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Abstract 

The shortest interval approach can be solved as an optimization problem, while the equally 

tailed approach is determined by using the distribution function. The equal density approach is 

proposed instead of the optimization problem for determining the shortest confidence interval. It 

is applied to multimodal probability density functions to determine the shortest confidence 

interval. Furthermore, the equal density and optimization approach for the shortest confidence 

interval and the equally tailed approach were applied to numerical examples and their results 

were compared. Nevertheless, the main subject of this study is the calculation of the shortest 

confidence intervals for any multimodal distribution. 
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1. INTRODUCTION 

 

Today, inferential statistics contain the most common methods used to determine measures of 

development, variation and existence in almost all fields of science. Statistics obtained from a sample are 

used to estimate the parameters of a population. These statistics these how reflect parameters are 

examined statistically. It is not expected that the calculated statistic is exactly equal to the population 

parameter. However, the parameter within a certain interval can be estimated by considering the 

significance coefficient (𝛼). This interval is called the confidence interval. The basic purpose of 

inferential statistics is to determine the confidence interval. Two-sided confidence limits form a 

confidence interval; their one-sided counterparts are referred to as lower (𝐿) or upper (𝑈) confidence 

bounds. The shortest confidence interval, which gives the same significance coefficient (𝛼) is the best 

estimation for the parameter. 

 

The problem of shortest confidence intervals has been studied by some authors. Neyman introduced the 

classical theory of confidence intervals [1]. Wald presented with the limit properties of the confidence 

intervals if the number of observations approaches infinity [2]. Blyth and Hutchinson presented table of 

shortest unbiased confidence intervals for the binomial parameter [3]. Sidak discussed about rectangular 

confidence regions for the mean values of multivariate normal distributions [4]. Levy and Narula derived 

the shortest confidence interval for the ratio of two variances when the populations are assumed to be 

normal [5]. DiCiccio and Romano considered several distinct bootstrap methods with emphasis on the 

mathematical correctness of bootstrap procedures for constructing confidence regions [6]. Owen 

constructed confidence intervals for the sample mean, for a class of M-estimates, which includes 
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quantiles, and for differentiable statistical functionals, within the empirical likelihood ratio function [7]. 

Ferentinos described shortest confidence intervals for families of distributions involving truncation 

parameters [8]. Ferentios and Kourouklis constructed shortest confidence intervals for families of 

distributions involving two unknown truncation parameters [9]. Joula developed confidence intervals for 

a single unknown parameter by using a pivotal quantity [10]. He presented an elementary method for 

deriving the shortest such interval. Weerahandi constructed exact confidence regions for the difference in 

two normal means without the assumption of equal variances [11]. Newcombe compared seven methods 

for two-sided confidence intervals for the single proportion [12]. Willink obtained a confidence interval 

and test for the mean of an asymmetric distribution using a random sample of size n [13]. Zhou and Dinh 

evaluated several existing techniques and proposed new methods to improve coverage accuracy [14]. 

Kibria compiled some interval estimators for estimating the mean of the asymmetric distribution and 

compared the performance of these intervals [15]. Burch presented confidence intervals for the intraclass 

correlation coefficient comparing the unbiased confidence interval and the equal-tail probability interval 

[16]. Evans and Shakhatreh showed relative surprise regions to maximize both the Bayes factor in favor 

of the region containing the true value and the relative belief ratio with the same posterior content [17]. 

Baklizi and Golam proposed some confidence intervals for estimating the mean or difference of means of 

skewed populations and extended the median t interval to the two-sample problem [18]. Banik and Kibria 

considered and compared both classical and nonparametric interval estimators for estimating the mean of 

a positively skewed distribution [19]. And then, Banik and Kibria conducted to compare the performance 

of the various interval estimators for estimating the population coefficient of variation (CV) of symmetric 

and skewed distributions using simulation study [20]. Gulhar et al. considered several confidence 

intervals for estimating the population coefficient of variation based on parametric, nonparametric and 

modified methods and compared the performance of the existing and newly proposed interval estimators 

[21]. Alizadeh et al. gave a general solution to obtain an unbiased confidence interval for families of 

distributions involving truncation parameter using the pivotal quantity method [22]. Mammen and 

Polonik constructed the confidence regions for level sets [23]. The proposed construction is based on a 

plug in estimate of the level sets using an appropriate estimate. Fagerland et al. illustrated the 

performances of the confidence intervals for two independent binomial proportions and made 

recommendations for both small and moderate to large sample sizes [24]. 

 

The main purpose of this study is the calculation of the shortest confidence interval for multimodal 

distributions. Previous studies were performed to calculate confidence intervals of any parameter for the 

unimodal probability density function (PDF). These studies investigated the unbiased, shortest, equally 

tailed and uniformly most accurate (UMA) interval estimators for the parameters. Building upon these 

studies, this paper claims that the width of the confidence interval is shortest when densities of confidence 

limits are equal. The motivation of this study comes from the fact that contrary to the literature methods, 

the proposed method can calculate the shortest confidence interval for multimodal distributions. The 

equally tailed confidence interval for unimodal and univariate distributions is given in Section 2.1. The 

shortest confidence interval for unimodal and univariate distributions is given in Section 2.2. In Section 

2.3, the proposed method is given as the different approximation for the shortest confidence interval. In 

Section 3, the calculation of the shortest confidence intervals for multimodal univariate distribution is 

given. Finally, the shortest, equally tailed and equally density confidence interval estimators for the 

parameters are compared experimentally to each other in Section 4.  

 

2. CONFIDENCE INTERVAL FOR UNIMODAL PDF 

 

If 𝜃 is calculated via an obtained sample from a population and its distribution function is Φ(𝑥), then the 
(1 − 𝛼) two-tailed confidence interval of 𝜃 is defined as follows [25-27]. 

 

Pr[𝐿 ≤ 𝜃 ≤ 𝑈] = 1 − 𝛼 
= Φ(𝑈) − Φ(𝐿), 𝐿 < 𝑈 

(1) 

 

𝐿 and 𝑈 respectively, the lower and upper bounds of the interval for 𝜃. According to this equation, 𝐿 can 

have infinite values in the interval [Φ−1(0), Φ−1(𝛼)], where Φ−1(. ) is an inverse distribution function. 

