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Abstract 

The torque behavior of an outer-rotor surface-mounted permanent-magnet machine is improved 

by identifying seven pertinent design variables, including rotor height. The optimal design 

variables are revealed by analyzing 18 experiments determined by the Taguchi method for the 

minimum torque ripple, minimum total harmonic distortion of the induced voltage, and 

maximum average torque. In addition, the optimal design variables are obtained very quickly by 

using fuzzy inference mechanism and genetic algorithm (GA) based on the Taguchi method 

with the single response of the multi-response performance index instead of multiple responses. 

A considerable amount of multi-response improvement is achieved according to the results of 

the two optimizations. 
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1. INTRODUCTION 

 

Recently, considerable interest has arisen in permanent-magnet synchronous machines (PMSMs) that 

have no rotor windings, resulting in lower copper losses. However, PMSMs suffer from high torque 

ripple, cogging torque, and large unbalanced magnetic forces. There has been much research on slot and 

permanent-magnet (PM) designs. These include designing the slot opening to minimize the torque ripple 

[1], studying the influence of slot-opening width, pole-arc coefficient, magnet thickness, and air-gap size 

on electromotive force (EMF) harmonics [2], varying the width of the magnet poles to minimize the 

cogging torque [3], showing the significant effects of pole-arc coefficient, eccentricity, and magnet shape 

on the harmonic content and cogging torque [4], increasing the PM offset without significant reduction in 

back EMF and motor efficiency [5], and determining the optimal split ratio for an external-rotor PMSM 

[6]. 

 

Some studies have used the Taguchi method. These include maximizing output power and efficiency [7], 

optimizing average torque, torque ripple, and the ratio of torque ripple to average torque [8], considering 

the manufacturing tolerances of PM in the interior PMSM for a robust design of the EMF characteristic 

analysis [9], minimizing the cogging torque and maximizing the efficiency [10]. In the following studies, 

the Taguchi method and the fuzzy inference system are used together. These incorporate optimizing 

cogging torque and efficiency [11], optimizing torque ripple, efficiency, and torque-to-magnet-volume 

ratio [12], optimizing efficiency and average torque to torque ripple factor [13]. 

 

Some other studies in the literature are based on genetic algorithm. An optimization technique based on 

GAs has been developed and applied to design of SPM motors [14], optimization of cogging torque and 

efficiency was examined using the Taguchi method with genetic algorithms [15], a Strength Pareto 
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Evolutionary Algorithm is developed for in-wheel SPM [16], maximizing output torque while minimizing 

the torque ripple was demonstrated the use of both genetic algorithm and Taguchi’s technique [17], and a 

hybrid optimization scheme using GA in conjunction with Kriging were proposed for optimizing rotor of 

interior PMSM [18], the minimal cost design of an Axial Flux PMG was searched by using a GA [19]. 

 

Most studies do not discuss the effect of design parameters on the torque behavior. However, it is 

important to determine the design variables that will be used in the optimization process. The primary 

focus of the present study is the effect of design parameters on the torque behavior of a surface-mounted 

permanent magnet (SPM) machine. The optimal range of design parameters is determined before the 

optimization process. In addition, the main dimensions of an SPM machine (i.e., the stator and rotor 

heights) were not considered in above studies. Hence, the present study considers the effects of stator and 

rotor height on the torque behavior. Seven design variables, including the rotor height, are considered 

here. 

 

A different set of optimal levels must be obtained for each response (average torque, torque ripple, and 

total harmonic distortion (THD)) to determine the optimal levels of design parameters based on a single 

response in a multi-response problem. Unlike the literature, both the fuzzy inference system and the 

genetic algorithm are used with the Taguchi method to combine the multiple responses into a single 

response in this study. 

 

2. FINITE ELEMENT ANALTSIS OF OR-SPM MACHINE 

 

2.1. Design Parameters 

 

In this study, an SPM machine with an outer rotor (OR) is selected for study. The geometry of this OR-

SPM machine is shown in Figure 1, and its performance parameters are given in Table 1. These values 

are used as the multiple response/performance characteristics of the optimization process. 

