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1. INTRODUCTION

We consider an autonomous stochastic predator-prey model with modified Leslie-Gower and Holling
type II functional response in which preys disperse among n patches. As, the effect of dispersion on the
species survival plays an important role in the study of dynamic biology and ecology, the analysis of
mathematical models of populations dispersing among patches in a heterogeneous environment has been
the subject of several recent papers [10,11].

In this paper, we are interested in a predator-prey model with modified Leslie-Gower and Holling type 11
functional response studied in the deterministic case by M.A. Aziz-Alaoui and M. Daher-Okiye [1] and
with stochastic perturbation by [3,8]. In our case, we introduce the coupling as well as the stochastic
perturbation to take into account the effect of randomly fluctuating and stochastically perturbed intrinsic
growth rate. The key method used in this paper is the analysis of Lyapunov functions [9]. The system that
we consider is

dxi = (Xl' (1 —Xj — %) + Zr-" Cij(xj - Xi))dt + Ulixiqu-(t)

(M

in = biYi (1 - Koi+X 1) + UZLyldWZL(t) = 1'2' SR

Here, x;, y; denote respectively the densities of preys and predators on the patch i, and the parameters a;,
ki, ki and b; are positive constants as in [1]. The constants ¢;; correspond to the dispersal rate from
patch j to i, the processes W; = (Wy;, Wy;), 1 <i <n, are independent standard Brownian motions
defined in the complete probability space (Q,F, {F:}s0,P), and o;; and a,; are positive constants. For
this system, we begin to show the existence and uniqueness of the global positive solution with any initial
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positive value in section 2. In section 3, we prove that when the noise is small enough the population
system is stochastically permanent. In section 4, by the Lyapunov functional technique we obtain
sufficient conditions for the existence of the stationary distribution of system (1). Finally, in section 5, we
make numerical simulations to confirm the effect of white noise and the diffusion coefficient on the
species.

2. EXISTENCE AND UNIQUENESS OF THE BOUNDED SOLUTION
Throughout this paper, we denote by R4™ the positive cone in R?", that is

R3" = {(x,y) € R¥": (x;,¥;) > (0,0) forall 1 <i <n}, and for X = (x,y) € R?", its norm is denoted
1
by |X| = XL, (xf, yP)z.

For simplicity, we define & = max, ; j<p 0;, and for any constant sequence (¢;;)1<j j<n, We get ¢ =
max, <, j<n Cij-

Theorem 2.1 For any initial condition (xg,y,) = ((x01,y01) (xOn,yOn)) € R2", the system (1)

admits a unique solution (xi(t),yi(t)) = ((xl(t),yl (t)), ...,(xn(t),yn(t))), defined for all t = 0 a.s,
and this solution remains in R",

Proof. Let T, be the explosion time of the solution of (1). We have to prove that (xl-(t), yi()) € R3" for
every t € [0, 7,[ and that 7, = o a.s. The proof of the first assertion is adapted from [7]. Indeed, the
coefficients in system (1) are locally Lipschitz, so there exists a unique local solution for all t € [0, 7,[
and for all (x;(0),y;(0)) € R?™. To show that this solution is global, it suffices to show that T, = co. For

that, let ko, > 0 be large enough, such that (x;, Voi) € [ ko] [ ko] For each integer k > k, we
define th stopping time

Ty = inf{t €[0,7.):x & Gk) ouyx & Gk) for some i = 1,...,n}.

The sequence (tx) is increasing as k — oo. Set T, = limyg_ Ty, Whence T, < T, (in fact, as
(x(t), y(t)) > 0 a.s., we have T, = T,.). It suffices to prove that t,, = o0 a.s.. Assume that this statement
is false, then there exist T > 0 and € €]0,1[ such that P({t,, < T}) > €. Since (ty) is increasing we have

P({to <T}) > e

Now, consider the positive definite function V: R2" - R3" given by
V(x,y) = Xi1(; + 1 —logx; + y; + 1 — logyy).

