a showing the scatter plot shows a
polynomial movement, which may be one approach we propose
to model the data set.

Illustrative purposes for observing behaviour of artificial and real
data sets
Figure 6 shows the scatter plot, the empirical probability and the
empirical cumulative distributions of real data set with sample size
n = 9. Figure 6b shows that there can be a bimodality on the data
set. However, even if data is discrete and shows a bimodality, this
is an extra situation needed to investigate. In our approach, we
keep to follow polynomial regression and one-mode parametric
model called as exponential power distribution, because the tax
and the related part being Ombudsman can have a movement
based on the time series.
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Figure 6 Illustrative representation for real data
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Figure 7 shows the histogram, empirical and cumulative dis-
tributions of the determined values of the peakedness parameter
p of the exponential power distribution. Cumulative distribution
function (cdf) is the cumulated form of probability density function
(pdf). Note that the bimodality in figure 6b can also be modelled
by bimodal distribution. However, the main aim is to determine
the tail behaviour in order to where the maximum values can be
around. It should be noted that the empirical distribution of the
determined values of the parameter p can be modelled using the
smooth kernel estimation method (Härdle et al. 2004); however,
the chosen kernel plays the role of determining the probabilities.

Instead of using the location estimation for the parameter p
in its probable empirical distribution, we use the mean of the
determined values of the peakedness parameter p with a sample
size of 125 000; because we generate the artificial data set when the
parameter p is close to upper values of 1, which will not affect the
more accurately generated probable random numbers (see figure
8). On the other hand, since the maximum likelihood estimation
method is used, the distribution of the determined values of p is
expected to be asymptotically normal, which may allow to use
the arithmetic mean as a statistic for the values of p (see figure 7b)
(Lehmann and Casella 2006).

On the other hand, the values for the parameter p is around
1.07, which means that the synthetic data can get values from the
tails, that is, it is possible to observe the values which is bigger
than the real values, 179 as a maximum value. In such scenario, we
add the role of distance among observations while performing the
analysing on the data set. If the values of p tends going to 1 which
leads to get reaching more degree of heavy tails for the exponential
power distribution, it is reasonable to observe the values which
can be bigger than 800. The codes in the appendices can be used to
generate the synthetic data sets.

Figures 8 and 9 show the different numbers of estimated values
generated by the exponential power distribution. In figure 9, the
estimated value of the scale parameter is larger than in figure 8,
which is why the estimated values from the simulation for the
Ombudsman are around 800. An additional comment is that after
sorting the synthetic dataset from smallest to largest, the previous
values that come before the maximum value of the dataset are
also given by the y-axis of Figures 8 and 9, labelled with the last
value (-1) of the synthetic. (−1), (−2) and (−3) represent the
ordered data. Note that the data set is sorted from the smallest
to the biggest one, the last three values are chosen and they are
represented by (−1), (−2) and (−3).

In addition, the fact that the trending slope looks away from
the x-axis can be interpreted as an evidence that these artificially
generated data will increase the necessity of the Ombudsman in
the future. Note that even though the maximum value of real data
sets is the number 179, the generated values for the artificial data
sets are close to 800 as a maximum value; because we suggest
to use the role of scale parameter as a dispersion measure which
provides very important indicator for determining the behaviour
of the data sets in any phenomena at the applied field of science.
Thus, the role of scale parameter is an inevitable situation to touch
more precisely the process in phenomena.

Note that the peakedness parameter p plays role as well impor-
tantly. Thus, the scale and peakedness playing role for determin-
ing tail behaviour of the function are in the class to determine the
shape of function (Lehmann and Casella 2006; Arslan and Genç
2009; Çankaya 2018; Çankaya et al. 2019).

In figures 1-5 and 7, it should be noted that for the sake of
the fact that representation of the frequency and the smoothed
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Figure 7 Illustrative representation for the values of parameter p
computed by lmp function with the smallest estimated error, ε̂

form can be more feasible, the histogram and smooth form of
pdf are given separately at different scaling form of the cartesian
coordinates.
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Figure 8 Case 1: The last values and previous ones of the replicated synthetic data for the ordered form of data for 10000 replication
with σ̂ from values represented by figure 2a
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Figure 9 Case 2: The last values and previous ones of the replicated synthetic data for the ordered form of data for 10000 replication
with σ̂ from values represented by figure 3a
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CONCLUSION

The polynomial regression models providing a relationship among
observations have been proposed to help determining the distri-
bution of the observations as well. That is, the distribution of the
error term ε corresponds to the distribution of the variable y. Such
an approach is important; because, when the small number of
sample size is given, it is not an easy task to propose a parametric
model to analyse the dataset accurately. The correlation between
the observed y and the predicted y can be increased if the values of
p from exponential power distribution and the power parameters
p1, p2 and p3 in regression model can play same role in fitting data
well. Note that the parameters p, p1, p2 and p3 are conceptually in
same framework when the heteroscedasticity is taken into account.
Such an approach provides a novelty for the study.