 

 

Figure 1. Outer-rotor surface-mounted permanent-magnet (OR-SPM) machine 

 

The important performance values that were obtained by simulating the OR-SPM machine as a two-

dimensional finite-element model are given in Table 2 as reference performance values that are used for 

comparison with the optimization results. kw1 and q are the fundamental winding factor and the value of 

slot/pole/phase and the pole number, respectively. 

 

Previous studies have tended to overlook the effect of design parameters such as the stator and rotor 

heights, slot opening, and magnet dimensions on the torque behavior. Hence, the primary goal here is to 

improve the torque behavior of the OR-SPM machine under consideration by focusing on the influence of 

such design parameters. The relevant design parameters are the stator height (Hs), the rotor height (Hr), 

the air-gap length (g), the magnet embrace (Em), the magnet thickness (Tm), the magnet offset (Om), the 

slot-opening width (bs0), and the slot-opening height (hs0). All these design parameters are marked on the 

geometry of the OR-SPM machine shown in Figure 2, and their reference values are given in Table 1. 
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Table 1. Reference parameters of the OR-SPM machine 

Parameter Value 

Inner & Outer Diameter of Rotor 92-120 mm 

Inner & Outer Diameter of Stator 26-91 mm 

Height of Stator & Rotor (Hs, Hr) 32.5-14 mm 

Stack Length 65 mm 

Embrace of Magnet (Em) 0.9 

Offset of Magnet (Om) 0 mm 

Thickness of Magnet (Tm) 7 mm 

Slot Opening Height & Width (hs0, bs0) 0.5-2.5 mm 

Slot Body Height & Bottom Width 9.48-2.5 mm 

Slot Wedge Width 5 mm 

Slot and Pole Number 24s-16p 

Rated Output Power 0.55 kW 

Rated Voltage 220 V 

Rated speed 1500 rpm 

Material of Steel M19-24G 

Material of Magnet XG196/96 

 

 

Figure 2. Design parameters for the OR-SPM machine 

 

2.2. Torque Performance Corresponding to Design Parameters 

 

The important performance values that were obtained by simulating the OR-SPM machine as a two-

dimensional finite-element model are given in Table 2 as reference performance values that are used for 

comparison with the Optimization results. 

 

Table 2. Reference performance characteristics 

Slot/Pole q kw1 
Tavg Trip THD 

(Nm) (%) (%) 

24/16 0.5 0.866 12.55 5.17 1.63 

 

The torque ripple (Trip) is defined as 

 

100rms
rip

avg

T
T %

T
                (1) 
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where Trms and Tavg are the root-mean-square of ripple component and average values, respectively, of the 

instantaneous torque. 

The variations in the average torque and the torque ripple with each of the design parameters were 

obtained by analyzing the finite-element model. The outer diameter of the OR-SPM machine was kept 

constant during this process. These variations are shown in Figure 3. The torque behavior (i.e., the 

average torque and the torque ripple) is extremely sensitive to each of the design parameters, except for 

the stator height. Hence, the stator height was excluded as a design variable for the optimization process. 

The smallest value of the stator height (Hs = 18 mm) is used as the optimal value so that the magnetic 

field does not exceed the limit value in the stator yoke. Hence, its reference value (32.5 mm) was 

accepted as the optimal value of 18mm. The other design parameters are accepted as variables in the 

optimization process because of their torque sensitivity. 

 

The optimal range of each design parameter was determined for the reference boundary of the magnetic 

flux density. Thus, the first step in the process was the determination of the design parameters and their 

optimal ranges for use in the optimization. Their optimal ranges providing the best torque behavior are 

determined by observing the variations in the average torque and the torque ripple in Figure 3. These 

optimal ranges are Hr = 12–14 mm, g = 0.45–0.55 mm, Em = 0.88–0.90, Tm = 8–10 mm, Om = 12–16 mm, 

bs0 = 2.6–2.8 mm, and hs0 = 0.4–0.6 mm. 
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Figure 3. Variations in average torque (blue) and torque ripple (red) with 

a) stator height b) rotor height c) magnet embrace d) magnet thickness  

e) magnet offset f) slot-opening width g) slot-opening height h) air-gap length 

 

3. OPTIMIZATION WITH THE TAGUCHI METHOD 

 

The multi-parameter Taguchi method provides the designer with an efficient approach for doing 

experiments to determine near-optimal parameter values. The process diagram of the system to be 

optimized is shown in Figure 4. This process transforms some input/signal factors (M) into an output that 

has one or more observable response variables (Y). The control factors (X) are controllable, whereas the 

noise factors (Z) are uncontrollable. The function of the system can be shown in terms of its process 

diagram, which reflects the output (Y) as a result of the input (M) and other influencing factors (X, Z) on 

the system [20]. 

