
Universal Journal of Mathematics and Applications, 1 (1) (2018) 61-67

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

Geodesics on the momentum phase space with metric Cg
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Abstract

In this paper, a system of the differential equations giving geodesics on the momentum
phase space with pseudo Riemann metric Cg of a Hamilton space is found by using the
Euler Lagrange equations. Then, space like geodesics on pseudo hyperbolic 2-space H2

1 are
obtained. Finally, a system of the differential equations giving geodesics on the cotangent
bundle with pseudo Riemann metric Cg of H2

1 is get.

1. Introduction

The geometry of the cotangent bundle is one of the most important subjects attracted the attention of mathematicians as well as physicists.
A Lagrange mechanical system consists of a configuration space which contains the trajectory of each of the moving particles of a system
with n-particles and Lagrangian which gives the difference between the kinetic and potential energy at any stage of the each particle in
system [1].
The position and velocity coordinates depended on time parameter t of the motion of the each particle of a system with n-particles are
represented by the coordinates of any point on the tangent bundle of a (pseudo) Riemann manifold. Lagrangian is defined as a real valuable
and differentiable function on the tangent bundle [7].
The position and velocity coordinates of a moving particle in the system at any instant t are found by the Euler Lagrange equations. The Euler
Lagrange equations are second order ordinary differential equations which depend on position and velocity of each particle in system [7].
Gravitational field is given by a (pseudo) Riemann metric. The movement depended on time t of all particles in system by the only effect of
the gravitational field is described by a (pseudo) Riemann manifold. The trajectory of a moving particle by the effect of the gravitational field
describes a geodesic, the shortest one among the curves passing from one point to another, in a (pseudo) Riemann manifold [8].
In different place of space, the effect of the gravitational field on moving particles is different. As metric is change, (pseudo) Riemann
manifold must change. Moreover, in different (pseudo) Riemann manifold, the trajectory of moving particles by the only effect of the
gravitational field, geodesics, must change. So, we examined geodesics on different space forms such as H1

2, S1
2, S3 and its tangent sphere

bundle from [[2],[3],[4]].
From the references [1], [5], [7], [8], [9] and [10], we searched some concept such as, the movement of particles in the gravitational field,
total energy function in a Hamilton mechanic system, kinetic and potential energies of a moving particle, the conservation of energy and the
conservation of momentum.
Then, we found out that how obtained space like, time like and null geodesics of the unit 2-sphere with index one by using the Euler Lagrange
equations from [6].
Moreover, we analyzed the general equations of geodesics on the cotangent bundle with pseudo Riemann metric Cg which is called as
Riemann extension of the symmetric affine connection [11].
In this paper, we defined Lagrangian on the cotangent bundle and we calculated geodesics on the cotangent bundle with a pseudo Riemann
metric Cg by using the Euler Lagrange equations.
Then, we obtained space-like geodesics on the pseudo hyperbolic 2-space by using the Euler Lagrange equations. Finally, we calculated the
general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space with the pseudo Riemann metric Cg.
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2. The motion of the particles in the Hamilton Space

In this section, we obtain the geometrical interpretations of some concepts, well known in classic mechanic such as the movement of the
particles by the effect of the gravitational field, the conservation of energy and momentum.
In classical mechanic, the motion of a system with n-particles is described by the position coordinates and the momentum coordinates
of each of the particles in system. The position coordinates of a particle depend on the position vector in three-dimensional space. The
momentum coordinates of a particle depend on a one form associated with the tangent vector of the curve determined by trajectory of the
moving particle [10].
If the configuration space represents by an n=3N dimensional manifold whose the local coordinate functions give the positions coordinates of
each of the particles at any instant t, the phase space of the configuration space can represent by an 2n dimensional manifold whose the local
coordinate functions give the position and the momentum coordinates of each of the particles at any instant t. In other words, the phase space
of the configuration space must represent 2n-dimensional the cotangent bundle as the configuration space of moving particles by the only
effect of the gravitational field represents a n-dimensional differentiable manifold M [10]. The arc length between the position coordinates of
infinitely close two points on the trajectory of a particle in the configuration space is determined by

ds2 = gk j(x)dxkdx j, (2.1)