Applying 1t6’s formula, we get

n

n
dv - a;yi af; X;
G = | ComD(1=x= B )+ 90+ Qe —xk 1=
L l i

i=1 j=1

2
Vi 0.
+ bi(yi - 1) (1 - kzi ‘:'xi) + 72 dt +Z Gll(xl 1)dW11 + Z GZL(YL 1)dW21-

The positivity of x;(t) and y;(t) implies
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n

n
1 0-121' + 0'221'
dV(X, y) < Z in + (ai + bi + k_> Vi + T + Cinj dt + 2 all-(xi — 1)dW11
2i

i=1 =1 i=1
n
+ Z 02i(y; — DAWy;.
i=1

2, 2
01it05;

LetC1i=ai+bi+i, CZi:
kzi 2

,i =1..,n. Using [2, lemma 4,1], we can write

2x; + C1;y; < 4(x; + 1 —logx;) +2Cy; (v + 1 —logy;)) <C
< C3iVi(xi, yi),

where C3; = max(4,2Cy;), hence

n n
AV (x,y) < Co(1 +V(x,y))dt + Z 041(x; — 1)dW,; + Z 0:(y; — 1)dW,;.

i=1 i=1

Where C, = max(Cy;, Cs;),i =1, ..., 1.
Integrating both sides from 0 to 7, A T, and taking expectations, we get
EV(x(te AT),y(tx AT)) < V(0 ¥0) + C4T + Cy ) EV(x(ty AT),y(ti AT)) dit.
By Gronwall’s inequality, this yield

EV(x(tx AT),y(tx AT)) < Cs, (2)
where Csis the finite constant given by

Cs = (V(x0,y0) + C4TeT, 3)

Let Q) = {r}, < T}. We have P(Q;) = ¢, thus for all w € Q, there exists at least one element of
x(Ty, w), y(tk, w) which is equal either to k or to %, hence

V() y(m) = (k +1 —loghk) A + 1 +logk).
Therefore, by (2),
Cs = E[lﬂkV(x(Tk,a)),y(Tk,w))] >¢ [(k +1—1logk) A (% + 1+ log k)],

where 1q, is the indicator function of (.. Letting k — o, we get (5 = oo, which contradicts (3). So,
we must have 7,, = o a.s. \

3. STOCHASTIC PERMANENCE

Theorem 2.1 shows that the solution of System (1) will remain in the positive cone R3™ with probability
1. To discuss how the solution varies in R3", first we recall the definition of stochastically ultimate

boundedness and stochastic permanence.

Definition 3.1 The solutions of system (1) are said to be stochastically ultimately bounded, if for any € €
10, 1[, there is a positive constant y(= y(¢)), such that for any initial value X(0) € R2", the solution of

system (1) has the property that.
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limsup P{X(t) >y} <e.

t—>oo

Definition 3.2 The system (1) is said to be stochastically permanent, if for any € €]0, 1], there exists a
pair of positive constants §(¢) and y(€) such that the solution of (1) with any initial value X(0) € R3™,
has the property that

liminf,,, P{X(t) =6} =>1—¢, liminf,,,P{X(t)<y}=>1-¢

We start with a technical lemma

Lemma 3.3 For any initial value (x(O) y(0)) € R2", the solution of the system (1) satisfies
B a0 +yi@P) < 2n(8), p>1.

Proof. Applying It6’s formula, we get

d(x’)=p (xip (1 —x =2y pz;lalzi) + 37 cii(x — xi)) dt + poyx! dWy;(t)

kqi+x;

a;yi -1
:p(xip(l—xi—l—y+p7 -2 1CU)+Z] 1CijXj X )dt

kqitx;

+ Palixideu(t)

<p(xf (1= +Ehod = Sy cy) + Sy oy (2 L ’))

+ poyx] dWy;(t)

<p (xip (1 —x; + pT_lalzl- — %Z?:l cij) + %Z}Ll cl-jxf) dt + poy;xl dWy;(t)
d(?) = py? (i1 = 25 + 557 03) dt + poriyf AWy (6)

< pyip (b (1 — ky—z’l) + pT_lazzi) dt + Pazi}’ipdwzi(t)'
then
(T O +yD)) <p B [ (1= x + B ol + 250, cy) + 97 (b (1-2)

+2202 )| dt + B oy xP AW (6) + p I 0aiyf dWoi(2)

<pYyL [ Pt kZl_ypH + x! (1 ——O’ll += Z] 1cl-j) +y? (b +—O’2L)] dt
+ X7 oyx] AWy () + p BT a:y] AWy, (D).

