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Abstract
In this paper, we introduce a pioneering numerical technique that combines generalized Laguerre
polynomials with an operational matrix of fractional integration to address fractional models in
electrical circuits. Specifically focusing on Resistor–Inductor (RL), Resistor–Capacitor (RC), Resonant
(Inductor–Capacitor) (LC), and Resistor–Inductor–Capacitor (RLC) circuits within the framework
of the Caputo derivative, our approach aims to enhance the accuracy of numerical solutions. We
meticulously construct an operational matrix of fractional integration tailored to the generalized
Laguerre basis vector, facilitating a transformation of the original fractional differential equations into
a system of linear algebraic equations. By solving this system, we obtain a highly accurate approximate
solution for the electrical circuit model under consideration. To validate the precision of our proposed
method, we conduct a thorough comparative analysis, benchmarking our results against alternative
numerical techniques reported in the literature and exact solutions where available. The numerical
examples presented in our study substantiate the superior accuracy and reliability of our generalized
Laguerre-enhanced operational matrix collocation method in effectively solving fractional electrical
circuit models.

Keywords: Numerical analysis; electrical circuits; generalized Laguerre polynomials; fractional
integrals; fractional derivatives
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1 Introduction

In recent years, an escalating interest has emerged among researchers in harnessing the power of
fractional calculus and Fractional Differential Equations (FDEs). Fractional calculus, a field rooted
in the generalization of integration and differentiation to arbitrary orders, finds its origins in the
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musings of G.W. Leibniz (1695) and L. Euler (1730). Despite its longstanding history, fractional
calculus and the corresponding FDEs have only recently surged in attention and popularity,
driven by their unparalleled ability to model complex phenomena. Various definitions of frac-
tional derivatives, including Riemann–Liouville, Caputo, Grünwald–Letnikov, Weyl, Marchaud,
Prabhakar, and others, populate the literature, underscoring the versatility of this mathematical
tool. The Riemann-Liouville definition is among the earliest formulations in the field of fractional
calculus. It emerged as a significant contribution to the theory’s development, offering founda-
tional insights into fractional derivatives and integrals. Caputo’s definition, introduced later, has
become widely used in engineering applications. Its effectiveness lies in its ability to accurately
model systems commonly encountered in engineering problems. Particularly in scenarios where
boundary conditions predominantly involve integer-order derivatives, Caputo’s operator excels
in providing precise representations of physical systems, especially those exhibiting intricate
behaviors, thereby contributing to its popularity. Grünwald–Letnikov, Weyl, Marchaud, and
Prabhakar provide alternative approaches, each tailored to specific analytical or computational
demands. The flexibility offered by these definitions allows researchers to tailor their approach to
the particular characteristics of the problem at hand, making fractional calculus a powerful tool in
mathematical modeling. The history of this topic can be found in [1–5].
The interdisciplinary applications of fractional calculus span an impressive array of fields, expand-
ing beyond bioengineering, biology, chaotic systems, control theory, economics, electrochemistry,
finance, quantum mechanics, optics, oncology, physics, rheology, social sciences, viscoelastic-
ity, and so on [6–16]. This expansive scope underscores the versatility and profound impact of
fractional calculus in addressing intricate challenges across diverse scientific and engineering
domains. As we delve into this multifaceted landscape, it becomes evident that the marriage of
mathematical rigor with innovative numerical techniques is paving the way for groundbreaking
advancements and novel solutions in scientific inquiry.
Fractional calculus emerges as a superior modeling framework, often outperforming traditional
calculus, particularly in capturing memory effects crucial for describing long-term interactions
[17, 18]. This distinctive feature enhances the accuracy of representing diverse dynamical and
engineering models, becoming indispensable in scientific investigations. Confronted with the
inherent difficulty of obtaining exact analytic solutions for nonlinear FDEs, researchers have
developed an arsenal of numerical and approximate methods. In addition to spectral collocation
[19], variational iteration [20], differential quadrature [21], adomian decomposition [22], fractional
reduced differential transform [23], and wavelet methods [24–26], innovative techniques such
as finite element method [27], and radial basis function methods [28] have been meticulously
crafted to surmount these challenges. On the other hand, many numerical techniques for solv-
ing fractional models face limitations, including accuracy issues with complex dynamics and
non-standard boundaries, computational inefficiency for large-scale simulations, and restricted
applicability to specific equations or systems. Moreover, the lack of a clear geometric interpreta-
tion in fractional calculus complicates algorithm development, hindering intuitive understanding
and implementation. Additionally, convergence and stability challenges arise, particularly with
nonlinear or stiff equations. Addressing these limitations requires the development of novel
techniques to improve accuracy, efficiency, and applicability across a wide range of fractional
systems and boundary conditions. Electrical circuit models serve as fundamental tools in under-
standing and analyzing the behavior of electrical systems [29]. Among the widely studied circuit
configurations are the RC (resistor-capacitor), RL (resistor-inductor), LC (inductor-capacitor), and
RLC (resistor-inductor-capacitor) circuits. In the RC circuit, the combination of a resistor and a
capacitor introduces time-dependent characteristics, influencing the circuit’s response to input
signals. The RL circuit, incorporating a resistor and an inductor, exhibits distinctive behaviors
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due to the inductor’s role in storing energy. LC circuits, consisting of an inductor and a capacitor,
demonstrate oscillatory behavior and resonance. RLC circuits, combining all three elements,
showcase a rich spectrum of responses, including damped and undamped oscillations, resonance,
and transient behaviors. Understanding the dynamics of these circuit models is crucial for various
applications in electronics, communication systems, and signal processing, making them focal
points in both theoretical analysis and practical design considerations. In recent years, there
has been a growing interest in extending the analysis of electrical circuit models to the realm of
fractional derivatives. This approach introduces a new dimension to the understanding of RC,
RL, LC, and RLC circuit dynamics, incorporating fractional calculus principles. By considering
fractional derivatives, which generalize conventional derivatives to arbitrary orders, researchers
aim to capture more accurately the intricate behavior and memory effects exhibited by electrical
circuits [30, 31]. In this study, we employ a sophisticated numerical approach that combines the
strengths of both operational matrix and collocation methods for solving fractional-order electrical
circuit models, including RL, RC, LC, and RLC configurations. Specifically, we leverage the
operational matrix of fractional integration, which streamlines the complex calculations associated
with fractional derivatives. This operational matrix is strategically applied to the generalized
Laguerre basis vector, forming the backbone of our methodology. Subsequently, we introduce
collocation by judiciously selecting equally spaced nodes, effectively transforming the fractional
differential equations into a well-structured system of linear equations. This dual methodology
harnesses the computational efficiency of operational matrices while benefiting from the simplicity
and accuracy conferred by collocation techniques. The resulting system of linear equations is then
systematically solved, providing a precise numerical solution to the intricate dynamics inherent in
these electrical circuit models. This innovative combination of operational matrix and collocation
methods demonstrates a powerful and versatile approach to addressing fractional order systems,
showcasing its efficacy in obtaining accurate numerical solutions for a broad spectrum of electrical
circuit configurations.
This paper is structured as follows: In Section 2, we lay the foundation with a discussion on
fractional calculus, introducing the definitions of generalized Laguerre polynomials and their
application in function approximation. Section 3 is dedicated to the construction of the generalized
Laguerre operational matrix of fractional integration. Moving on to Section 4, we delve into the
specific problem statements addressed in this paper and elaborate on the methodology employed,
focusing on the Generalized Laguerre Operational Matrix Method (GLOMM). Section 5 is dedi-
cated to Error Estimation based on Residual Analysis, providing a comprehensive investigation
into the accuracy and reliability of our proposed approach. Section 6 presents four illustrative
examples, showcasing the applicability, accuracy, and performance of our proposed technique.
The paper concludes in Section 7 with a summary of findings and directions for future research.