where gk j(x) is a pseudo Riemann metric on M. The trajectory of a moving particle in M is represented by a curve γ : I ⊂ R→M. For any
time t, the position coordinates of γ is given by xi(t) = xi ◦ γ(t), i = 1, ...,n and the velocity and momentum coordinates of γ are given by
yi = dxi

dt , and pi = gi jy j, respectively.
The curve γ must be called as the space-like, the time-like or the light-like curve if the value under the pseudo Riemann metric g of the unit
tangent vector v at every point of γ , ds2 = g(v,v) = ε is provided ε = 1, ε =−1 or ε = 0, respectively [3].
The sum of the kinetic and the potential energies of all moving particles in the system are represented by the function H : T ∗M→ R in the
phase space and it is called Hamiltonian.
Assuming that all particles in the system act only the effect of the gravitational field. Then the Hamiltonian H equals to the sum of the total
energies of the moving all particles in system and the Hamiltonian H of the test particles i.e. unit mass particles are described by

H(xi, pi) =
1
2

gi j(x)pi p j, (2.2)

where gi j(x) is a metric tensor with type (2,0) given by gikgk j = δ i
j [ 5]. The Hamilton space M consists of n-dimensional differentiable

manifold M and a Hamiltonian H on the cotangent bundle of M. Assuming that η = pidxi is the basic 1-form on T*M. The exterior
differential ϑ =−dη of the basic 1-form η is the 2-form given by ϑ = dxi∧d pi with respect to the induced local coordinates of T*M.
Since ϑ is closed (i.e. dϑ = 0 ), non degenerate 2-form on T*M, ϑ is called as the canonic symplectic structure on T*M. The cotangent
bundle T*M with the symplectic structure ϑ is called as a symplectic manifold [1]. A vector field XH : T ∗M→ T T ∗M is called as Hamilton
vector field if there is a function H : T ∗M→ R such that iXH ϑ = dH. The condition iXH ϑ = dH is equivalent to ϑ (XH ,Y ) = dH(Y ) for
Y ∈ T T ∗M. The local expression of the Hamilton vector field is

XH =
∂H
∂ pi

∂

∂xi −
∂H
∂xi

∂

∂ pi
, (2.3)

with respect to the induced coordinates (xi, pi); i = 1, ...,n on T ∗M [1].
The curve φ : t→ (xi(t), pi(t)) is called as the integral curve of the Hamilton vector field XH since the equality XH(φ(t)) = φ̇(t) provides.
The condition XH(φ(t)) = φ̇(t) is equivalent to

dxi

dt
=

∂H
∂ pi

,
d pi

dt
=−∂H

∂xi . (2.4)

The equations in (2.4) are called as Hamilton equations. The solution curves of these 2n first order differential equations describe a symplectic
transformation called as phase flow in phase space [1]. The Hamilton equations are also obtained by the Legendre transformation of the
Euler Lagrange equations described as follows:

d
dt

(
∂L
∂yi

)
− ∂L

∂xi = 0, (2.5)

where yi = dxi

dt . Legendre transformation is differentiable transformation from TM to T*M defined by

£ : (xi,yi)→ (xi, pi =
∂L
∂yi ). (2.6)

There is a relation between H and L as follows:

H(xi, pi) = piyi−L(xi,yi), (2.7)

where L is a differentiable function on TM called as Lagrangian with local expression as follows:

L(xi,yi) =
1
2

gi j(x)yiy j. (2.8)

The Lagrangian of all particles in the system is equal to the difference between kinetic and potential energies of these particles [1, 7].
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The Hamiltonian H is a differentiable function on T ∗M given in (2.2). Let φ be a curve in T*M. The curve γ is called as the projected curve
of φ by canonic projection π from T ∗M to M i.e. π ◦φ = γ . If the curve φ is an integral curve of the Hamilton vector field XH , the curve γ

must be geodesic [1]. In other words, the particles in the system exposed gravitational field act along geodesic curves in the configuration
space [8].
The sum of kinetic and potential energies of each of the moving particles by the only effect of the gravitational field is equal to Hamiltonian
H which has constant value along the integral curves of the Hamilton vector field. In other words, the Hamiltonian must be constant on every
point of the curve φ as the particles act along the integral curve of the Hamilton vector field. In classical mechanic, this fact is known as the
conservation of energy [1].
Since the Hamiltonian H is constant along the integral curves of the Hamilton vector field, the Lagrangian L to be real valuable a function on
the tangent bundle TM of the configuration space M must be constant along the integral curve of a vector field called as geodesic spray,
which is the horizontal vector field in TTM [1].
The Lagrangian of the system with n-particles acting the only effect of the gravitational field is defined by (2.8). In addition, the momentum
pi = ∂L/dyi of each particle in the system must be constant. In classical mechanic, this fact is known as the conservation of momentum [7].