Likewise, 𝑈 can have infinite values in the interval [Φ−1(1 − 𝛼), Φ−1(1)] depending on 𝐿. 
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2.1. Equally Tailed Confidence Interval 

 

𝐿 and 𝑈 (shown in Figure 1) are, respectively, the lower and upper bounds of the interval for 𝜃, and it is 

called the equally tailed confidence interval, if Pr(𝜃 ∈ (−∞, 𝐿)) = Pr(𝜃 ∈ (𝑈, ∞)) =
𝛼

2
, where  

𝐿 = Φ−1 (
𝛼

2
) and 𝑈 = Φ−1 (1 −

𝛼

2
) [26, 28]. In addition, the width of confidence interval can be 

calculated as follows. 

 

𝑊 = 𝑈 − 𝐿 (2) 

 

 
Figure 1. The probability density function 𝜙(𝑥) and the equally tailed confidence bounds. 

 

2.1.1. Numerical Method For The Equally Tailed Confidence Interval 

 

If the probability density function (𝜙(𝑥)) of the parameter (𝜃) is known, then the inverse distribution 

function of 𝜃 can be calculated and thus, the distribution function of 𝜃 is also known to find the 

confidence limits. Nevertheless, the inverse distribution function cannot always be calculated, and thus 

the following cases (Case 1 and Case 2) can occur. 

 

Case 1: When the distribution function of 𝜃, Φ(𝑥), is known, but the inverse distribution function,  

𝑥𝑐 = Φ−1(𝑃), cannot be calculated analytically, the following equation to find 𝑥𝑐 with the probability 

value 𝑃 = (𝛼/2  𝑂𝑅 1 − 𝛼/2) must be solved. 

 

Φ(𝑥) − 𝑃 = 0 (3) 

 

If the equation cannot be solved analytically, numerical methods can be used to find the root [29].  

 

Case 2: When the distribution function of 𝜃, Φ(𝑥), cannot be calculated analytically, and the inverse 

distribution function, 𝑥 = Φ−1(𝑃), is not also calculated, and thus, Φ(𝑥) can be found with the numerical 

integration method. 𝑥𝑐 shows the critical value given as probability value 𝑃. The objective function value 

can be found by solving the following one-dimensional optimization problem. 

 

𝑔𝑜𝑎𝑙: min
x

𝐽(𝑥) = |𝑃 − ∫ 𝜙(𝑥) 𝑑𝑥
𝑥

−∞

| (4) 

 

2.2. The Shortest Confidence Interval 

 

In the previous section it is mentioned that there are infinite confidence limits with the same confidence 

level. Which confidence limit represents the estimation most precisely? While the precision of the 

estimation depends on the width of the interval, the shortest width typically gives the more sensitive 

estimation [30, 31]. Although the equally tailed confidence interval is preferred in the applications, the 

width of this kind of confidence interval is not the shortest [32]. However, determining confidence limits 

analytically in the shortest confidence interval is more difficult than doing so in the equally tailed 

confidence interval. Hence, numerical methods can be used to find the shortest confidence interval [29]. 

The shortest confidence interval of the probability density function 𝜙(𝑥) is shown in Figure 2. 
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Figure 2. The shortest confidence interval of the probability density function 𝜙(𝑥). 

 

2.2.1. Numerical Method For The Shortest Confidence Interval 

 

In order to find the shortest confidence interval, an optimization problem with the objective function and 

the constraint, given respectively below, must be solved. 

 

𝑔𝑜𝑎𝑙: min
𝐿,𝑈

(𝑈 − 𝐿) (5) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∶  ∫ 𝜙(𝑥)
𝑈

𝐿

 𝑑𝑥 = 1 − 𝛼 (6) 

 

The variable 𝑈 can be expressed in the variable 𝐿 due to the fact that 𝑈 depends on 𝐿, and thus the 

optimization problem becomes simplified. The lower bound 𝐿 is randomly determined in the interval 

[Φ−1(0), Φ−1(𝛼)], and the upper bound 𝑈 can be calculated as follows. 

 

𝑈 = Φ−1(1 − 𝛼 + Φ(𝐿)) (7) 

 

Finally, in order to find the shortest interval, the following optimization problem must be solved. 

 

𝑔𝑜𝑎𝑙: min
𝐿

𝐽(𝐿) = Φ−1(1 − 𝛼 + Φ(𝐿)) − 𝐿 (8) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: Pr(𝜃 ∈ [𝐿, 𝑈]) = ∫ 𝜙(𝑥)𝑑𝑥
𝑈

𝐿

= 1 − 𝛼 (9) 

 

If 𝜙(𝑥) is defined in an infinite interval, the random determination of the lower bound (𝐿) can be 

difficult. Therefore, in order to make the solution simple, the initial lower bound can be determined as 

follows. 

 

𝐿 = Φ−1(𝛼) (9) 

 

This is also the maximum value of the lower bound. 

 

2.3. Different Approximation For The Shortest Confidence Interval 

 

This paper investigates whether there are available methods other than optimization techniques to find the 

shortest confidence interval. 

 

Theorem 1. The probability density values of the shortest confidence bounds (𝐿, 𝑈) with  

(1 − 𝛼) confidence coefficient are equal (𝜙(𝐿) = 𝜙(𝑈)). 

 

Proof. Suppose 𝐿 and 𝑈 are, respectively, the lower bound and the upper bound of the confidence 

interval. When 𝐿 is shifted to the left as 𝜀1, 𝑈 must also be shifted to the left as 𝜀2 to maintain the current 

confidence coefficient. Thus, the following equation is obtained. 

 

Φ(𝑈 − 𝜀2) − Φ(𝐿 − 𝜀1) = 1 − 𝛼 (10) 
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The following equation can be written by using lim𝜀2→0 𝜙(𝑈 − 𝜀2) = 𝜙(𝑈) and lim𝜀1→0 𝜙(𝐿 − 𝜀1) =

𝜙(𝐿). 

 

(Φ(𝑈) − 𝜀2𝜙(𝑈)) − (Φ(𝐿) − 𝜀1𝜙(𝐿)) = 1 − 𝛼 (11) 

 

This can be converted to the following equation. 