2 Preliminaries

Definition 1 [3] The definition of the Riemann-Liouville fractional integral of order µ for Re(µ) > 0 is as
follows:

RL
a Iµ

x f (x) =
1

Γ(µ)

∫ x

a
(x − t)µ−1 f (t)dt. (1)

From the above definition, it is clear that,

RL
0 Iµ

x(xp) =
Γ(1 + p)

Γ(1 + p + µ)
xp+m.
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Definition 2 [4] The definition of the Caputo fractional derivative for Re(µ) ≥ 0 is as follows:

C
aDµ

x f (x) =
dn

dxn
RL

a In−µ
x f (x), n := ⌊Re(µ)⌋+ 1.

The Newton–Leibniz identity establishes a fundamental relationship between the Riemann–Liouville
fractional integral and the Caputo fractional derivative, expressed as follows:

RL
0 Iµ

x(
C
0Dµ

x f (x)) = f (x)−
⌈µ⌉−1∑

k=0

f (k)(0)
xk

k!
.

Definition 3 Consider the interval Λ = (0,∞), and let ω(α)(x) = xαe−x represent a weight function in
Λ in the conventional sense. Define

L2
ω(α) = {v|v is measurable on Λ and ||v||ω(α) < ∞},

with the inner product and norm

(u, v)ω(α) =

∫
Λ

u(x)v(x)ω(α)(x)dx,

||v||ω(α) = (v, v)
1
2
ω(α) .