 

 
Figure 4. Process diagram of system 

 

The relevant factors are the variables that have a direct influence on the performance of the process. The 

levels are the values that define the conditions of the factors that are held during the experiments. An 

orthogonal array (OA) is used to design the experiments and describe the trial conditions [20]. 

 

The signal-to-noise (S/N) ratio measures how the response varies relative to the target. To achieve an 

optimally designed product, two different S/N ratios are calculated using Eqs. 2 and 3. If the goal is to 

maximize the response, the S/N ratio is taken as “larger is better” (LIB) and is defined as 

 

10 2

1

1 1
/ 10log

n

i i

S N
n y

 
 
 
 
              (2) 

 

If the goal is to minimize the response, the S/N ratio is taken as “smaller is better” (SIB) and is defined as 
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where n is the number of experiments for each object function and yi is the value of the experiment’s 

response. 

 

3.1 Application of The Taguchi Method 

 

Primarily, an experiment to study above factors is accomplished by using an L18 array as shown below: 

 

   1 6

18 2 3 18x

nL i L L               (4) 

 

where n, i, and x are the number of experiments, the number of levels, and the number of control factors, 

respectively. 

 

The design consists of one factor at two levels and six factors at three levels each (Table 3). There are 

seven control factors (A–G), one of which has two levels and the others have three levels in this 

optimization problem. These control factors are also known as the design variables. The L18 response 

values are tabulated in Table 4. 

 

Table 3. Design variables and levels 

Design Variables Level 1 Level 2 Level 3 

Em A 0.88 0.9 - 

Tm B 8 9 10 

Om C 12 14 16 

Hr D 12 13 14 

bs0 E 2.6 2.7 2.8 

hs0 F 0.4 0.5 0.6 

g G 0.45 0.5 0.55 

 

Table 4. Results/responses of L18 orthogonal array 

n Em Tm Om Hr bs0 hs0 g Tavg Trip THD 

  A B C D E F G (Nm) (%) (%) 

1 0.88 8 12 12 2.6 0.4 0.45 15.27 3.38 1.25 

2 0.88 8 14 13 2.7 0.5 0.5 14.11 4.18 1.19 

3 0.88 8 16 14 2.8 0.6 0.55 12.21 5.98 1.15 

4 0.88 9 12 12 2.7 0.5 0.55 11.21 5.35 1.28 

5 0.88 9 14 13 2.8 0.6 0.45 14.35 5.06 1.16 

6 0.88 9 16 14 2.6 0.4 0.5 14.05 3.57 1.19 

7 0.88 10 12 13 2.6 0.6 0.5 11.14 4.97 1.27 

8 0.88 10 14 14 2.7 0.4 0.55 13.61 4.39 1.19 

9 0.88 10 16 12 2.8 0.5 0.45 8.72 9.59 1.32 

10 0.9 8 12 14 2.8 0.5 0.5 13.64 4.35 1.41 

11 0.9 8 14 12 2.6 0.6 0.55 13.19 4.53 1.47 

12 0.9 8 16 13 2.7 0.4 0.45 15.56 3.47 1.39 

13 0.9 9 12 13 2.8 0.4 0.55 14.47 3.85 1.40 

14 0.9 9 14 14 2.6 0.5 0.45 14.46 3.54 1.44 

15 0.9 9 16 12 2.7 0.6 0.5 11.22 4.93 1.45 

16 0.9 10 12 14 2.7 0.6 0.45 13.90 3.97 1.50 

17 0.9 10 14 12 2.8 0.4 0.5 8.89 7.23 1.56 

18 0.9 10 16 13 2.6 0.5 0.55 11.22 4.08 1.45 
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The LIB case is related to the objective function of the average torque. The SIB case is related to the 

objective function of the torque ripple, and to the THD of the back-EMF; minimizing the THD is the 

second main goal of this study. The quality characteristics of the average torque, torque ripple, and back-

EMF THD as calculated by the S/N ratio are given in Tables 5, respectively. In addition, Figure 5 show 

the main-effect plots for the S/N ratio according to each design variable. 