For example, using a distribution for discrete data cannot be
an easy task to perform a precise modelling on the data set. The
determined parametric model based on the regression models has
been a special case of the exponential power distribution. Thus,
we can have an advantage to generate the artificial data set to
perform a prospective overview for modelling. If the peakedness
parameter is around 1.07, the function is called the heavy-tailed
form for the exponential power distribution. Since we have a
heavy-tailed distribution, it is observable to get the numerical
values which can come from tail parts of the function. For this
reason, the synthetically generated numerical values are around
700 and 800 at most. Thus, we have suggested that the probable
projection for the future prediction can provide numbers for the
tax complaints upto year 2100. Future studies are in progress
to suggest different materials, such as applying the heavy-tailed
distributions and estimation methods for future projections of tax
complaints in the Ombudsman (Çankaya 2021; De Gregorio et al.
2023).

APPENDIX

The main codes in the numerical evaluation for computation and
regression case
The smallest value of |y − ŷ| is used to determine the best value
for the peakedness parameter p, because the best prediction per-
formance can be gained, which means that the distribution of
observation y can be determined by means of the distribution of
error term which is equivalent to the observation y. The values of
p1, p2 and p3 are generated by using the following schema.

set1=50;set2=50;set3=50;pwl1=0.75;pwl2=1.75;pwl3=2.75;

indx=replicate(set1, numeric(set2));

ppval=replicate(set1, numeric(set2));

indx3ar<-array(c(indx, indx), dim = c(set1,set2,set3));

ppval3ar<-array(c(ppval, ppval), dim = c(set1,set2,set3));

pvariable=seq(0.95,1.35,0.001);

replication = length(pvariable);

for (i1 in 1:set1)

{

pwl1 = pwl1 + 0.01;

for (i2 in 1:set2)

{

pwl2 = pwl2 + 0.01/set1;

for (i3 in 1:set3)

{

pwl3 = pwl3 + 0.01/(set1*set2);

for (i in 1:replication)

{

regp<-lmp(y~x, p = pvariable[i]);

coefa <- regp$coefficients;

ypredict[i,] <- xx %*%

matrix(c(coefa[1],coefa[2],coefa[3],coefa[4]),4,1);

errory[i,] <- abs(y - ypredict[i,]);

meanerrory[i] <- sum(errory[i,])/n;

}

indx3ar[i1,i2,i3]=min(which(sumerrory == min(sumerrory)));

ppval3ar[i1,i2,i3]=pvariable[indx3ar[i1,i2,i3]];

}

}

}

Estimation of error term distributed as the exponential power
Let us provide the codes showing how the equations (5) and (6) are
adopted to the simulation in free open source statistical software
RStudio 2023.09.1+494.

for (i1 in 1:set1)

{

pwl1 = pwl1 + 0.01;

for (i2 in 1:set2)

{

pwl2 = pwl2 + 0.01/set1;

for (i3 in 1:set3)

{

pwl3 = pwl3 + 0.01/(set1*set2);

indx3ar[i1,i2,i3]=min(which(sumerrory == min(sumerrory)));

ppval3ar[i1,i2,i3]=pvariable[indx3ar[i1,i2,i3]];

regp <- lmp(y~x, p = ppval3ar[i1,i2,i3]);

coefp <- regp$coefficients;

y_last_predict <- xx %*%

matrix(c(coefp[1],coefp[2],coefp[3],coefp[4]),4,1);

cor_vals3ar[i1,i2,i3] <- cor(y,y_last_predict);

var_n_eps3ar[i1,i2,i3] <-

sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) / n;

sig_n_eps3ar[i1,i2,i3] <-

(sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) / n)^

(1/ppval3ar[i1,i2,i3]);

var_eps3ar[i1,i2,i3] <-

sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) /

(n - (dim(x)[2]+1));

sig_eps3ar[i1,i2,i3] <-

(sum(abs(y - y_last_predict)^ppval3ar[i1,i2,i3]) /

(n - (dim(x)[2]+1)))^(1/ppval3ar[i1,i2,i3]);

}

}

}

Random number generation for the design
The normalp package is used to generate random number. The
estimated values for location, scale and peakedness parameters
are plug into the function rnormp given by:

rnormp(n, mu, sigma, p , method = c("def", "chiodi"))

Note that mu, sigma and p are parameters which are estimated
by using the empirical distribution produced by the regressional
form.
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