Definition 4 (Generalized Laguerre Polynomial) [32] Let Ln,α(x) be the generalized Laguerre polynomials
to degree n. According to [33], for α > −1, we have

Ln+1,α(x) =
1

n + 1
[(2n + α − 1 − x)Ln,α(x)− (n + α)Ln−1,α(x)], n = 1, 2, ...,

where the first few terms of the generalized Laguerre polynomials are given by

L0,α(x) = 1,

L1,α(x) = 1 + α − x,

L2,α(x) = 1
2! [2 + 3α + α2 − 2αx − 4x + x2],

L3,α(x) = 1
3! [6 + 11α + 6α2 + α3 − 13αx + 3αx2 − 3α2x − 18x + 9x2 − x3].

The analytical expression for generalized Laguerre polynomials over the interval Λ = (0,∞) is given by:

Ln,α(x) =
n∑

k=0

(−1)k Γ(n + α + 1)
Γ(k + α + 1)(n − k)!k!

xk, n = 0, 1, .... (2)

Note that, setting α = 0 in Eq. (2), we arrive to the classical Laguerre Polynomials Ln(x).



114 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 1, 110–132

Approximation of function

A function f (x) ∈ L2
ω(α)(Λ) can be represented using generalized Laguerre polynomials as:

f (x) =
∞∑

j=0

ψjLj,α(x),

ψj =
1
hr

∫∞
0

f (x)Lj,αwαdx, j = 0, 1, 2, .... (3)

Considering the first (N + 1) terms of generalized Laguerre polynomials, we get

f ≃ fn =
m∑

j=0

ψjLj,α(x) = ΨTLm,α(x), (4)

where the unknown coefficient vector ΨT and the generalized Laguerre polynomial vector Lm,α(x)
are defined as

ΨT =
[
ψ0, ψ1, . . . , ψN

]T f or N ∈ N, (5)

and

Lm,α(x) =
[
L0,α(x), L1,α(x), . . . , Lm,α(x)

]T f or m ∈ N. (6)

3 Formulation of the generalized Laguerre operational matrix for fractional integration

In this section, we construct the operational matrix of fractional integration for the generalized
Laguerre polynomials. Employing the Riemann-Liouville fractional integration (1) to the order
µ on the analytical representation of generalized Laguerre polynomials Li,α(x) provided in (2),
yields:

IµLi,α(x) =
i∑

k=0

(−1)k Γ(i + α + 1)
(i − k)!k!Γ(k + α + 1)

Iµxk

=
i∑

k=0

(−1)k Γ(i + α + 1)
(i − k)!Γ(k + α + 1)Γ(k + µ + 1)

xk+µ. (7)

By approximating xk+µ using N + 1 terms of the generalized Laguerre series, we obtain:

xk+µ =
N∑

j=0

ψjLj,α, (8)

where ψj is defined in Eq. (3) with f (x) = xk+µ, that is,

ψj =

j∑
r=0

(−1)r j!Γ(k + µ + α + r + 1)
(j − r)!r!Γ(r + α + 1)

, j = 1, 2, ..., N. (9)
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Utilizing Eqs. (7) and (8), we obtain:

IµLi,α(x) =
N∑

j=0

Dµ(i, j)Lj,α(x), i = 0, 1, ..., N, (10)

where

Dµ(i, j) :=
i∑

k=0

j∑
r=0

(−1)k+r j!Γ(i + α + 1)Γ(k + µ + α + r + 1)
(i − k)!(j − r)!r!Γ(k + µ + 1)Γ(k + α + 1)Γ(α + r + 1)

. (11)

Accordingly, Eq. (10) can be written in a vector form as follows:

IµLi,α(x) = [Dµ(i, 0), Dµ(i, 1), ..., Dµ(i, N)]LN,α, i = 0, 1, ..., N, (12)

where LN,α is the generalized Laguerre vector defined in Eq. (2).
Consider G(µ), an operational matrix of fractional integration of order µ, with dimensions (N +

1)× (N + 1), defined as:

G(µ) =


Dµ(0, 0) Dµ(0, 1) Dµ(0, 2) · · · Dµ(0, N)

Dµ(1, 0) Dµ(1, 1) Dµ(1, 2) · · · Dµ(1, N)
...

... . . . ...
Dµ(N, 0) Dµ(N, 1) Dµ(N, 2) · · · Dµ(N, N)

 .

Then, we can rewrite system (12) as

IµLN,α(x) = G(µ)LN,α(x). (13)

4 Problem statement and method of solution

In this section, we delineate the specific problems at the core of our investigation and introduce
the Generalized Laguerre Operational Matrix Method (GLOMM) as the key solution approach.
Our focus lies on deriving numerical solutions for fractional-order electrical circuit models encom-
passing RL, RC, LC, and RLC configurations. By applying the GLOMM to these circuit models,
we aim to provide a comprehensive and efficient numerical methodology for analyzing their
fractional dynamics, contributing to the advancement of computational techniques in the field of
electrical circuit modeling.