 

Table 5. Average torque, torque ripple and THD of back-EMF for the design variables. 

T
a
v
g
 

Level A B C D E F G 

i=1 12.74 14.00 13.27 11.42 13.22 13.64 13.71 

i=2 12.95 13.29 13.10 13.48 13.27 12.23 12.17 

i=3 - 11.25 12.16 13.65 12.05 12.67 12.65 

LIB A2 B1 C1 D3 E2 F1 G1 

         

T
r
ip

 

Level A B C D E F G 

i=1 5.16 4.32 4.31 5.84 4.01 4.32 4.84 

i=2 4.44 4.38 4.82 4.27 4.38 5.18 4.87 

i=3 - 5.71 5.27 4.30 6.01 4.91 4.70 

SIB A2 B1 C1 D2 E1 F1 G3 

         

T
H

D
 

Level A B C D E F G 

i=1 1.22 1.31 1.35 1.39 1.35 1.33 1.34 

i=2 1.45 1.32 1.34 1.31 1.33 1.35 1.35 

i=3 - 1.38 1.33 1.31 1.33 1.33 1.32 

SIB A1 B1 C3 D23 E23 F13 G3 

 

 
Figure 5. Effect of main design variables on a) average torque Tavg b) torque ripple Trip c) back-EMF 

THD 
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Analysis of variance does not analyze the optimization problem directly, but rather it extracts the relative 

importance of the design variables. To evaluate the significant effect of the design variables on the 

responses, the sum of squares (SS) due to various design variables can be calculated by 
 

 
23

1

3
iA A

i

SS m m


                (5) 

 

The SS for the other seven variables (SSB, SSC, and so on) can be obtained in the same way. 

 

Table 6. Significant effects of the design variables 

Factors Tavg (Nm) Trip (%) THD (%) 

  SS Effect Ratio (%) SS Effect Ratio (%) SS Effect Ratio (%) 

Em A 0.20 0.3 2.36 5.8 0.24 82.4 

Tm B 24.49 34.9 7.37 18.2 0.02 6.3 

Om C 4.28 6.1 2.76 6.8 0.00 0.8 

Hr D 18.46 26.3 9.62 23.8 0.02 8.1 

bs0 E 5.75 8.2 13.56 33.5 0.00 0.2 

hs0 F 6.29 9.0 2.35 5.8 0.00 0.4 

g G 7.41 10.6 0.10 0.3 0.00 0.6 
 

These results are summarized in Table 6. The magnet thickness (B) and rotor height (D) are revealed as 

the dominant design variables for the average torque. The slot-opening width (E), rotor height (D), and 

magnet thickness (B) stand out for the torque ripple. The magnet embrace (A) is revealed as the only 

dominant design variable for the THD. 

 

3.2. Optimal Design Variables for Taguchi Analysis 

 

From Tables 5, it is clear that the design-variable/level combination of A2-B1-C1-D3-E2-F1-G1 

maximizes the average torque, A2-B1-C1-D2-E1-F1-G3 minimizes the torque ripple, and A1-B1-C3-

D23-E23-F13-G3 minimizes the THD. From Table 6, the most influential design variables in relation to 

average torque, torque ripple, and THD are B-D, B-D-E, and A, respectively. It is primarily these 

variables that are evaluated. 

 

Firstly, evaluation is performed in relation to average torque and torque ripple. The average torque is 

largest for B, D, and E, whereas the torque ripple is lowest. In addition, variables A, C, and F have the 

same effects on the average torque and the torque ripple. Variable G has a larger effect on the average 

torque than on the torque ripple. Therefore, the design variables A2, B1, C1, D23, E1, F1, and G1 are 

selected to constitute the maximum average torque and the minimum torque ripple. 