1
Let By =P(1+p % +2 Z, 16ij)s Ba=p (b + 2= Uu) a—mln(P, ) and B = max (B, B2),
then,

AT, +yP) < [—a T P+ 9P + IR (kP + yP)]de

+X7 01ixide1i(t) +p Xt Uzi)’ipdwzi(t)-
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Integrating both sides from O to t, and taking expectations, we get

dE[Z, (xP+yD) 1 1
el D] o gplsn (] + R[S G + )]

< —@n)? aE[SE, (P 4 yP)] P + BE[SEL G +yP)]

< B[S, (P +97)] (ﬁ e B[y, (P 4 yf>]5).

(2n)P

Let Z(t) = E[Z?zl(xip + yip)], so we have

dz 1
Egz(g— “1Zzn>.

(2n)P

_1 B\P .
- Z? | tends to Zn( ) , ast — oo, the Comparison

(2n)P “

Since the solution of equation % =7 (ﬁ —

Theorem, we get

limsup;e, E[X721 (6 (0)P + y;(D)P)] < 2n (ﬁ)p'

a

By Chebyshev’s inequality and Lemma 3.3, the following result is straightforward.
Theorem 3.4 The solutions of System (1) are stochastically ultimately bounded.

Now, we impose a hypothesis,

Assumption 3.1 a; = max,<;<,{1, b;, ¢} >

g
2

Lemma 3.5 Under Assumption 3.1, for any initial value X, = (xo,¥0) = ((xo1,Y01), -» (ons Yon)) €
R3™, the solution X (t) = ((xl (0, y1()), ., (en (), Y (1)) satisfies that

: 1
lesupt—mo E [W] < H;
where 0 is an arbitrary positive constant satisfying
52
a >0+, 4)

and

0-2
n®(a, + 4ka,) 2a, + a; ++/d3 + 4a,a,
H=——"———"max{1, )

4ka1 Zal

in which k is an arbitrary positive constant satisfying

k v 0+1
0<z<a -2, )
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while

L,0+1 k v, . 2k
a,=a;—0 > —5>0, a, = a,+o +F>0.

Proof. Let us define V(X) = X1, (x; + v;) for X € R3", and

> 0.

1
U(X):V(X—(t))ont_

By the It6 formula, we get

dU(t) = —U(t)? 3T ((xi (1= =220 ) + B ey (o — ) + biyi (1 - 2) )t

kqit+x; kyi+xi

n

+ oy AWy (0) + 0,y;dWo; (1)) + U(2)? Z[(ani)z + (03:y1)%] dt

=1

n

= LV (t)dt — U(t)? Z[quiqu(t) + 02,y dW; (D],

i=1

where

LU(t) = -U(t)? ¥ <(xl- (1 —x; — &) + 3% cij(x — x;) + by (1 - L))

kqitxi kyit+xi

+U () X 1[(01%)? + (o2::) %]

Under Assumption 1.3, we can choose a positive constant 8 such that it obeys (4). By the 1td formula
again, we have

d[(1+U®)°] = (-6(1+ U®)° U2 Ty (3 (1 — % — 225

kqi+x;

+ Z? Cij(x]' - xl-) + biyi (1 - #)) + (9(1 + U(t))g_lU(t)3

9(92_1) 1+ U(t))g_zU(t)4) al(onx)? + (Uzi}’i)z]) dt

+

-0(1+ U(t))e_lU(t)z ilonx; dWy;(t) + 025y dWo; (B)].