 

(Φ(𝑈) − Φ(𝐿)) − (𝜀2𝜙(𝑈) − 𝜀1𝜙(𝐿)) = 1 − 𝛼 (12) 

 

Then, equation (13) can be written via equation (1), 

 

(1 − 𝛼) − (𝜀2𝜙(𝑈) − 𝜀1𝜙(𝐿)) = 1 − 𝛼 (13) 

 

and equation (14) is obtained if it is updated. 

 

𝜀1𝜙(𝐿) = 𝜀2𝜙(𝑈) (14) 

 

Likewise, when 𝐿 is shifted to the right as 𝜀1, 𝑈 must also be shifted to the right as 𝜀2 to keep its current 

confidence coefficient. Thus, the following equation is obtained. 

 

Φ(𝑈 + 𝜀2) − Φ(𝐿 + 𝜀1) = 1 − 𝛼 (15) 

 

The following equation can be written by using lim𝜀2→0 𝜙(𝑈 + 𝜀2) = 𝜙(𝑈) and lim𝜀1→0 𝜙(𝐿 + 𝜀1) =

𝜙(𝐿). 

 

(Φ(𝑈) + 𝜀2𝜙(𝑈)) − (Φ(𝐿) + 𝜀1𝜙(𝐿)) = 1 − 𝛼 (16) 

 

This equation can be converted to the following equation. 

 

(Φ(𝑈) − Φ(𝐿)) − (𝜀1𝜙(𝑈) − 𝜀2𝜙(𝐿)) = 1 − 𝛼 (17) 

 

Then, equation (18) can be written via equation (1),  

 

(1 − 𝛼) − (𝜀1𝜙(𝑈) − 𝜀2𝜙(𝐿)) = 1 − 𝛼 (18) 

 

and equation (19) is obtained if it is updated. 

 

𝜀1𝜙(𝐿) = 𝜀2𝜙(𝑈) (19) 

 

Thus equations (14) and (19) are the same. In these equations, the relationship between 𝜀1 and 𝜀2 depends 

on the relationship between 𝜙(𝐿) and 𝜙(𝑈). There are three different cases in the relationship between 

𝜙(𝐿) and 𝜙(𝑈).  

 

Case 1: If 𝜙(𝐿) < 𝜙(𝑈), 𝜀1 > 𝜀2. 

Case 2: If 𝜙(𝐿) > 𝜙(𝑈), 𝜀1 < 𝜀2. 

Case 3: If 𝜙(𝐿) = 𝜙(𝑈), 𝜀1 = 𝜀2 . 

 

According to these cases, the changes of the confidence interval are examined below. 

 

Scenario 1: When 𝐿 is shifted to the left as 𝜀1, the width of the confidence interval is calculated as 

follows. 

 

𝑊′ = (𝑈 − 𝜀2) − (𝐿 − 𝜀1) (20) 
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= (𝑈 − 𝐿) + (𝜀1 − 𝜀2) 
= 𝑊 + (𝜀1 − 𝜀2) 

 

Case 1. If 𝜀1 > 𝜀2, (𝜀1 − 𝜀2) > 0. In this case, the interval width expands. If the goal is to narrow the 

interval, the lower bound should not be shifted to the left. For example, consider the probability density 

function shown in the graph below (Figure 3). When 𝐿 is shifted to the left, 𝜙(𝐿) decreases and 𝜙(𝑈) 

increases. 

 

 
Figure 3. Shifting the lower bound (𝐿) to the left when 𝜙(𝐿) < 𝜙(𝑈). 

 

Case 2. If 𝜀1 < 𝜀2, (𝜀1 − 𝜀2) < 0. In this case, the interval width narrows. If the goal is to narrow the 

interval, the lower bound should be continually shifted to the left. For example, consider the probability 

density function shown in the graph below (Figure 4). When 𝐿 is shifted to the left, 𝜙(𝐿) decreases and 

𝜙(𝑈) increases. Thus, 𝜙(𝐿) closes to 𝜙(𝑈).  

 

 
Figure 4. Shifting the lower bound (𝐿) to the left when 𝜙(𝐿) > 𝜙(𝑈). 

 

Case 3. If 𝜀1 = 𝜀2, (𝜀1 − 𝜀2) = 0. Thus, the interval does not change. In this case, if the lower bound is 

continually shifted to the left (Figure 5), 𝜙(𝐿) < 𝜙(𝑈), and Case 1 occurs. 

 

 
Figure 5. Shifting the lower bound (𝐿) to the left when 𝜙(𝐿) = 𝜙(𝑈). 

 

Scenario 2: When 𝐿 is shifted to the right as 𝜀1, the confidence interval width is found as follows. 

 

𝑊′ = (𝑈 + 𝜀2) − (𝐿 + 𝜀1) 
= (𝑈 − 𝐿) + (𝜀2 − 𝜀1) 
= 𝑊 + (𝜀2 − 𝜀1) 

(21) 

 

Case 1. If 𝜀1 > 𝜀2, (𝜀1 − 𝜀2) < 0. In this case, the interval width narrows. If the goal is to narrow the 

interval, the lower bound should be continually shifted to the right. For example, consider the probability 

density function shown in the graph below (Figure 6). When 𝐿 is shifted to the right, 𝜙(𝐿) increases and 

𝜙(𝑈) decreases. Thus, 𝜙(𝐿) closes to 𝜙(𝑈).  
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Figure 6. Shifting the lower bound (𝐿) to the right when 𝜙(𝐿) < 𝜙(𝑈). 

 

Case 2. If 𝜀1 < 𝜀2, (𝜀1 − 𝜀2) > 0. In this case, the interval width expands. If the goal is to achieve the 

shortest interval, the lower bound should not be shifted to the right. For example, consider the probability 

density function shown in the graph below (Figure 7). When 𝐿 is shifted to the right, 𝜙(𝐿) increases and 

𝜙(𝑈) decreases. Thus, 𝜙(𝐿) does not close to 𝜙(𝑈).  

 

 
Figure 7. Shifting the lower bound (𝐿) to the right when 𝜙(𝐿) > 𝜙(𝑈). 