 

In addition, design-variable A has a larger effect on the THD than on the average torque or the torque 

ripple. Thus, design-variable A2 can be replaced with A1. In this case, the THD decreases while the two 

torque values change. The optimal combination of design variables was determined as A12-B1-C1-D23-

E1-F1-G1 for the maximum average torque, the minimum torque ripple, and the minimum THD. 
 

Table 7. Responses for the Taguchi analysis 

Model 
Tavg Trip THD 

(Nm) (%) (%) 

1: A2-B1-C1-D2-E1-F1-G1 15.48 3.78 1.43 

2: A2-B1-C1-D3-E1-F1-G1 14.36 3.65 1.44 

3: A1-B1-C1-D2-E1-F1-G1 15.14 3.5 1.23 

4: A1-B1-C1-D3-E1-F1-G1 14.02 3.61 1.24 

Improvement in # 1 23.3% -26.6% -12.3% 

Improvement in # 3 20.6% -32.0% -24.5% 
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The three optimal responses corresponding to the optimal design variables are given in Table 7. Four 

trials are available for two different values of A and D. When design-variable D varies from D2 to D3, the 

average torque decreases. Similarly, when design-variable A varies from A2 to A1, the THD decreases 

because A has a larger effect on the THD than on either of the two torque values. The improvements in 

the average torque, torque ripple, and THD are 20.6%, 32.0%, and 24.5%, respectively. Response #3 is 

more successful than #1 in terms of the torque ripple and the THD. 

 

4. OPTIMIZATION WITH FUZZY INFERENCE SYSTEM 

 

Fuzzy inference systems are also known as fuzzy-rule-based systems [21]. Basically, a fuzzy inference 

system is composed by five functional interfaces (Figure 6). The fuzzy-rule based system consists of 

fuzzification, inference engine, database base, rule base, and defuzzification interfaces. The fuzzification 

interface converts the inputs so that they can be interpreted and compared to the rules in the rule base. 

The rule base containing a number of fuzzy if-then rules. The database defines the membership function 

of the fuzzy sets used in the fuzzy rules. Mamdani fuzzy inference engine commonly used is based on the 

collection of fuzzy rules [22]. The defuzzification interface transforms the fuzzy result of inference into 

an output. 

 

 
Figure 6. Fuzzy inference system structure 

 

The rule base includes a group of if-then rules with for example, three inputs 1, 2 and 3, and one output 

, 

Rule 1: if 1 is A1 and 2 is B1 and 3 is C1 then  is D1 

Rule 2: if 2 is A2 and 2 is B2 and 3 is C2 then  is D2 

… 

Rule n: if 1 is An and 2 is Bn and 3 is Cn then  is Dn 

where Ai, Bi, Ci, and Di are fuzzy sets defined by the corresponding membership functions, i.e. Ai(1), 

Bi(1), Ci(1) and Di(1). 

 

The fuzzy reasoning of the rules provides a fuzzy output by using the max-min fuzzy interface operation. 

The membership function of the fuzzy reasoning output can be expressed as follows, 

 





1 1 1 1

2 2 2 2

3 3 3 3

1 2 3

1 2 3

1 2 3

1 2 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

...

( ) ( ) ( ) ( )

o

n n n n

D A B C D

A B C D

A B C D

A B C D

          

        

        

        

         (6) 

 

where  is the minimum operation, and  is the maximum operation, respectively. 

 



91 Yusuf ÖZOĞLU / GU J Sci, 31(1): 82-98 (2018) 

 

The defuzzified output o is calculated using the following equation [23], 

 

( )

( )

o

o

D

o

D

 
 

 
 

              (7) 

 

4.1. Application of The Fuzzy Inference System 

 

Three input values and one output value, among the different shapes of fuzzy set are present in this 

investigation. The input variables are Low (L), Medium (M), and High (H) and the output variables are 

stated as five membership functions such as Very Low (VL), Low (L), Medium (M), High (H), and Very 

High (VH). Thus, the fuzzy rule base which has twenty-seven rules is presented in Table 8. 