Now, choose k > 0 sufficiently small such that it satisfies (5). Thus, by the Itd6 formula, we get
dle* (1 + U ()] = ke (1 + U(t))e +ekd(1+ U(t))g
=ektd(1+ U(t))e_z ((k(l + U(t))2 +](t)) dt (6)

—0(1+U()" U@ Tl dWii(6) + 021 d Wi (0],

where
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J©® = =61+ U@ iy (3 (1 - % - 225

kqit+x;i

+ 30 e (g — x) + by (1 - 22)) + (01 + U () U ()P

kyit+x;

+

9(92_1) 1+ U(t))g_zU(t)4) imal(o1x)? + (0290)%].

We thus obtain

) 6+1

J(®) <=8 (ay = 22 U + 0(ay + 5HU(L),

where a4 has been defined in the statement of the lemma. Substituting this into in (6) yields

dle® 1 +U0)?] < e (1+U®)" " (k(1+U©®)" -6 (ay - 7 Z) v(@)?

+0(ay + FU®))dt — 0¥ (1 + U®))°  UE)? Ty 0y, d Wy ()
—6e’*(1 + U(t))e_lu(t)z Yi=102:y:dWo; (1)

= ekt (1+U®) (=6 (@ - > Z2 =Y uy?

+6 (al + &2 —%") Ue) + k) dt

0-1
—0eM (1 +U)  U®)? BiylorxidWiy () + 030y;:dWa; (£)].
It is not difficult to see that

(1+u@)’ (—9 (al — 2 % - S) Ut)? + 6 (al + - %) UGt) + k) < H,,

on U(t) > 0, where

2
a,+4ka, 2a;+a+ |aj+4aqa;,
H === 1

max
4kaq ’ 2a,

6-2

and a4, a, have been defined in the lemma. Thus
dle* (1 + U()°?] < Hye*dt — ge* (1 + U(t))e_lU(\ N2 ¥M [ogix; AWy (£)
+02:yi AW (£)].
This implies
6 6 H
Ele’(1+U(®)’]| < (1+U®)" +72e*.
Then

limsup;_, e E[U(t)g] < limsup;_ E [(1 + | \(t))g] S%.
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For X € R2", note that

7]
L (x; + y))8 < (n maxygicn(x; + )8 < b (maxygin (x; + v:)H)z < n|x]°.

Consequently,

Limsup;_, E [m] <nt % <H, W

Theorem 3.6 Under condition (4), the System (1) is stochastically permanent.

Proof. Let X(t) be the solution of System (1) with any given positive initial value X(0) € R%". By
Lemma 3.5, we have

: 1
Limsup;,o E [W] <H.

1
€

For X(t) € R3" and for any € > 0, let § = (E)E, we get the following

P{X(t) < &} = P{(X(ﬁ < 51—9}

“lzre]
< _lx@)

50
<6%H=c¢.
Hence

Limsup P{X(t) < 6} <€,

t—>oo
and this implies

Limsup P{X(t) =6} =>1—e€.

t—->oo
The other property of Definition 3.2 follows from Theorem 3.4. 0
4. STATIONARY DISTRIBUTION
In this section, we investigate that there is a stationary distribution for System (1) instead of
asymptotically stable equilibria and list some results on the stationary distribution (see Khasminskii [[4],
pp.106-125]). Let X(t) be a homogeneous Markov process in E; (E; denotes /-space) described by the
stochastic equation

dX(t) = b(X)dt + T¥_; g,(X)dB,.(t)

The diffusion matrix is

k
A = (a5(0), a5 = ) gh)gleo).
r=1

Assumption 4.1 There exists a bounded domain U € E;with regular boundary I, having the following
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properties.

* (i) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix
A(x) is bounded away from zero.

+ (i) If x € E;\U, the mean time 7 for which a path starting at x and reaching the set U is finite, and
SUpyex E,T < oo for every compact subset K C Ej.

Lemma 4.1 (see [4]). If Assumption 4.1 holds, then the Markov process X(t) has a stationary
distribution u(A). Let f(.) be a function integrable with respect to the measure y. Then

1 T
Px{Tli;go = fo F(X(0)dt = Elf(x)u(dx)} =1

forall x € Ej.