RL circuit

In this section, we focus on the numerical solutions of fractional order RL circuit. An RL circuit
is an electrical circuit that consists of a resistor (R) and an inductor (L). The resistor represents
the element that resists the flow of electrical current, generating heat in the process, while the
inductor is a coil of wire that stores energy in its magnetic field when current flows through it.
The fractional-order generalized RL circuit is given as

Dµu(x) +
R
L

u(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, u(0) = u0. (14)
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When µ = 1, the fractional-order RL circuit equation (14) reduces to the classical case. Applying
the Riemann-Liouville fractional integral of order µ to both sides of Eq. (14), we obtain:

u(x)−
⌈µ⌉−1∑

k=0

u(k)(0)
xk

k!
+

R
L

Iµu(x) = Iµ(E(x)). (15)

Substituting initial condition into Eq. (15) and approximating the function u(x) by the generalized
Laguerre polynomials (4), we get

ΨTLm,α(x)− u0 +
R
L

ΨT(IµLm,α(x)) = Iµ(E(x)).

Further, using the operational matrix of fractional integration defined in Eq. (13), we obtain

ΨTLm,α(x) +
R
L

ΨT(G(µ)Lm,α(x)) = F(x), (16)

where F(x) = Iµ(E(x)) + u0.

RC circuit

In this section, our attention shifts to the numerical analysis of the fractional order RC circuit. A
RC circuit is an electrical circuit configuration comprising a resistor (R) and a capacitor (C). The
resistor impedes the flow of electrical current, generating heat in the process, while the capacitor
stores electrical energy in its electric field when voltage is applied across it. The fractional-order
generalized RC circuit is defined as

Dµv(x) +
1

RC
v(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, v(0) = v0. (17)

When µ = 1, the fractional-order RC circuit equation (17) reduces to the classical case. By applying
the same procedure proposed in Subsection 4 on Eq. (17), we get,

ΨTLm,α(x) +
1

RC
ΨT(G(µ)Lm,α(x)) = F(x), (18)

where F(x) = Iµ(E(x)) + v0.

LC circuit

In this section, our focus turns to the numerical exploration of the fractional order LC circuit. The
LC circuit is an electrical circuit composition consisting of an inductor (L) and a capacitor (C). The
inductor stores energy in its magnetic field as current flows through it, while the capacitor stores
electrical energy in its electric field when voltage is applied. The fractional-order generalized LC
circuit is described as

LDµq(x) +
1
C

q(x) = E(x), 1 < µ ≤ 2, q(0) = q0, q ′(0) = q1. (19)

This fractional-order LC circuit equation (19) reduces to the classical one when µ = 2. Applying
the Riemann-Liouville fractional integral of order µ to both sides of Eq. (19) and dividing by L, we
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get

q(x)−
⌈µ⌉−1∑

k=0

q(k)(0)
xk

k!
+

1
LC

Iµq(x) =
1
L

Iµ(E(x)). (20)

Substituting initial condition into Eq. (20) and approximating the function q(x) by the generalized
Laguerre polynomials (4), we get

ΨTLm,α(x)− q0 − xq1 +
1

LC
ΨT IµLm,α(x) =

1
L

Iµ(E(x)). (21)

Next, using the operational matrix of fractional integration defined in Eq. (13), we obtain

ΨTLm,α(x) +
1

LC
ΨT(G(µ)Lm,α(x)) = F(x), (22)

where F(x) = 1
L Iµ(E(x)) + q0 + xq1.

RLC circuit

In this section, our focus transitions to the numerical analysis of the fractional order RLC circuit.
The RLC circuit is a complex electrical configuration integrating a resistor (R), an inductor (L),
and a capacitor (C). The resistor hinders the flow of electrical current, the inductor stores energy
in its magnetic field, and the capacitor stores electrical energy in its electric field when voltage is
applied. The fractional-order generalized RLC circuit is characterized by

Dβw(x) +
R
L

Dµw(x) +
1

LC
w(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, 1 < β ≤ 2, (23)

with

w(i)(0) = wi, i = 0, 1, ..., ⌈β⌉− 1.

This fractional-order RLC circuit equation (23) reduces to the classical one when β = 2 and µ = 1.
Applying the R–L fractional integration to the order β on both sides of Eq. (23), we get

w(x)−
⌈β⌉−1∑

k=0

w(k)(0)
xk

k!
+

R
L

Iβ−µ

(
w(x)−

r∑
k=0

w(k)(0)
xk

k!