 

Case 3. If 𝜀1 = 𝜀2, (𝜀1 − 𝜀2) = 0. Thus, the interval does not change. In this case, if the lower bound is 

continually shifted to the right (Figure 8), 𝜙(𝐿) > 𝜙(𝑈), and Case 2 occurs. 

 

 
Figure 8. Shifting the lower bound (𝐿) to the right when 𝜙(𝐿) = 𝜙(𝑈). 

 

The results of these cases can be summarized as follows. 

 

Result 1. If 𝜙(𝐿) > 𝜙(𝑈), the lower bound should be shifted to the left to find the shortest interval. In 

this case, 𝜙(𝐿) decreases and 𝜙(𝑈) increases. Thus, 𝜙(𝐿) closes to 𝜙(𝑈). 

 

Result 2. If 𝜙(𝐿) < 𝜙(𝑈), the lower bound should be shifted to the right to find the shortest interval. In 

this case, 𝜙(𝐿) increases and 𝜙(𝑈) decreases. Thus, 𝜙(𝐿) closes to 𝜙(𝑈). 

 

Result 3. If 𝜙(𝐿) = 𝜙(𝑈), the lower bound should not be shifted to the left or right. This is because the 

shortest interval has already been obtained (Figure 9). 

 

 
Figure 9. Determination of the confidence bounds (𝐿 and 𝑈) when 𝜙(𝐿) = 𝜙(𝑈). 

 

This approach is called the equal density approach. The confidence coefficient is a direct function of the 

confidence limits both in the equally tailed confidence interval and in the shortest confidence interval. 
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However, in the equal density approach, the confidence coefficient is calculated according to a density 

variable such as (𝜁 = 𝜙(𝐿) = 𝜙(𝑈)).  

 

2.3.1. Numerical Method For The Shortest Confidence Interval By Using The Equal Density 

Approach 

 

The objective function and the constraint are given respectively to determine the shortest confidence 

interval for equal density. 

 

𝑔𝑜𝑎𝑙: min
𝐿,𝑈

|Φ(𝑈) − Φ(𝐿) − (1 − 𝛼)| (22) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: 𝜁 = 𝜙(𝐿) = 𝜙(𝑈),   𝐿 ≠ 𝑈 (23) 

 

This can be solved as an optimization problem by using numerical methods. In this paper, the bisection 

method is used as a numerical method. The algorithm of the bisection method for the equal density 

approach can be summarized as follows. 

 

Algorithm 1. Bisection Method For The Equal Density Approach To Find The Shortest Confidence 

Interval. 

 

Step 1.Determine two initial values according to this method. These initial values may be 𝑎 = 0 and  

𝑏 = 𝜁𝑚𝑎𝑥. If 𝜁 = 0, the confidence coefficient can be given as follows. 

 

𝑃𝑎 = 1, (𝜁 = 0) 
 

If 𝜁 = 𝜁𝑚𝑎𝑥, the confidence coefficient can be given as follows. 

 

𝑃𝑏 = 0, (𝜁 = 𝜁𝑚𝑎𝑥) 
 

Therefore, the calculation of the confidence coefficients of the initial values is not required. 

 

Step 2.The midpoint of these initial values is calculated by using following equation. 

 

𝜁 =
𝑎 + 𝑏

2
 

 

Step 3.Find the roots {𝐿𝜁 , 𝑈ζ} of the following equation via the midpoint. 

 

𝜙(𝑥) − 𝜁 = 0 
 

Step 4.Calculate the confidence coefficient by assuming that these roots are bounds of the confidence 

interval as follows. 

 

𝑃𝜁 = Φ(𝑈𝜁) − Φ(𝐿𝜁) 

 

Step 5.If the calculated confidence coefficient approaches the desired confidence coefficient, |𝑃𝜁 −

(1 − 𝛼)| < 𝜖 assume 𝐿𝜁 and 𝑈𝜁  are the desired confidence limits and stop the process. 

 

Step 6.If the calculated confidence coefficient is smaller than the desired value (1 − 𝛼); 𝑎 = 𝜁,

(𝑃𝜁 < 1 − 𝛼) else 𝑏 = 𝜁, (𝑃𝜁 > 1 − 𝛼) go to Step 3. 
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3. CONFIDENCE INTERVAL FOR THE MULTIMODAL PROBABILITY DENSITY 

FUNCTIONS 

 

The afore-mentioned assumptions are used for the unimodal probability density functions. Therefore, in 

this section, the validity of the assumptions is investigated for the multimodal functions. The confidence 

interval of the multimodal probability density function is given as follows [33]. 

 

Pr{𝜃 ∈ ([𝐿1, 𝑈1] ∪ [𝐿2, 𝑈2] ∪ … [𝐿𝑛, 𝑈𝑛]} = 1 − 𝛼 (24) 

 

The multiple intervals are defined and these intervals provide the following condition, meaning that they 

are independent from each other.   

 

𝐿1 < 𝑈1 < 𝐿2 < 𝑈2 < ⋯ < 𝐿𝑖 < 𝑈𝑖 < ⋯ < 𝐿𝑛 < 𝑈𝑛 (25) 

 

If these intervals do not intersect with each other, they can be written as follows.  

 

𝑃𝑟{𝜃 ∈ [𝐿1, 𝑈1]} + 𝑃𝑟{𝜃 ∈ [𝐿2, 𝑈2]} + ⋯ + 𝑃𝑟{𝜃 ∈ [𝐿𝑛, 𝑈𝑛]} = 1 − 𝛼 (26) 

 

Each interval [𝐿𝑖, 𝑈𝑖] gives a probability value as Equation (27). 

 

𝑃𝑖 = 𝑃𝑟{𝜃 ∈ [𝐿𝑖, 𝑈𝑖]} = Φ(𝑈𝑖) − Φ(𝐿𝑖) (27) 

 

In the present case, the total width of the confidence intervals is calculated by using Equation (28). 

 

𝑊 = ∑ 𝑊𝑖

𝑖

= ∑ 𝑈𝑖 − 𝐿𝑖

𝑖

 (28) 

 

The probability values of the bimodal probability density functions are shown as follows.  