Theorem 4.2 Let My = —k;; + 2L — 24 2

LM, =—1-%42
2 ' 2ky My=-1--+ 2kzi.Assume that M; < 0 and M, < 0.

Then there is a stationary distribution u(.) for System (1).
Proof. Let us set

* * i kait { * i
Vi, i) = (kyi + x7) (xi — X~ 108%) + z—xl(}’i — Vi~ 1Ogy_)

b; y;)

By It6’s formula, we have

dv; = <(k1i +x)(( = %) (1 — X — 2+ Y (i—i— 1)) +xl—012l)

kqitx; 2

kyi+xi 2b;

+(kg; + x7) <(J’i -7 (1-255) +@>)dt

+(kq; + x7) (g — x7) oy AWy (8) + (kg + %) (Vi — i )02 dWo; (t)
= LVidt + (kq; + x)(x; — x7)0y;d W1, () + (kai + X)) (i — i) o2:dWo; (2),
where

*

x " aiyi Xj Xj « Ay
LVi = (kli +xl-)(xi —xi)(—xl- —l—l+2?cij (x_i—_]> +xl’ +#)

Kkqitx;

¥ kli‘l'x;K
o X o2 * * yi Vi yio%;
+ky; + x) =5+ (kg + X)) [(Yi =) (kziixf - kzi':'xi) +==
L

= (Heai =% +1295) (i~ xD? — 0~ %7)?

kqitx;

i * * * *j %
+ (_ai + kzjl“'xi) (e = x)D) i —yi) + (kyi + x) X cij (x_i - x_J)

*g2, * g2,
+ (ki + x7) T2+ (g + x) 12

The positivity of x;(t) and Cauchy-Schwarz’s inequality imply
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LVis(kll klyi‘—ﬂ+2k )(xl—x)2 (—1—%4-%)(3’1'—3’;)2

* * Xj xj * x}o2; * .'V'*U i
+(kqy; + xi)Z? cl-j(xl- —-x;) (x—i — x-i) + (kq; + xi)_lzll + (kg + x7) 12 2i
i

— (o = 224 2= 20 G — )2 = (142 = 20) (3 - )2

e + 1) T ey (2= 2= 2 1) b (g + ) 250+ (kg + ) 2
]

X ]l.

< (k=222 20) (= x- (14 2 25 04— 0"

XjXi  Xj

xSt (= (= )y (_x X XjxQ XX
+(ky; + x7) X cux]( ( x;+logx;>+( x;+l g Z)+log o *xi+1)
* xi*alzi * y{‘dzzi
F+kqi +x) =+ (kg + x7) ==

— (k=S4 %= 20) Gy )2 = (14 2= 25) 0 = )2

* * Xj Xj Xi Xi
+(ky; +x7) X7 cij X (— (—x—j + Ing_é) + (_F + Ing_;)>

L
*\ X001 * Yi03i
ey + ) =7+ (ky + X)) =55

From [6, Theorem 2.3], we have

noogr (X S)=yne o (=X X
Z]-cuxj( x;+logx; = X7 Cij X x;+logx*.

i

So

T T TR Y G Vi (. _ )2
Lv; < (kll T2 T )(xl x;) (1+2 2kﬁ)(yl yi)

* g2, * 52
(g + x7) 2 A (g + x)) T2,

Vi
2 2k,

o2, g2, ¥ .
LetAd = (kll + x:)% + (kZl + x;k) ylza-m, M1 = _kli + ikl ﬁ‘l'_ and Mz =-1-

ky 2 2ky
We have
LV; < My(x; — x7)? + My (y; — yi)* + A
Now, if A satisfies,
A < min{M, (x))%, M, (y))?},
then the ellipsoid
My (x; — x{)* + My (y; — yi)? + 1 =0,

lies entirely in R%™. We can take U to be any neighborhood of the ellipsoid with U € E; = R3™, so for
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x € E;\U, we have LV < N (N is a nonpositive constant), which implies that Condition (ii) is satisfied.
Besides, there is a M > 0 such that

n n
Z a;j (X)8:¢; = Z(Ufixizfiz +ofiyiél) = MIEI%,
i,j=1 i=1

for all (x4, Y1, .-, Xn, ¥n) € U, &€ € R™, thus Condition (i) is satisfied. Therefore, by Lemma (4.1) the
system (1.1) has a stable stationary distribution p(.) and it is ergodic. O