)
+

1
LC

Iβw(x) = Iβ(E(x)), (24)

where r − 1 < µ < r.

Substituting initial condition into Eq. (24) and approximating the function w(x) by the generalized
Laguerre polynomials (4), we get

w(x)− w0 − xw1 +
R
L

ΨT Iβ−µLm,α(x)−
R
L

Iβ−µ

( r∑
k=0

w(k)(0)
xk

k!

)
+

1
LC

ΨT IβLm,α(x) = Iβ(E(x)).

(25)
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Next, using the operational matrix of fractional integration defined in Eq. (13), we obtain

w(x) +
R
L

ΨT(G(β−µ)Lm,α(x)) +
1

LC
ΨT(G(β)Lm,α(x)) = F(x), (26)

where F(x) = Iβ(E(x)) + w0 + xw1 +
R
L Iβ−µ

(∑r
k=0 w(k)(0) xk

k!

)
.

Finally, by using the collacation points xi =
i
N where i = 0, 1, · · · , N in Eqs. (16), (18), (22) and

(26), we get a system of N + 1 algebraic equations for each circuit model [34]. Solving these
systems of algebraic equations for the unknown vector ΨT and using Eq. (4), we get an accurate
approximation solution to the given models.

5 Error analysis

In this section, we introduce an error estimation method based on the residual error function for
our proposed GLOMM. The residual error, a quantification of the difference between computed
and true solutions in numerical methods, serves as a pivotal tool in assessing accuracy and
convergence. By monitoring the residual during the solution process, it offers insights into method
convergence, facilitates error control, and aids in adaptive strategies.

Consider the general fractional-order electrical circuit equation:

Dβy(x) + ADµy(x) + By(x) = E(x), x ∈ [0, 1], 0 < µ ≤ 1, 1 < β ≤ 2, (27)

with

y(i)(0) = yi, i = 0, 1, ..., ⌈β⌉− 1,

where Dβ and Dµ represent the fractional derivative of order β and µ, respectively. A and B are
coefficients related to the circuit components (e.g. resistance, inductance, capacitance). Let yN(x)
be the numerical solution of given initial value problem (27). Substituting yN(x) into Eq. (27), we
get

DβyN(x) + ADµyN(x) + ByN(x)− E(x) = RN(x), (28)

where RN(x) is the residual function. By using Eqs. (27) and (28), we get

Dβ(y(x)− yN(x)) + ADµ(y(x)− yN(x)) + B(y(x)− yN(x)) = RN(x). (29)

Now, let us define the error function as ϵN(x) = (y(x)− yN(x)). Subsequently, employing this
error function in Eq. (29), we derive

DβϵN(x) + ADµϵN(x) + BϵN(x) = RN(x), (30)

with initial conditions ϵN(0) = 0 and ϵ′N(0) = 0. Solving Eq. (30) using the approach outlined in
Section 4 yields the approximate error estimation ϵN(x) for the proposed method. Consequently,
the approximation of maximum absolute error can be estimated by

EN = max |ϵN |, 0 ≤ x ≤ T.
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6 Numerical simulations and comparative discussions

In this section, we illustrate the dynamics of fractional electrical circuit models, specifically
RL, RC, LC, and RLC, through four distinct examples. These demonstrations showcase the efficacy
of the Generalized Laguerre Operational Matrix Method (GLOMM) under various fractional
derivative orders. To validate the accuracy and versatility of our proposed method, we conduct
comprehensive comparisons with existing techniques reported in the literature. This comparative
analysis serves as a robust means of affirming the reliability and applicability of the GLOMM in
accurately capturing the behavior of fractional electrical circuit models across different fractional
derivative orders. All computations are performed using Matlab R2021a.

Example 1 (RL Circuit) In this illustrative instance, we contemplate the fractional-order RL circuit
model defined by Eq. (14) in the presence of a constant voltage source, where E(x) = 0. Specifically, when
considering µ = 1, the precise solution to Eq. (14) can be expressed as

u(x) =
[

u0 −
E(x)L

R

]
e
−R

L x +
E(x)L

R
.
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Figure 1. (a) Comparative illustration of approximate solutions for the fractional-order RL circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the RL circuit model at µ = 1.00. (d) Residual error estimation for RL circuit
model
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In Figure 1a, we present a visual comparison between the exact solution and the approximation obtained
through the Generalized Laguerre Operational Matrix Method (GLOMM), as introduced in Subsection
4, for the fractional-order RL circuit. The analysis involves specific parameter values R = 10, L = 1,
an initial condition of u0 = 10, and a derivative order of µ = 1. Additionally, Figure 1b illustrates the
associated absolute error resulting from the application of GLOMM to the RL circuit under the same
settings. In Figure 1c, a graphical comparison unfolds between the exact solution, our proposed method,
and established methods from the literature, namely Shifted fractional order Gegenbauer wavelets method
(SFGBWM) [25] and Fibonacci wavelet (FWM) [26]. The visual representation distinctly highlights the
remarkable alignment between our method and the exact solution, showcasing its superior performance
compared to existing approaches. Figure 1d illustrates the estimation results of the residual error function
for the RL circuit model. These estimation results demonstrate a concordance between the absolute error
and the estimated error, both of which are around 10−5, showcasing the accuracy of the proposed method.
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1
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0.045