 

𝑃1 = Φ(𝑈1) − Φ(𝐿1) (29) 

 

𝑃2 = Φ(𝑈2) − Φ(𝐿2) (30) 

 

The desired confidence level is obtained by adding these probability values as Equation (31). 

 

 𝑃1 + 𝑃2 = (Φ(𝑈1) − Φ(𝐿1)) + (Φ(𝑈2) − Φ(𝐿2)) = 1 − 𝛼 (31) 

 

Theorem 2. The confidence limits that have the minimum total width of the confidence intervals, which 

has the (1-α) confidence coefficient for a multimodal probability density function, are the confidence 

limits that have the equal density value. 

 

Proof. To check whether the selected confidence intervals are the shortest intervals the lower bound of 

the first region must be shifted to the left as 𝜀1 and the upper bound of the first region must be shifted to 

the right as 𝜀1 according to Theorem 1. In this case, the probability value (𝑃1) of the first region 

increases. Thus, the second region must be narrowed to be stable confidence coefficient. The probability 

density values of the upper and lower bounds of each region should be equal according to Theorem 1. 

Therefore, the lower bound must be shifted to the right as 𝜀2. This is parallel with the upper bound, which 

must be shifted to the left as 𝜀2  for the contraction of the second region. This process can be summarized 

as follows. 

 

𝑃1 + 𝑃2 = (Φ(𝑈1 + 𝜀1 ) − Φ(𝐿1 − 𝜀1 )) + (Φ(𝑈2 − 𝜀2) − Φ(𝐿2 + 𝜀2)) (32) 

 

Here, the probability density values of the upper and lower bounds of the first region are equal to each 

other and these are shown as 𝜁1 in Equation (33). 
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𝜁1 = 𝜙(𝐿1) = 𝜙(𝑈1) (33) 

 

Similarly, the probability density values of the upper and lower bounds of the second region are equal to 

each other and these are shown as 𝜁2 in Equation (34). 

 

𝜁2 = 𝜙(𝐿2) = 𝜙(𝑈2) (34) 

 

Equation (35) is obtained by using Equation (32), (33) and (34).  

 

𝑃1 + 𝑃2 = (Φ(𝑈1 ) + 𝜀1𝜁1 − Φ(𝐿1 ) + 𝜀1𝜁1) + (Φ(𝑈2) − 𝜀2𝜁2 − Φ(𝐿2) − 𝜀2𝜁2) (35) 

 

Equation (36) is obtained by using Equation (29) and (30). 

 

𝑃1 + 𝑃2 = (𝑃1 + 2𝜀1𝜁1) + (𝑃2 − 2𝜀2𝜁2) (36) 

 

Equation (37) is obtained by updating previous equations. If the bounds of the first region are narrowed to 

𝜀1 from the right and left, the same result is obtained as follows. 

 

𝜀1𝜁1 = 𝜀2𝜁2 (37) 

 

Scenario 1: If the first region is extended from the left and right bounds as 𝜀1, the second region will be 

narrowed from the left and right bounds as 𝜀2. The value of 𝜁1 decreases and the value of 𝜁2 increases, 

provided that the first region is extended. In this case, the total width of the confidence intervals is found 

as follows. 

 

𝑊′ = 𝑊1
′ + 𝑊2

′ = [𝑈1 + 𝜀1 − 𝐿1 + 𝜀1] + [𝑈2 − 𝜀2 − 𝐿2 − 𝜀2] (38) 

 

Equation (39) is obtained via Equation (28). 

 

𝑊′ = 𝑊 + 2(𝜀1 − 𝜀2) (39) 

 

Case 1. If 𝜀1 > 𝜀2, the total width of the confidence intervals will extend (Figure 10), because the second 

part of Equation (39) is positive ((𝜀1 − 𝜀2) > 0). Then, if the intention is to narrow the total width, the 

first region must be narrowed.  

 

 
Figure 10. Variation of the boundaries in the bimodal probability density function (𝜀1 > 𝜀2). 

 

Case 2. If 𝜀1 < 𝜀2, the total width of the confidence intervals will narrow (Figure 11), because the second 

part of Equation (39) is negative ((𝜀1 − 𝜀2) < 0). Then, if the intention is to narrow the total width, the 

first region must be extended. 

 
Figure 11. Variation of the boundaries in the bimodal probability density function (𝜀1 < 𝜀2). 
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Case 3. If 𝜀1 = 𝜀2, the total width will not change (Figure 12), because the second part of Equation (39) is 

zero ((𝜀1 − 𝜀2) = 0). In this case, if the first region continues to extend, Case 1 will occur, because  

𝜁1 < 𝜁2. 

 

 
Figure 12. Variation of the boundaries in the bimodal probability density function (𝜀1 = 𝜀2). 

 

Scenario 2: If the first region is narrowed from the left and right bounds as 𝜀1, the second region will be 

extended from the left and right bounds as 𝜀2. The value of 𝜁1 increases and the value of 𝜁2 decreases, 

provided that the first region is narrowed. In this case, the total width of the confidence intervals is 

calculated as follows. 

 

𝑊′ = 𝑊1
′ + 𝑊2

′ = [𝑈1 − 𝜀1 − 𝐿1 − 𝜀1] + [𝑈2 + 𝜀2 − 𝐿2 + 𝜀2] (40) 

 

Equation (41) is obtained via Equation (28). 

 

𝑊′ = 𝑊 + 2(𝜀2 − 𝜀1) (41) 

 

Case 1. If 𝜀1 < 𝜀2, the total width of the confidence intervals will extend (Figure 13), because the second 

part of Equation (41) is positive ((𝜀2 − 𝜀1) > 0). Then, if the intention is to narrow the total width, the 

first region must be extended. 

 

 
Figure 13. Variation of the boundaries in the bimodal probability density function (𝜀1 < 𝜀2). 

 

Case 2. If 𝜀1 > 𝜀2, the total width of the confidence intervals will narrow (Figure 14), because the second 

part of Equation (41) is negative ((𝜀2 − 𝜀1) < 0). In this case, if the intention is to narrow the total width, 

the first region must be narrowed. 

 

 
Figure 14. Variation of the boundaries in the bimodal probability density function (𝜀1 > 𝜀2). 

