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Abstract: The neutron transport equation is solved numerically for monoenergetic neutrons in a 

finite homogeneous slab with backward and forward scattering for the eigenvalue spectrum. The 

forward-backward-isotropic (FBI) scattering kernel is chosen for representing the neutron 

scattering in transport equation. Then, the transport equation is converted into a discrete 

ordinates form by using the integral transform technique with the even-order Gauss-Legendre 

quadrature set. Finally, the eigenvalues are calculated for a medium from weakly absorbing to 

highly scattering condition using various values of the scattering, backward and forward 

scattering parameters. Gauss-Legendre quadrature sets are used for all calculations and the 

calculated eigenvalues are given in the tables. 
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Transport Denkleminin Özdeğerler için S4Çözümü: Dilimde İzotropik, İleri ve 

Geri Saçılma 

 
Özet: İleri ve geri saçılmalı sonlu homojen bir dilimde tek enerjili nötronların özdeğer 

spektrumu için nötron transport denklemi nümerik olarak çözülmüştür. Transport 

denklemindeki nötron saçılmasını temsilen, ileri-geri-izotropic (FBI) saçılma fonksiyonu tercih 

edilmiştir. Daha sonra, çift-mertebeli Gauss-Legendre kuadratür seti ile integral dönüşüm 

tekniği kullanılarak transport denklemi diskret-ordinatlar haline dönüştürülmüştür. Son olarak, 

faklı saçılma, ileri ve geri saçılma parametreleri kullanılarak zayıf yutulmalı bir ortamdan 

kuvvetli saçılmalı bir ortama kadar özdeğerler hesaplanmıştır. Bütün hesaplamalarda Gauss-

Legendre kuadratür setleri kullanılmış ve hesaplanan özdeğerler çizelgelerde verilmiştir. 

 

Anahtar kelimeler: Transport Denklemi, İleri ve Geri Saçılma, Diskret Ordinatlar, Özdeğerler, 

Gauss-Legendre Kuadratürü. 
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1. Introduction 

 

The calculation of the eigenvalues is known to be the first attempt for the numerical 

solution of the transport equation. As an example, the collision parameter c0, the 

number of secondary neutrons per collision, is known as the essential eigenvalue and it 

designates some concepts of a reactor such as diffusion length, diffusion coefficient and 

buckling. 

 

The neutron transport equation describes the number of neutrons and their interactions 

in a system. The scattering function taking a part in transport equation describes the 

types and the number of interactions of neutrons in the system. There are many 

scattering functions used for the solution of the transport equation in slab, spherical or 

cylindrical geometries. Among them, the forward-backward-isotropic (FBI) scattering 

kernel is one of the most powerful and the most commonly used one for especially 

isotropic scattering [1,2]. Although it does not contain the anisotropic scattering, it can 

be said to correspond satisfactory approximation for many cases. 

 

The stochastic methods such as Monte Carlo and source iteration are developed for the 

solution of the transport equation before deterministic methods (polynomial expansion 

based techniques, integral transform). The probabilistic approach is used in writing the 

transport equation in discrete ordinates form (SN) because of the nature of the 

macroscopic cross-section [3-5]. 

 

In this study, the discrete ordinates form of the neutron transport equation is 

investigated for the solution of the eigenvalues of monoenergetic neutrons. The 

calculated eigenvalues are obtained by using the fourth order approximation (S4) of 

Legendre quadrature set for various values of the forward and backward scattering 

parameters together with c0. 

 

2. Material and Method 

 

The stationary transport equation for monoenergetic neutrons can be written in a closed 

form as, 

 

0( , ) ( , ) ( , ) ( )d ( ) / 2T Sr r r Q x    


             ,  (1) 

 

where(r,Ω) is the neutron angular flux at position r travelling in direction Ω, 

( )S   is the differential scattering cross-section and Q0 is the internal source [5]. In 

many of the deterministic methods developed for the solution of the transport equation, 

it is customary to expand the differential scattering cross-section in terms of the 

Legendre polynomials since the definition interval of it is the same with the cosine of 

the scattering angle. In this study, the scattering function is assumed to be of the form as 

forward-backward-isotropic (FBI) scattering model, 
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Here  and  are the parameters varied over the range of 0 ,  1, +  1 and 

denote the forward and backward scattering probabilities in a collision, respectively;  

is the Dirac delta function [1,2]. When this scattering function is inserted into Equation 

1 one can obtain, 
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0 , 1 1.x a       This equation can be written in discrete ordinates (SN) form if the 

integral is written in an integral transform, 
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  (4) 

 

m = 1,…,N. Here n is the Gauss-Legendre quadrature weight or the weighting factor 

for direction n, i.e. the roots of the Nth order Legendre polynomials. 