5. NUMERICAL SIMULATIONS

To illustrate our results, we consider the two-species nonlinear dispersal system with n = 2.

a1y1

dxlz[x1<1—x1—m

) + c12(x2 — x1)] dt + oy1x,dW14(8),

dy; = biyy (1 - kzi/j-xl) + 021y1dW,4 (1),
dx, = [ ( _ ] _
Xy = %2 (1—x, P, + €31 (x1 — x2) | dt + 012%,d Wy, (1), (7

dy, = by, (1 — 2 ) + 0222 dWo, (2).

ky1+x,

We numerically simulate the solution of System (7). By the Milstein scheme mentioned in [[5], p345],
which turns out to be an order 1.0 strong Taylor scheme, we consider the following discretized system:

_ a1Y1+1
Xike1 = X T | Xip |\ L — X0k — 77— ) + C12(x2,k - xl,k) h
k114X

1
+o11%1, VhEDy + 50121x1,k(h512,k —h),

yi, 1
Yik+1 = Y1k T b1yik (1 — =Lk )h + 021}’1,k\/ﬁfzz,k + ‘0221}’1,k(h512,k - h):
k21+xl'k 2
a,y
Xok+1 = Xop T [xz,k (1 —Xok — —k122+2,;kk) + C21(x1,k - xz,k)] h (8)

1
+012% 1 VRS  + Eo-lzzxZ,k(hE?%,k —h),

Y2,k
kaz+xok

Y2ke+1 = Y2k T D2Y2k (1 - )h + 0222, VhE . + %02223’2,k(h§£,k —h).

For the numerical simulations, we choose a; = 0.4, k;; = 0.08, k;; = 0.2, by = 0.1, a, = 0.5, k{1, =
0.4, k,, = 0.25, b, = 1, and the time step h = 0.01. In Figure 1, we assume that ¢, = 1.5, ¢ = 1.6,
with g,; = 0.3, 6,; = 0.01, and g,; = 0.01, g5, = 0.01. The initial value (x,(0),y;(0)) = ((0.55, 0, 6),
(0.5, 0, 61)). In this case, the deterministic model has a globally stable equilibrium point (x*,y*) =
(Cx, 1), (x3,¥3)) = ((0.55, 0.75), (0.576, 0.825)). Obviously, Assumption 3.1 holds the system (7) is
stochastically permanent. Also, the conditions of Theorem (4.2) are satisfied, so there is a stationary
distribution. In Figure 2, we choose 01, = 0.3, 05; = 0.2, and 0,7 = 0.01, 05, = 0.2. The populations of
(x1,v1) and (x5, y,) suffer relatively large white noise.
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Figure 1. Trajectories of the solutions of stochastic system (7) represented by the blue curves and the
corresponding deterministic system represented by the red lines. The stochastic system is stochastically
permanent.
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Figure 2. Trajectories of the solutions of stochastic system (7) and the corresponding deterministic
system, the blue lines and the red lines represent them, respectively. a1 = 0.3, 051 = 0.2, and 051 = 0.1,
00 = 0.3.

By comparing Figure 1, we can see that in Figure 2 the curves fluctuations are larger. In Figure 3, we
choose ¢;5 =0, ¢3; = 0.01 and 07, = 0.3, 057 = 0.2, and 0,4 = 0.1, g, = 0.3. Figure 2 and 3 have the
same white noise intensity but have different diffusion coefficients, because there is no diffusion effects,
we can see that (x4, y;) will die.
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Figure 3. Because there is no diffusion effects, we can see that (x41,y,) will die; ¢1, =0, c;1 = 0.01 and
011 = 0.3, 031 = 0.2, and 031 = 0.1, 00 = 0.3
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