 

Case 3. If 𝜀1 = 𝜀2, the total width of the confidence intervals will not change (Figure 15), because the 

second part of Equation (41) is zero ((𝜀2 − 𝜀1) = 0). In this case, if the first region continues to narrow, 

Case 1 will occur, because 𝜁1 < 𝜁2. 
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Figure 15. Variation of the boundaries in the bimodal probability density function (𝜀1 = 𝜀2). 

 

Consequently, the shortest interval is performed as three cases. Firstly, the first region must be expanded 

in the case of 𝜁1 > 𝜁2. Secondly, the first region must be narrowed in the case of 𝜁1 < 𝜁2. Lastly, in the 

case of 𝜁1 = 𝜁2, there must be no changes made. 

 

The cases of the bimodal probability density function can be easily applied to the multimodal probability 

density function. Likewise, when any interval narrows, the other interval or intervals can be expanded. 

However, an answer to the question of which interval is expanded and at what rate this interval is changed 

can be elusive. In the case of multi-confidence intervals, when one interval is narrowed, the other interval 

is expanded and the others can be fixed. If this process is performed to any two intervals, the method will 

not change because of Theorem 2. Thus, Theorem 2 can also be applied to the multimodal probability 

density functions. 

 

3.1. Numerical Method For The Multi-Confidence Intervals By Using The Equal Density Approach  

 

The determination of confidence intervals according to the equal density approach can be performed by 

using the bisection method as the unimodal case. Algorithm 2 has been developed to perform this method. 

 

Algorithm 2. Bisection Method For The Equal Density Approach To Find The Multi-Confidence Intervals 

 

Step 1.Determine two initial values according to this method. These initial values may be 𝑎 = 0 and  

𝑏 = 𝜁𝑚𝑎𝑥. If = 0 , the confidence coefficient can be given as follows. 

 

𝑃𝑎 = 1, (𝜁 = 0) 
 

If 𝜁 = 𝜁𝑚𝑎𝑥, the confidence coefficient can be given as follows. 

 

𝑃𝑏 = 0, (𝜁 = 𝜁𝑚𝑎𝑥) 
 

Therefore, the calculation of the confidence coefficients of the initial values is not required. 

 

Step 2.The midpoint of these initial values is calculated by using the following equation. 

 

𝜁 =
𝑎 + 𝑏

2
 

 

Step 3.Find the roots {𝐿𝜁1, 𝑈ζ1, 𝐿𝜁2, 𝑈ζ2, … , 𝐿𝜁𝑛 , 𝑈ζn, } of the following equation via the midpoint. 

 

𝜙(𝑥) − 𝜁 = 0 
 

Step 4.Calculate the confidence coefficient by assuming these roots as bounds of the confidence intervals 

as follows. 

 

𝑃𝜁 = ∑ (Φ(𝑈𝜁𝑖) − Φ(𝐿𝜁𝑖))

n

i=1
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Step 5.If the calculated confidence coefficient approaches the desired confidence coefficient, |𝑃𝜁 −

(1 − 𝛼)| < 𝜖, approve {𝐿𝜁1, 𝑈ζ1, 𝐿𝜁2, 𝑈ζ2, … , 𝐿𝜁𝑛, 𝑈ζn, } as the desired confidence bounds and stop the 

process. 

 

Step 6.If the calculated confidence coefficient is smaller than the desired value (1 − 𝛼); 𝑎 = 𝜁,

(𝑃𝜁 < 1 − 𝛼) else 𝑏 = 𝜁, (𝑃𝜁 > 1 − 𝛼) go to Step 3. 

 

4. EXPERIMENTAL RESULTS 

 

This section covers four different examples. The limits and width of confidence intervals which are 

calculated according to the equally tailed, the shortest interval and the equal density approaches in the 

following examples. 

 

Example 1. The confidence bounds (L, U) and the width of confidence intervals (W) are calculated for 

the significance coefficient 𝛼 = {0.01,0.025, 0.05, 0.10} according to the equally tailed (et), the shortest 

interval (sh) and the equal density (ed) approaches in case the desired statistics (𝜃) from a standard 

normal distribution (𝜃~𝒩(0,1)). These bounds are given in Table 1. The tolerance value is determined 

as  

𝜖 = 1 × 10−5 for all approaches. 

 

Table 1. The confidence limits and the width of the confidence interval in a symmetrical probability 

density function. 

𝜶 𝑳𝒆𝒕 𝑼𝒆𝒕 𝑾𝒆𝒕 𝑳𝒔𝒉 = 𝑳𝒆𝒅 𝑼𝒔𝒉 = 𝑼𝒆𝒅 𝑾𝒔𝒉 𝑾𝒆𝒕 − 𝑾𝒔𝒉 

0.0100 -2.5758 2.5758 5.1517 -2.5758 2.5758 5.1517 0.0000 

0.0250 -2.2414 2.2414 4.4828 -2.2414 2.2414 4.4828 0.0000 

0.0500 -1.9600 1.9600 3.9199 -1.9600 1.9600 3.9199 0.0000 

0.1000 -1.6449 1.6449 3.2897 -1.6449 1.6448 3.2897 0.0000 

 

If the unimodal probability density function is symmetric for the two-tailed confidence interval, as in this 

example, all approaches have the same confidence limits. Therefore, the differences (𝑊𝑒𝑡 − 𝑊𝑠ℎ) in the 

width of the confidence intervals are zero, as seen in Table 1. 

 

Example 2. The confidence bounds (L, U) and the width of the confidence interval (W) are calculated for 

the significance coefficient 𝛼 = {0.01,0.025, 0.05, 0.10} according to the equally tailed (et), the shortest 

interval (sh) and the equal density (ed) approaches in case the desired statistics (𝜃) from an asymmetrical 

distribution as log-normal distribution (𝜃~𝐿𝑜𝑔𝒩(0,1)). These bounds are given in Table 2. The 

tolerance value is determined as 𝜖 = 1 × 10−5 for all approaches. 

 

Table 2. The confidence limits and the width of the confidence interval in an asymmetrical probability 

density function.  