 

The general solution for Equation 4 can be written as the sum of the homogeneous and 

the particular solutions, 

 

( ) ( ) ( )p h

m m mx x x    .    (5) 

 

A spatially constant particular solution can be derived from Equation 4of the form as, 

 

0

0
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where 0 0 /S Tc   . The method of separation of variables can be used to determine the 

homogeneous solution ( )h

m x  of Equation 4 [5], 

 

( ) ( , , )exp( / ), 0 , 1h

m m Tx H x a x m N          .  (7) 

 

Substituting Equation 7 into the homogeneous part of Equation 4, one can obtain an 

expression for the angular part of the neutron angular flux; 
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When Equation 8 is multiplied by m  and then summed over all m, an equation for the 

eigenvalues can be obtained: 

 

 
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Equation 9 is the dispersion relation and the roots ,1k k N   , of it are the eigenvalues 

of the SN equations and they are lying symmetrically about the origin for any c0 

satisfying 00 1c  . 

 

3. Results 

 

SN transport equation with Gauss-Legendre quadrature set is studied for the solution of 

the eigenvalue problem for one-speed neutrons in a finite homogeneous slab. First the 

forward-backward-isotropic scattering kernel given in Equation 2 is used in transport 

equation which is then written in the form of SN by using the integral transform 

technique with the even-order Gauss-Legendre quadrature set. The roots, i.e. the 

eigenvalues ,1k k N   , are calculated up to the forth order approximation from the 

dispersion relation Equation 9 [4,5]. It is certainly possible to increase the 

approximation order in this or other related problems. However, it is found to be 

necessary to do so in this study as an introduction to the method and the problem. The 

calculated eigenvalues are tabulated in the tables for isotropic, forward and backward 

scatterings separately for various values of c0,  and .  

 

In Table 1, the eigenvalues are calculated for forward scattering with various values of 

the c0 ranging from 0.30 to 2.0. Similarly, they are given for backward scattering and 

forward-backward scattering in Table 2 and 3, respectively. Lastly, the simplest 

application, i.e. the results obtained from isotropic scattering is given in Table 4. It can 

be easily seen from the tables that the eigenvalues obtained for forward scattering are 

some more than the eigenvalues obtained for backward scattering, as expected. The 

same behavior is also seen in the case of criticality calculations. 

 
Table 1. Eigenvaluespectrumforforwardscattering (α = 0.3,  = 0.0) 

N c0 = 0.30 c0 = 0.60 c0 = 0.99 c0 = 1.20 c0 = 2.00 

2 0.7233853 1.0080973 6.8859158 1.6137431i* 0.9128709i 

4 
0.4225452 

1.1402322 

0.5489234 

5.0790103i 

0.7671046 

0.7834813i 

0.8927136 

0.6280986i 

1.5681429 

0.4763710i 

*i = 1  
 

Table 2. Eigenvaluespectrumforbackwardscattering (α = 0.0,  = 0.3) 

N c0 = 0.30 c0 = 0.60 c0 = 0.99 c0 = 1.20 c0 = 2.00 

2 0.6609629 0.8403658 5.0695497 1.1070186i* 0.4564355i 

4 
0.3860830 

1.0418393 

0.4575912 

4.2339431 

0.5647579 

0.5768147 

0.6123964 

0.4308721i 

0.7840715 

0.2381855i 

 

Table 3. Eigenvalue spectrum for forward and backward scattering (α = 0.3,  = 0.3) 

N c0 = 0.30 c0 = 0.60 c0 = 0.99 c0 = 1.20 c0 = 2.00 
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2 0.6900656 0.9128709 5.7735027 1.2909944i* 0.5773503i 

4 
0.4052639 

1.0475330 

0.5216467 

1.7538811 

0.8442230 

0.8760174i 

1.1216802 

0.5981692i 

1.5087602i 

0.3234112i 

 
Table 4.Eigenvalue spectrum for isotropic scattering (α = 0.0,  = 0.0) 

N c0 = 0.30 c0 = 0.60 c0 = 0.99 c0 = 1.20 c0 = 2.00 

2 0.6900656 0.9128709 5.7735027 1.2909944i* 0.5577350i 

4 
0.3998789 

1.1576255 

0.4705368 

1.3912910i 

0.5398162 

0.5478575i 

0.5622476 

0.4400834i 

0.6034654 

0.2801003i 

 

4. Conclusion and Comment 

 

This study is thought to be the first step for other studies related in transport theory. In 

addition, the method and thus the problem can be said to be extended to more 

comprehensive situations in order to clarify the unspecified points in neutron transport 

theory. The method was successfully applied to the transport equation in slab geometry 

by Anlı and Öztürk et al. for the calculation of the neutron scalar flux [6,7]. 

 

Although the case of anisotropy is not added to this study, the present situation can be 

said to be satisfactory for many cases in transport theory. However, it is planned to 

investigate the eigenvalue problem in the case of anisotropic scattering together with the 

forward and backward scattering in future works. 
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