 

Table 8. Fuzzy rule base 

Tavg (Low) 
Trip 

Low Medium High 

THD 

Low VL VL L 

Medium VL L M 

High L M H 

     
Tavg (Medium) 

Trip 

Low Medium High 

THD 

Low VL L M 

Medium L M H 

High M H VH 

     
Tavg (High) 

Trip 

Low Medium High 

THD 

Low L M H 

Medium M H VH 

High H VH VH 

 

Fuzzy inference system is used for solving interrelationships among multiple response. In this approach a 

multi-response performance index (MRPI) is obtained for analyzing complicated the multiple response. 

The FIS implementation steps are summarized below. 

 

Step 1. The S/N ratios corresponding to three responses (Tavg, Trip and THD) are calculated using Eqs. 2 

and 3 in the Minitab software. The average torque is investigated for the LIB condition, whereas the 

torque ripple and THD are investigated for the SIB condition. These values are given in Table 9. 

Step 2. Gaussian membership function and fuzzy rules are established to fuzzify the S/N ratio of each 

response. These functions and rules are given in Figure 7 and Table 8, respectively. 

Step 3. The fuzzy multi-response output is calculated using the max-min interface operation (Eq. 6) 

Step 4. A single response multi-response performance index (o), in which case the optimal design 

variables is calculated using Eq. 7 and given with the S/N ratios in Table 9. Fuzzy Logic Toolbox of 

Matlab software was used for the stage 2–4. 

Step 5. The multi-response performance index is analyzed using the Taguchi method again to determine 

new optimal design variables. The values and the main effects of the multi-response performance index 

are shown in Table 10 and Figure 8, respectively. 
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Table 9. Responses for the fuzzy inference system 

  S/N MRPI 

n Tavg Trip THD - 

1 23.6768 -10.5783 -1.9382 0.878 

2 22.9905 -12.4235 -1.5109 0.674 

3 21.7343 -15.534 -1.214 0.636 

4 20.9921 -14.5671 -2.1442 0.408 

5 23.137 -14.083 -1.2892 0.725 

6 22.9535 -11.0534 -1.5109 0.763 

7 20.9377 -13.9271 -2.0761 0.402 

8 22.6772 -12.8493 -1.5109 0.666 

9 18.8103 -19.6364 -2.4115 0.113 

10 22.6963 -12.7698 -2.9844 0.376 

11 22.4049 -13.122 -3.3464 0.295 

12 23.8402 -10.8066 -2.8603 0.736 

13 23.2094 -11.7092 -2.9226 0.554 

14 23.2034 -10.9801 -3.1673 0.624 

15 20.9999 -13.8569 -3.2274 0.295 

16 22.8603 -11.9758 -3.5218 0.432 

17 18.978 -17.1828 -3.8625 0.121 

18 20.9999 -12.2132 -3.2274 0.375 

 

 
Figure 7. Membership functions for a) one of three inputs and b) one output 
 

Table 10. MRPI for the design variables 

Level A B C D E F G 

i=1 0.6584 0.6957 0.6175 0.4192 0.6393 0.6753 0.6212 

i=2 0.5284 0.6572 0.5910 0.6960 0.6190 0.5290 0.5472 

i=3 - 0.4275 0.5718 0.6652 0.5220 0.5760 0.6120 

LIB A1 B1 C1 D2 E1 F1 G13 
 

 
Figure 8. Effect of main design variables on multi-response performance index  
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4.2. Optimal Design Variables for The Fuzzy Inference System 

 

As a result of the fuzzy on based the Taguchi analysis, the design variables can be divided into three 

groups in terms of their variations. The first group consists of magnet thickness (B) and rotor height (D), 

and has the most effective multi-response. The second group consists of magnet embrace (A), slot-

opening width (E), slot-opening height (F), and has a very effective multi-response. 

 

According to the fuzzy based on the Taguchi method, the optimal combination of design variables is A1-

B1-C1-D2-E1-F1-G13. Both G1 and G3 were tried for obtaining optimal variable values because design-

variable G has a similar value for the two cases (G1, G3). The responses that correspond to the optimal 

design variables are given with two combinations in Table 11. The first combination is the same as the 

third solutions of the Taguchi analysis. The improvement in average torque, torque ripple, and back EMF 

THD are 20.3%, 32.8%, and 25.2%, respectively. 