𝜶 𝑳𝒆𝒕 𝑼𝒆𝒕 𝑾𝒆𝒕 𝑳𝒔𝒉 = 𝑳𝒆𝒅 𝑼𝒔𝒉 = 𝑼𝒆𝒅 𝑾𝒔𝒉 𝑾𝒆𝒕 − 𝑾𝒔𝒉 

0.0100 0.0761 13.1422 13.0661 0.0132 10.2434 10.2302 2.8359 

0.0250 0.1063 9.4065 9.3002 0.0190 7.1036 7.0846 2.2156 

0.0500 0.1409 7.0991 6.9582 0.0261 5.1869 5.1609 1.7974 

0.1000 0.1930 5.1803 4.9872 0.0375 3.6127 3.5753 1.4119 
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In this example, we discussed two-tailed confidence intervals for asymmetrical probability density 

function. While the shortest interval and the equal density approaches have the same confidence limits, 

the equally tailed approach has a wider confidence interval than the others. Furthermore, the differences 

in the width of the confidence intervals are shown in Table 2. 

 

Example 3. The confidence limits and the width of the confidence intervals are calculated for the 

significance coefficient 𝛼 = {0.01,0.025, 0.05, 0.10} in case the desired statistics (𝜃) has a multimodal 

mixed distribution as log-normal distribution and normal distribution  

(𝜃~[𝐿𝑜𝑔𝒩(1,0.4)/2 + 𝒩(8,0.9)/2]). However, the equally tailed confidence interval is not logically 

valid, because the investigated distribution has a multimodal distribution. In addition to this, the shortest 

interval (sh) approach may not find the best solution in multiple infinite solutions. In such case, this 

approach will not be valid for multimodal distributions. Furthermore, the researcher will need to select 

how many confidence regions are required for these distributions. Therefore, the equal density approach 

is simulated for the shortest multi-confidence intervals. The obtained confidence limits are shown in 

Table 3. 

 

Table 3. The confidence limits and the width of the confidence interval in a bimodal probability density 

function.  

𝜶 𝑳𝟏 𝑼𝟏 𝑳𝟐 𝑼𝟐 𝑾𝟏 𝑾𝟐 𝑾𝟏 + 𝑾𝟐 

0.0100 0.9829 9.9793 - - 8.9964 - 8.9964 

0.0250 1.0297 5.3240 5.8017 9.8766 4.2943 4.0749 8.3692 

0.0500 1.0911 4.9389 6.0850 9.7496 3.8478 3.6646 7.5124 

0.1000 1.2110 4.4324 6.3984 9.5224 3.2214 3.1240 6.3454 

 

Although a bimodal distribution function is obtained in this example, only a confidence interval is 

calculated for 𝛼 = {0.01} (Figure 16(a)). This result stems from the density value (𝜁) which is smaller 

than the minimum density value between the two peaks. Two confidence intervals are obtained for other 

𝛼 values (Figure 16(b)). Furthermore, the proposed equal density approach provides a more reliable 

solution, as seen in Table 3. 

 

 
(a) 

 
(b) 

Figure 16. The confidence intervals in a bimodal probability density function, (a) The confidence level of 

99% (𝛼 = 0.01); (b) The confidence level of 90% (𝛼 = 0.1). 

 

Example 4. The confidence limits and the width of the confidence intervals are calculated for the 

significance coefficient 𝛼 = {0.01,0.025, 0.05, 0.10} in case the desired statistics (𝜃) has a multimodal 

mixed normal distribution (𝜃~[𝒩(2,0.7) × 0.3 + 𝒩(5,0.6) × 0.2 + 𝒩(9,0.9) × 0.5]). However, the 

equally tailed confidence interval is not logically valid as in Example 3, because the investigated 
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distribution has a multimodal distribution. In addition to this, the shortest interval (sh) approach may not 

find the best solution in multiple infinite solutions. In such case, this approach will not be valid for 

multimodal distributions. Furthermore, the researcher will need to select how many confidence regions 

are required for these distributions. Therefore, the equal density approach is simulated for the shortest 

multi-confidence intervals. The obtained confidence limits are shown in Table 4. 

 

Table 4. The confidence limits and the width of the confidence interval in a multimodal probability 

density function. 

𝜶 𝑳𝟏 𝑼𝟏 𝑳𝟐 𝑼𝟐 𝑳𝟑 𝑼𝟑 𝑾𝟏 𝑾𝟐 𝑾𝟑 𝑾𝟏 + 𝑾𝟐 + 𝑾𝟑 

0.010 0.373 6.433 6.741 11.190 - - 6.060 4.450 0.000 10.510 

0.025 0.563 6.182 7.033 10.958 - - 5.619 3.925 0.000 9.544 

0.050 0.677 3.368 3.893 6.065 7.177 10.821 2.691 2.172 3.644 8.507 

0.100 0.878 3.132 4.122 5.868 7.417 10.582 2.255 1.746 3.165 7.165 

 

Although a multimodal distribution function is obtained in this example, only two confidence intervals 

are calculated for 𝛼 = {0.01, 0.025} (Figure 17 (a)). This result stems from the density value (𝜁) which is 

smaller than the minimum density value between the two peaks which is in the range of [𝐿1, 𝑈1]. Three 

confidence intervals are obtained for other 𝛼 values (Figure 17 (b)). Furthermore, the proposed equal 

density approach provides a more reliable solution, as seen in Table 4. 

 

 
(a) 

 
(b) 

Figure 17. The confidence intervals in a multimodal probability density function, (a) The confidence level 

of 97.5% (𝛼 = 0.025); (b) The confidence level of 90% (𝛼 = 0.1). 

 

5. CONCLUSION 

 

In this paper, the commonly used equally tailed approach is compared with the rarely used shortest 

interval approach. Proofs and algorithms of the equal density approach, which is an alternative to the 

shortest interval approach, are studied. The equal density and the shortest interval approaches have the 

same confidence limits, as in the proofs. This was demonstrated in the simulations. 

 

All approaches have the same confidence limits for the two-tailed confidence level in the unimodal 

symmetric distribution. When considering an asymmetric probability density function for the two-tailed 

confidence level, the shortest interval and the equal density approaches have the same width of 

confidence interval. However, the equally tailed approach has a wider width of the confidence interval. 

Furthermore, the equally tailed and the shortest interval approaches in multimodal distributions are not 

logically valid for the confidence intervals. Nevertheless, the equal density approach gave consistent 

results for all distributions in the examples. 