0.05

(b)

Figure 2. (a) Dynamic response of GLOMM solution for the RL circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the RL circuit at different N values
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In Figure 2a, we depict the graphical behavior of the RL circuit across various fractional derivative
orders, specifically for µ = 0.99, 0.90, 0.80, 0.70. This illustration unveils the dynamic response
of the RL circuit model to alterations in fractional derivative orders. Notably, as the fractional
derivative order diminishes, the function reaches its maximum value at an earlier stage. This trend
indicates that a lower fractional derivative order induces an expedited response in the RL circuit,
leading to a more rapid attainment of its peak value. In Figure 2b, we showcase the absolute errors
derived from the application of GLOMM with varying numbers of basis vectors for generalized
Laguerre polynomials, specifically for N = 4, 6, 8, 10. This graphical representation highlights an
improved performance of GLOMM with increasing values of N, indicating enhanced accuracy
and convergence as the number of basis vectors for Laguerre polynomials expands.

Example 2 (RC Circuit) In this illustration, we examine the fractional-order RC circuit model as defined
by Eq. (17), assuming a constant voltage source with E(x) = 0. When µ = 1, the precise solution to
Eq. (17) is obtained as

v(x) = v0e
−x
RC .
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Figure 3. (a) Comparative illustration of approximate solutions for the fractional-order RC circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the RC circuit model at µ = 1.00. (d) Residual error estimation for RC circuit
model
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In Figure 3a, we present a visual juxtaposition of the exact solution and the approximation achieved through
the GLOMM, as introduced in Subsection 4, for the fractional-order RC circuit. The analysis encompasses
specific parameter values R = 10, C = 1, an initial condition of v0 = 20, and a derivative order of
µ = 1. Furthermore, Figure 3b illustrates the corresponding absolute error resulting from the application
of GLOMM to the RC circuit under the same settings. In Figure 3c, a graphical comparison unfolds
between the exact solution, our proposed method, and established methods from the literature, namely the
SFGBWM [25] and FWM [26]. The visual representation distinctly highlights the notable alignment
between our method and the exact solution, underscoring its superior performance relative to existing
approaches. Figure 3d illustrates the estimation results of the residual error function for the RC circuit
model. These estimation results demonstrate an agreement between the absolute error and the estimated
error.
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Figure 4. (a) Dynamic response of GLOMM solution for the RC circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the RC circuit at different N values

In Figure 4a, we depict the graphical behavior of the fractional-order RC circuit across various fractional
derivative orders, specifically for µ = 0.99, 0.90, 0.80, 0.70. In Figure 4b, we present the absolute errors
resulting from the application of GLOMM with different numbers of basis vectors for generalized Laguerre
polynomials, specifically considering N = 4, 5, 6, 8. This graphical representation underscores the improved
performance of GLOMM as the value of m increases, suggesting enhanced accuracy and convergence with
the expansion of the number of basis vectors for generalized Laguerre polynomials. In the subsequent
analysis, we alter the configuration for the fractional-order RC circuit by setting R = 1 and applying
GLOMM under a fractional order of µ = 0.5.

Table 1 provides a comparative analysis of solutions obtained using the GLOMM, ABM, and Ch3WM
for the fractional-order RC circuit model. The analysis is conducted under a fractional derivative order of
µ = 0.5. The resulting outcomes are visually compared with established techniques, such as the Chebyshev
Wavelets of the third kind Method (Ch3WM) [24], in Figure 5. Given that the exact solution of the RC
circuit is defined for integer derivative orders, rendering it unsuitable as a reference under fractional order
µ = 0.5, we employ the Adams-Bashforth method (ABM) [35] as a reference technique. The comparison
between our method, Ch3WM, and ABM reveals a notable alignment. The obtained results strongly indicate
that GLOMM exhibits superior agreement compared to other techniques.
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Table 1. Comparison of GLOMM, Ch3WM, and ABM solutions for fractional order RC circuit model with
µ = 0.5