3. The Euler Lagrange equations on (T*M,Cg)

In this section, the Lagrangian on (T ∗M, Cg) is obtained and the general equations of geodesics of
(
T ∗M, Cg

)
in terms of the Euler Lagrange

equations are found.
Definition 3.1. The disjoint union of each tangent vector space at all point of T ∗M is called as the tangent bundle of T ∗M denoted by

T T ∗M =
⋃

∀(p,ω)∈T ∗M

T(p,ω)T
∗M. (3.1)

Any point on T T ∗M is represented by (p, ω, X̃(p,ω)) where p is any point in a neighborhood U of M, ω is a cotangent vector at a
point p of M and X̃(p,ω) is a tangent vector at a point (p,ω) of T ∗M. τT ∗M : T T ∗M→ T ∗M is called as the canonical projection map.

Let ˜̃p = (p, ω, X̃(p,ω)) be a point on (πM ◦ τT ∗M)−1(U) ⊂ T T ∗M. Then
(
x1, ...,xn, p1, ..., pn, ẋ1, ..., ẋn, ṗ1, ...ṗn

)
is a the induced local

coordinates of a point ˜̃p on T T ∗M where {xi}, i = 1, ...,n is the local components of a point πM ◦ τT ∗M( ˜̃p) = p of M and {pi}, i = 1, ...,n is
the local components of the cotangent vector ω providing pi = ω( ∂

∂xi ). {ẋi}, i = 1, ...,n is the local coordinate function of the tangent vector
X̃(p,ω) providing ẋi = dxi(X̃(p,ω)) = X̃(p,ω)[x

i] and { ṗi}, i = 1, ...,n is the local coordinate functions of the tangent vector X̃(p,ω) providing
ṗi = d pi(X̃(p,ω)) = X̃(p,ω)[pi]. Thus T T ∗M has 4n dimensional manifold structure.
Definition 3.2. The pseudo Riemann metric Cg is a tensor field of type (0, 2) in the cotangent bundle T ∗M, whose components g̃AB are given
by

g̃AB :

(
−2paΓa

i j δ
j

i
δ i

j 0

)
2n×2n

, (3.2)

where A, B ∈ {1, ...,2n} and i, j ∈ {1, ...,n}. The line element of a pseudo Riemann metric Cg is given by

Cg =−2paΓ
a
i jdxidx j +2δ

j
i d pidx j, (3.3)

with respect to the induced coordinates (xi, pi) of T ∗M. Cg is called as the Riemann extension of the symmetric affine connection ∇ of M
[11].

Theorem 3.1. The difference between kinetic and potential energies of the moving particles by the only effect of the gravitational field in the
momentum phase space with a pseudo Riemann metric Cg is given as follows:

L̃(xi, pi, ẋi, ṗi) =−paΓ
a
i j ẋ

iẋ j + ṗiẋi. (3.4)

Proof. The difference between kinetic and potential energy of the moving particles by the only effect of the gravitational field at any stage(
x̃A, ỹA) on T T ∗M, L̃, is calculated by

L̃(x̃A, ỹA) =
1
2

g̃ABỹAỹB;A,B,D = 1, ...2n,

where gik , A = 1, ...,2n corresponds to the local coordinates of a point p̃ = (xi, pi), i = 1, ...,n on T ∗M and ỹA corresponds to the coordinate
components (ẋi, ṗi) of a vector field X̃ : T ∗M → T (T ∗M), X̃ = X̃A ∂

∂ x̃A such that dx̃i[X̃ ] = ẋi, dx̃n+i[X̃ ] = ṗi. The Lagrangian L̃ is a
differentiable function from T T ∗M to IR. The local expression of L̃ is

L̃(xi, pi, ẋi, ṗi) =
1
2

(
ẋi

ṗi

)T
(
−2paΓa

i j δ
j

i
δ i

j 0

)(
ẋ j

ṗ j

)
=−paΓ

a
i j ẋ

iẋ j + ṗiẋi.