 

Table 11. Responses for the fuzzy based the Taguchi method 

Model 
Tavg Trip THD 

(Nm) (%) (%) 

Reference 12.55 5.15 1.63 

1:   A1-B1-C1-D2-E1-F1-G1 15.10 3.46 1.22 

2:   A1-B1-C1-D2-E1-F1-G3 13.92 3.50 1.17 

Improvement in # 1 20.3% -32.8% -25.2% 

Improvement in # 2 10.9% -32.0% -28.2% 

 

5. OPTIMIZATION WITH GENETIC ALGORITHM 

 

Genetic algorithms (GAs) are well-known types of evolutionary estimate methods, and they have been 

adapted for many applications in different fields. The GAs differ from most optimization methods 

because of their global seeking from one population of solutions rather than from one single solution. 

Non-dominated sorted genetic algorithm II (NSGA-II) is used to solve the constrained multi-objective 

optimization problem. It can be inferred that NSGA-II is very effective in solving multi-objective 

optimizations. Two distinguishing features of NSGA-II are its speed of convergence and good uniform 

distribution [24,25]. 

 

The GA is a heuristic method inspired by the natural biological evolutionary process including of a fit 

selection, crossover, mutation, etc. The GA schema is given in Figure 9. 

 

 
Figure 9. General schema of genetic algorithm 
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A multiobjective optimization problem (MOP) can be stated as follows: 

 

 1 mminimize ( ) ( ), , ( )

subject to x

F x  f x f x 


           (8) 

 

where   is the decision (variable) space, : mF R consists of m real-valued objective functions and 

mR  is called the objective space. The attainable objective set is defined as the set  ( ) |F x x . If 

nRx , all the objectives are continuous and   is described by, 

 

 | ( ) 0,n

jx R h x j=1,…,m              (9) 

 

where jh are continuous functions, we call (Eq. 8) a continuous MOP [24,26]. 

 

There are a set of global optimal solutions, called a Pareto-optimal solution set in a MOP. All non-

dominated solutions are the optimal solutions of the problem. These solutions set is named Pareto set 

while its image in objective space is named Pareto front.  

 

Let ( )1 mu u ,…,u , ( )1 mv v ,…,v mR  be two vectors, u, is said to dominate v if i iu v  for all i=1,…,m

and u v . A point 
mx Rå

 is called (globally) Pareto optimal if there is no x  such that ( ) F x

dominates ( ) F xå
. The set of all the Pareto optimal points, denoted by Pareto set. The set of all the Pareto 

objective vectors,  m( ) |PF F x R x PS    is called the Pareto front [24,26]. 

 

5.1. Application of The Genetic Algorithm Method 

 

It is assumed that the multi-objective optimization problem has following design variables in this study, 

 

 r s0 s0m m mx E , T , O , H , b , h , g                  (10) 

 

The design variables are constrained by reasonable lower and upper bounds, 

 

 

 

0.88,   8, 12, 12, 2.6, 0.4, 0.45

0.90, 10, 16, 14, 2.8, 0.6, 0.55

lower

upper

Bound

Bound




                (11) 

 

In the first method, three objective functions are considered separately. Multiple regression analysis is 

conducted to determine objective functions for each response using the L18 response values using 

Minitab software (Table 4). The three objective functions Tavg, Trip, THD correspond to maximization of 

the average torque, minimization of the torque ripple and the back-EMF THD, respectively. The objective 

functions are expressed as follows: 

 

17.37+0.209 -1.375 -0.554 +1.114 -0.588 -0.487 -0.529avgT A B C D E F G               (12) 

2.62+0.724 +0.695 +0.479 -0.767 +0.999 +0.296 -0.069ripT A B C D E F G             (13) 

1.0506+0.23 +0.0358 -0.0133 -0.0375 -0.0058 +0.0017 - 0.01THD A B C D E F G            (14) 

 

The multi-objective optimization problem can be stated as: 
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( ), ( ), ( )rip avgT T TF x x xHD                       (15) 

 

A multi-objective optimization was performed using multi-objective genetic algorithm in Optimization 

Toolbox of Matlab software. Since both functions are intended to be minimized, the average torque was 

multiplied by –1. The GA parameters selected were as follows, population size (sp=3000), number of 

generations (ng=200), probability of mutation (pm=0.008), cross over rate (rco=0.5), selection function 

(tournament), crossover function (scattered) and mutation function (adaptive feasible). The optimal value 

is obtained after 133 generations. 