ABM GLOMM Ch3WM
0 0.01 0.010006099 0.009311492
0.1 0.007280578 0.007195621 0.007227947
0.2 0.006459239 0.006429888 0.006437929
0.3 0.005940309 0.005921566 0.005920666
0.4 0.005555113 0.005525782 0.005536186
0.5 0.005249442 0.005209207 0.005231222
0.6 0.004996976 0.004985988 0.004980178
0.7 0.004782689 0.004785824 0.004766949
0.8 0.004597144 0.004561122 0.00458242
0.9 0.004434009 0.004411648 0.004420164
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Figure 5. Comparative illustration of GLOMM, Ch3WM, and ABM solutions for the RC circuit model at µ = 0.5

Example 3 (LC Circuit) In this instance, we examine the fractional-order LC circuit model described by
Eq. (19). Assuming a constant voltage source with E(x) = 0, the precise solution to Eq. (19) is derived for
µ = 2 as follows:

q(x) = q0cos

(√
1

LC
x

)
+ CE(x)− CE(x)cos

(√
1

LC
x

)
.

In Figure 6a, we showcase a visual comparison between the exact solution and the approximation obtained
through GLOMM, as introduced in Subsection 4, for the fractional-order LC circuit. The analysis considers
specific parameter values L = 10, C = 1, an initial condition of q0 = 0.01, and a derivative order of
µ = 2. Additionally, Figure 6b illustrates the corresponding absolute error resulting from the application
of GLOMM to the LC circuit under the same settings. In Figure 6c, a graphical comparison unfolds
between the exact solution, our proposed method, and established methods from the literature, namely
SFGBWM [25] and FWM [26]. The visual representation distinctly highlights the remarkable alignment
between our method and the exact solution, emphasizing its superior performance compared to existing
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approaches. Moreover, in Figure 6d, we depict the comparison between GLOMM and the exact solution
of the fractional-order LC circuit model over an extended time interval, t ∈ [0, 10]. This illustration
underscores the high accuracy demonstrated by GLOMM, particularly for longer time intervals. Figure 6e
illustrates the estimation results of the residual error function for the LC circuit model. These estimation
results demonstrate an agreement between the absolute error and the estimated error, both of which are
around 10−15.
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Figure 6. (a) Comparative illustration of approximate solutions for the fractional-order LC circuit in contrast to
the exact solution. (b) Absolute error obtained from GLOMM. (c) Comparative illustration of exact, GLOMM,
SFGBWM, and FWM solutions for the LC circuit model at µ = 2.00. (d) Comparison of fractional-order LC
circuit solutions with the exact solution for t ∈ [0, 10]. (e) Residual error estimation for LC circuit model
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In Figure 7a, we illustrate the graphical behavior of the fractional-order LC circuit across varying fractional
derivative orders, specifically for µ = 1.99, 1.90, 1.80, 1.70. Concurrently, in Figure 7b, we present the
absolute errors resulting from the application of GLOMM with varying numbers of basis vectors for
generalized Laguerre polynomials, specifically considering N = 5, 6, 7, 8. This graphical representation
underscores the improved performance of GLOMM as the value of m increases, indicating enhanced
accuracy and convergence with the expansion of the number of basis vectors for Laguerre polynomials.
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Figure 7. (a) Dynamic response of GLOMM solution for the LC circuit at varying values of the fractional
parameter µ. (b) Absolute errors for the LC circuit at different N values

In Figure 8, we modify the configuration for the fractional-order LC circuit by setting µ = 1.5 and applying
GLOMM. The resulting outcomes are visually contrasted with well-established techniques, such as the
Bernoulli Wavelet Method (BWM) [24]. Considering that the exact solution of the LC circuit is defined
for integer derivative orders, making it unsuitable as a reference under fractional order µ = 1.5, we again
resort to the ABM [35] as a reference technique. The comparison involving our method, BWM, and ABM
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reveals a noteworthy alignment. The obtained results strongly indicate that GLOMM exhibits superior
agreement compared to other techniques.
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Figure 8. Comparative illustration of GLOMM, BWM, and ABM solutions for the LC circuit model at µ = 1.5

Table 2 provides a comparative analysis of solutions obtained using the GLOMM, ABM, and BWM for the
fractional-order LC circuit model. The analysis is conducted under a fractional derivative order of µ = 1.7.