Definition 3.3. The one with minimum arc length of among the curves given by γ̃ : t ∈ [t0, t1]⊂ R→
(
xi(t), pi(t)

)
∈ T ∗M is described by

integral

ϕ(γ̃) =

t1∫
t0

L̃(xi(t), pi(t), ẋi, ṗi)) dt (3.5)

where ϕ(γ̃) is called as functional.
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Theorem 3.2. A curve γ̃ : t→
(
xi(t), pi(t)

)
in (T ∗M, Cg) is geodesic iff γ̃ satisfies the Euler-Lagrange equations given by

d
dt

(
∂ L̃
∂ ẋi

)
− ∂ L̃

∂xi = 0, d
dt

(
∂ L̃
∂ ṗi

)
− ∂ L̃

∂ pi
= 0, (3.6)

where L̃ is defined as (3.4).

Proof. By solving the differential equations in (3.6), we get the general equations of geodesics of T ∗M with the pseudo Riemann metric Cg
as follows:

dẋh

dt
+Γ

h
i j ẋ

iẋ j = 0, (3.7)

d ṗh

dt
+ pa

∂Γa
i j

∂xh ẋiẋ j−2pa
∂Γa

h j

∂xi ẋ j ẋi−2Γ
a
h j ṗaẋ j +2paΓ

a
hkΓ

k
jiẋ

j ẋi = 0, (3.8)

which is also obtained by classical method in Yano and Ishihara’ s book [11].

4. Geodesics on H2
1

In this section, the space-like geodesics on pseudo hyperbolic 2-space are obtained by using the Euler Lagrange differential equations.
Definition 4.1. Non-degenerate, symmetric, bilinear form g is called as a semi Riemann metric in semi-Euclidean space E3

1 and g is defined
by

g(u,v) =−u1v1 +u2v2 +u3v3, (4.1)

for any vectors u,v ∈ E3
1 .

Definition 4.2. H2
1 is a surface in E3

1 given by

H2
1 = {u = (x1,x2,x3) : ‖u‖2 = g(u,u) =−1, u ∈ E3

1}. (4.2)

H2
1 is called as pseudo hyperbolic 2-space. H2

1 may be considered as hyperboloid of two sheet in Euclidean space.
The representation of H2

1 with respect to Cartesian coordinate system is given as follows:

−x2
1 + x2

2 + x2
3 =−1. (4.3)

The parametric representation of H2
1 is given as follows:

x1(a,θ) = cosha,

x2(a,θ) = sinhasinθ ,

x3(a,θ) = sinhacosθ .

(4.4)

Any curve on the surface H2
1 is described by giving the following coordinates as functions of a single parameter t

a = a(t)

θ = θ(t).
(4.5)

Theorem 4.1. The length between infinitely close two points on H2
1 is determined by the following metric:

ds2 = da2 + sinh2adθ
2. (4.6)

Proof. In order to find length of a one parameter curve in H2
1 , we use the covariant differentiations of x1,x2,x3 as follow:

dx1 = sinhada

dx2 = coshasinθda+ sinhacosθdθ

dx3 = coshacosθda− sinhasinθdθ .

(4.7)

The length between infinitely close two points on H2
1 is calculated with

ds2 = g((dx1,dx2,dx3),(dx1,dx2,dx3))

= -dx2
1 +dx2

2 +dx2
3.

(4.8)

By using the covariant differentiations of x1,x2,x3 in (4.4), we get

ds2 = da2 + sinh2adθ
2

and also the matrix representation of this metric is given as follows:

gi j :
(

1 0
0 sinh2a

)
. (4.9)
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Definition 4.3. A differentiable function from T H2
1 to R is defined as follows:

L(a,θ , ȧ, θ̇) =
1
2
(ȧ2 + sinh2aθ̇

2) (4.10)

where L is called as Lagrangian of H2
1 .

Definition 4.4. The one with minimum arc length of among the curves γ in H2
1 is described by

ϕ(γ) =

t1∫
t0

L(a,θ , ȧ, θ̇) dt, (4.11)

where ϕ(γ) describes a map from family of curves passing through different two point in H2
1 to real numbers and γ is also a curve such that

ϕ(γ) has minimum arc length on H2
1 . ϕ(γ) is called as functional. To find γ , the Euler-Lagrange equations are used.