 



325 Orhan KESEMEN, Buğra Kaan TİRYAKİ, Eda ÖZKUL, Özge TEZEL / GU J Sci, 31(1): 310-326 (2018) 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

REFERENCES 

 

[1] Neyman, J., "Outline of a theory of statistical estimation based on the classical theory of probability", 

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical 

Sciences, 236(767): 333-380, (1937).  

 

[2] Wald, A., "Asymptotically shortest confidence intervals", The Annals of Mathematical Statistics, 

13(2): 127-137, (1942).  

 

[3] Blyth, C.R., Hutchinson D.W., "Table of Neyman-shortest unbiased confidence intervals for the 

binomial parameter", Biometrika, 47(3/4): 381-391, (1960).  

 

[4] Sidak, Z., "Rectangular confidence regions for the means of multivariate normal distributions", 

Journal of the American Statistical Association, 62(318): 626-633, (1967). 

 

[5] Levy K., Narula, S., "Shortest confidence intervals for the ratio of two normal variances", Canadian 

Journal of Statistics, 2(1-2): 83-87, (1974). 

 

[6] DiCiccio, T.J., Romano, J.P., "A review of bootstrap confidence intervals", Journal of the Royal 

Statistical Society Series B Methodological, 338-354, (1988). 

 

[7] Owen, A.B., "Empirical likelihood ratio confidence intervals for a single functional", Biometrika, 

75(2): 237-249, (1988). 

 

[8] Ferentinos, K.K, "Shortest confidence intervals for families of distributions involving truncation 

parameters", The American Statistician, 44(2): 167-168, (1990). 

 

[9] Ferentinos, K., Kourouklis, S., "Shortest confidence interval estimation for families of distributions 

involving two truncation parameters", Metrika, 37(1): 353-363, (1990). 

 

[10] Juola, R., "More on shortest confidence intervals", The American Statistician, 47(2): 117-119, 

(1993). 

 

[11] Weerahandi, S., "Generalized confidence intervals", In: Exact Statistical Methods for Data Analysis, 

Springer Series in Statistics, New York, 143-168, (1995). 

 

[12] Newcombe, R.G., "Two-sided confidence intervals for the single proportion: comparison of seven 

methods", Statistics in Medicine, 17(8): 857-872, (1998). 

 

[13] Willink, R. "A confidence interval and test for the mean of an asymmetric distribution", 

Communications in Statistics—Theory and Methods, 34(4): 753-766, (2005). 

 

[14] Zhou, X.H., Dinh, P., "Nonparametric confidence intervals for the one-and two-sample problems", 

Biostatistics, 6(2): 187-200, (2005). 

 

[15] Kibria, G.B., "Modified confidence intervals for the mean of the asymmetric distribution", Pakistan 

Journal of Statistics, 22(2): 109-120, (2006). 

 

[16] Burch, B.D., "Comparing equal-tail probability and unbiased confidence intervals for the intraclass 

correlation coefficient", Communications in Statistics—Theory and Methods, 37(20): 3264-3275, 

(2008).  



326 Orhan KESEMEN, Buğra Kaan TİRYAKİ, Eda ÖZKUL, Özge TEZEL / GU J Sci, 31(1): 310-326 (2018) 

 

[17] Evans, M., Shakhatreh, M., "Optimal properties of some Bayesian inferences", Electronic Journal of 

Statistics, 2: 1268-1280, (2008).  

 

[18] Baklizi, A., Kibria, B.G., "One and two sample confidence intervals for estimating the mean of 

skewed populations: an empirical comparative study", Journal of Applied Statistics, 36(6): 601-609, 

(2009). 

 

[19] Banik, S., Kibria, B.G., "Comparison of some parametric and nonparametric type one sample 

confidence intervals for estimating the mean of a positively skewed distribution", Communications 

in Statistics—Simulation and Computation, 39(2): 361-389, (2010). 

 

[20] Banik S., Kibria, B.G., "Estimating the population coefficient of variation by confidence intervals", 

Communications in Statistics-Simulation and Computation, 40(8): 1236-1261, (2011). 

 

[21] Gulhar, M., Kibria, G.K., Albatineh, A.N., Ahmed, N.U., "A comparison of some confidence 

intervals for estimating the population coefficient of variation: a simulation study", SORT: Statistics 

and Operations Research Transactions, 36(1): 45-68, (2012). 

 

[22] Alizadeh, M., Parchami, A., Mashinchi, M., "Unbiased confidence intervals for distributions 

involving truncation parameter", In: ProbStat Forum, (2013). 

 

[23] Mammen, E., Polonik, W., "Confidence regions for level sets", Journal of Multivariate Analysis, 

122: 202-214, (2013). 

 

[24] Fagerland, M.W., Lydersen, S., Laake, P., "Recommended confidence intervals for two independent 

binomial proportions", Statistical Methods in Medical Research, 24(2): 224-254, (2015). 

 

[25] Pratt, J.W., "Length of confidence intervals", Journal of the American Statistical Association, 

56(295): 549-567, (1961). 

 

[26] Casella, G., Berger, R.L., Statistical inference 2nd
 ed, Duxbury/Thomson Learning, (2001). 

 

[27] Smithson, M., “Confidence intervals”, Sage Publications, 140, (2002). 

 

[28] Guenther, W.C., "Unbiased confidence intervals", The American Statistician, 25(1): 51-53, (1971). 

 

[29] Stoer J., Bulirsch, R., Introduction to numerical analysis, Springer, Science & Business Media, 12, 

(2013). 

 

[30] Tate, R.F., Klett, G.W., "Optimal confidence intervals for the variance of a normal distribution", 

Journal of the American Statistical Association, 54(287): 674-682, (1959). 

 

[31] Guenther, W.C., "Shortest confidence intervals", The American Statistician, 23(1): 22-25, (1969). 

 

[32] Gao, S., Zhang, Z., Cao, C., "Particle swarm optimization algorithm for the shortest confidence 

interval problem", Journal of Computers, 7(8): 1809-1816, (2012). 

 

[33] Roussas, G.G., A Course in Mathematical Statistics, Academic Press, (1997). 