 

The set of solutions is also known as a Pareto front. Figure 10 shows the Pareto front obtained for the two 

objective function pairs, the average torque & the torque ripple and the average torque & THD. The 

average torque is directly proportional to the torque ripple, whereas it is inversely proportional to THD. 

Although all the points in this Pareto front are optimal points, the three selected points which have been 

assigned as Points A, B and C were chosen as the sample. 

 

 
Figure 10. Pareto front of average torque vs. torque ripple and THD 

 

The combination of design variables corresponding to point A, B, and C are A1-B1-C1-D3-E1-F1-G1, 

A1-B1-C3-D3-E1-F1-G3, and A1-B1-C2-D3-E1-F1-G2, respectively. Thus, the optimal combination was 

obtained for the GA based the Taguchi method as A1-B1-C1-D3-E1-F1-G1. 

 

The second method has been implemented by converting the three objective functions into a single MRPI 

function. MRPI regression equation, which is named as fitness function, has been obtained using the 

MRPI response values in Minitab software (Table 9). 

 

  MRPI = -1.082+0.13A+0.1341B+0.0228C-0.123D+0.0587E+0.0497F+0.0046G           (16) 

 

 
Figure 11. Best fitness for fitness function of MRPI variation  
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The best fitness value (γ = -1.16862) was resulted and final parameters were reached for GA. Figure 11 

shows the best and the mean fitness of fitness function after 130 generations. Unlike the multi-objective 

optimization based GA, this genetic algorithm method gives a single optimal combination whose value 

was A1-B1-C1-D3-E1-F1-G1 for the GA based Fuzzy–Taguchi method. 

 

The same optimal combination was obtained as a result of the above two genetic analyzes. This 

combination is the same as the fourth solutions of the Taguchi analysis (Table 7), whereas it differs from 

the results of the fuzzy based the Taguchi analysis (Table 11). Average torque, torque ripple, and back-

EMF THD are obtained at 14.02 Nm, 3.94% and 1.24%. The improvement in average torque, torque 

ripple, and back EMF THD are 11.2%, 23.5%, and 23.9%, respectively, for the GA with the Taguchi and 

the FIS. 

Although the combinations of the FIS and the GA are slightly different, the multi-response values are 

close to each other. The first one uses the membership function and the second one uses the regression 

equation, which is the likely reason. 

 

6. CONCLUSION 

 

Excluding the stator height, seven design parameters were defined as design variables with optimal 

ranges. The magnet thickness (B) and rotor height (D) were identified as common high-impact design 

variables for the two responses of average torque and torque ripple. In addition, the slot-opening width 

(E) was found to be the most effective for minimizing the torque ripple. 

 

The multi-response that consisted of the average torque, the torque ripple, and the THD was reduced to a 

single response (MRPI). Following this, the optimal design variables were obtained very quickly by using 

fuzzy inference system and genetic algorithm based on the Taguchi method. The optimal combination of 

design variables was obtained as A1-B1-C1-D2-E1-F1-G1 according to both the Taguchi method and the 

fuzzy analysis based on the Taguchi method. The improvement in average torque, torque ripple, and back 

EMF THD are 20.3%, 32.8%, and 25.2%, respectively. 

 

However, the optimal combination obtained by the genetic algorithm differs from the previous one by D3. 

A considerable amount of multi-response improvements was achieved according to the results of the three 

optimizations. 

 

In this study, an SPM machine with an outer rotor (OR) is selected for study. The geometry of this OR-

SPM machine is shown in Figure 1, and its performance parameters are given in Table 1. These values 

are used as the multiple response/performance characteristics of the optimization process. 
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