Table 2. Comparison of GLOMM, BWM, and ABM solutions for fractional order LC circuit model with µ = 1.7

ABM GLOMM BWM
0 0.01 0.01 0.010001716
0.1 0.009871448 0.009871159 0.009870358
0.2 0.009585093 0.009584501 0.009583816
0.3 0.009181335 0.009180212 0.009179646
0.4 0.008681298 0.008679638 0.008679286
0.5 0.008101184 0.008098930 0.008099095
0.6 0.007454966 0.007452128 0.007452203
0.7 0.006755332 0.006751900 0.006752166
0.8 0.006014079 0.006010103 0.006010442
0.9 0.005242306 0.005237790 0.00523831

Example 4 (RLC Circuit) In this instance, we delve into the RLC circuit model described by Eq. (23).
Assuming a constant voltage source with E(x) = 0, the exact solution to Eq. (23) is derived for β = 2 and
µ = 1 as follows:

w(x) = w0e
−Rx

2L cos

(√
1

LC
−

R2

4L2 x

)
.
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In Figure 9a, we present a visual comparison between the exact solution and the approximation obtained
through GLOMM, as introduced in Subsection 4, for the fractional-order RLC circuit. The analysis
considers specific parameter values R = 10, L = 10, C = 10, an initial condition of w0 = 0.01, and
derivative orders β = 2 and µ = 1. Additionally, in Figure 9b, we illustrate the graphical behavior of the
fractional-order RLC circuit across varying fractional derivative orders, specifically for β = 2.00, µ = 1.00,
β = 1.90, µ = 0.95, β = 1.80, µ = 0.90, β = 1.70, µ = 0.85, β = 1.60, µ = 0.80, and β = 1.50, µ =

0.75.
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Figure 9. (a) Comparative illustration of approximate solutions for the fractional-order RLC circuit in contrast
to the exact solution. (b) Dynamic response of GLOMM solution for the RLC circuit at varying values of the
fractional parameters β and µ

Table 3 showcases the CPU time (in seconds) required for solving RC, RL, LC, and RLC circuits utilizing
the Generalized Laguerre Operational Matrix Method. These results underscore the ability of GLOMM to
deliver fast and efficient numerical solutions, making it a promising technique for applications that demand
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both accuracy and computational speed.

Table 3. CPU time (in seconds)

RC RL LC RLC
CPU time(s) 0.3081 0.3025 0.2812 0.3438

In Table 4, we provide a comprehensive comparison of the maximum absolute errors achieved by our proposed
GLOMM in contrast to FWM, SFGWM, and BWM for the RC, RL, and LC electrical circuit models. This
comparison emphasizes the superior accuracy and precision of GLOMM in delivering numerical solutions
for fractional-order electrical circuits.

Table 4. Comparison of Maximum Absolute Errors for RC, RL, and LC circuits

GLOMM FWM SFGWM BWM
RC 7.1054 × 10−15 9.7149 × 10−5 9.6041 × 10−5 6.11 × 10−2

RL 2.1278 × 10−5 5.5706 × 10−4 6.7269 × 10−3 -
LC 3.2682 × 10−15 1.6238 × 10−6 2.8394 × 10−6 1.16 × 10−5

7 Conclusion and further research

In conclusion, this research introduces a novel and efficient numerical approach, the Generalized
Laguerre Operational Matrix Method (GLOMM), for solving fractional electrical circuit models
represented by RL, RC, LC, and RLC configurations within the framework of the Caputo deriva-
tive. By leveraging the distinctive properties of generalized Laguerre polynomials and developing
an operational matrix of fractional integration, our method offers a powerful tool for accurately
capturing the intricate dynamics of these circuits. Through a series of numerical examples con-
ducted using Matlab R2021a, we demonstrated the robustness and versatility of our proposed
approach across varying fractional derivative orders. Notably, we observed maximum absolute er-
rors of approximately 10−15 for the RC circuit, 10−5 for the RL circuit, and 10−15 for the LC circuit,
highlighting the superior accuracy of our method compared to existing approaches. Furthermore,
the high level of agreement in the approximate solution for the RLC circuit, as evidenced in the
illustrations, further validates the efficacy of our approach. Additionally, CPU time serves as a cru-
cial metric for assessing computational efficiency, directly reflecting the computational resources
required to execute our algorithm. The maximum CPU time of 0.3438 obtained using GLOMM
underscores the computational efficiency of our proposed technique. The results underscore
the potential of our method as a valuable tool in the analysis and design of fractional electrical
circuits, showcasing its ability to provide precise solutions and enhance our understanding of the
underlying dynamic behaviors.
Future research directions stemming from this study could explore the extension of the GLOMM
to address nonlinear fractional electrical circuit models, assessing its performance under varying
degrees of nonlinearity. Additionally, incorporating alternative orthogonal basis functions or
operational matrices alongside generalized Laguerre polynomials may be investigated to enhance
the method’s versatility. Parametric studies and sensitivity analyses can be conducted to evaluate
the robustness of the GLOMM in response to variations in circuit parameters and fractional orders.
In addition, integration with machine learning techniques could be explored to optimize the
selection of collocation nodes and further refine the approximation process, ultimately improving
the accuracy and efficiency of the GLOMM.
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