Definition 4.5. The trajectories of moving test particles on H2
1 are determined by the following equations:

d
dt

(
∂L
dȧ

)
− ∂L

da
= 0, (4.12)

d
dt

(
∂L
dθ̇

)
− ∂L

dθ
= 0. (4.13)

These equations are called as the Euler Lagrange equations in H2
1 . The particular solution providing the initial value of differential equations

in (4.12) and (4.13) is a geodesic γ passing through initial point (a(t0),θ(t0)) and the end point (a(t1),θ(t1)). The curve γ may be visualized
as the trajectory of moving a test particle by the effect of gravitational field on throat of hyperboloid of two sheets.
Definition 4.6. The line element of H2

1 is given by

ds2 = (ȧ)2 + sinh2a
(
θ̇
)2

= ε. (4.14)

The curve connecting different two point to be infinitely close on H2
1 is called as the space-like curve of H2

1 for ε = 1.

Theorem 4.2. The general equation of geodesics on H2
1 is given by

da
dθ

=

√
εsinh4a− k2

1sinh2a

k1
. (4.15)

Proof. In order to obtain the general equation of geodesics, we should consider the Euler Lagrange equations in (4.12), (4.13) together with
metric on H2

1 . From the solving of the differential equations in (4.13), we obtain

d
dt

(
θ̇sinh2a

)
= 0⇒ θ̇ =

k1

sinh2a
, k1− real constant. (4.16)

If we put the value of θ̇ in (4.16) into at (4.14)

(
da
dt

)2
+ sinh2a

(
dθ

dt

)2
= ε ⇒

(
da
dθ

dθ

dt

)2
+ sinh2a

(
dθ

dt

)2
= ε,

we can obtain the general equation of geodesics on H2
1 as follow:

da
dθ

=

√
εsinh4a− k2

1sinh2a

k1
.

Since the gradient vector field to be normal to tangent vector space at any point of H2
1 is time like, H2

1 must be called as a space like surface.
So, H2

1 has only space like geodesics. The general equation of these geodesics on H2
1 is given by the following theorem.

Theorem 4.3. The space-like geodesics on H2
1 are given by the following equations:

√
1− k2

1 cosech2a√
k2

1 +1
=

sinθ

k2
,

x2
1

k2
1 +1

−
x2

2
k2

2
= 1

with respect to generalized and cartesian coordinates.

Proof. If we chose ε = 1 in (4.15), we can obtain following surface:

√
1− k2

1 cosech2a√
k2

1 +1
=

sinθ

k2
,

x2
1

k2
1 +1

−
x2

2
k2

2
= 1

with respect to generalized coordinates (a,θ) and cartesian coordinates.

The space-like geodesic characterized by trajectory of a moving test particle by the effect of gravitational field acts faster than speed of light
on the surface H2

1 . This mechanical interpretation was inspired from [9].
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5. Geodesics on
(
T*H1

2,gC)
In this section, the general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space with the pseudo Riemann metric Cg
are calculated.
Definition 5.1. Let H2

1 be pseudo hyperbolic 2-space and T ∗H2
1 be its cotangent bundle. As any point q on H2

1 has the generalized
coordinates (a, θ), the point

(
q,ηq

)
on T ∗H2

1 has the local coordinates (a,θ , p1, p2) where p1, p2 are the local coordinate function of

the cotangent vector ηq at q. In addition, the point
(

q,ηq,X(q,ηq)

)
on T T ∗H2

1 has the local coordinates (a,θ , p1, p2, ȧ, θ̇ , ṗ1, ṗ2) and the

point
(

q,ηq,ω(q,ηq)

)
on T ∗T ∗H2

1 has the local coordinates (a,θ , p1, p2,ωa,ωθ ,ωp1 ,ωp2) where ωa,ωθ ,ωp1 ,ωp2 are the local coordinate

functions of the cotangent vector at
(
q,ηq

)
i.e. ω(q,ηq) ∈ T ∗(q,ηq)

T ∗H2
1 .

Theorem 5.1. The general equations of geodesics of H2
1 are represented by the following equations:

ä− coshasinha
(
θ̇
)2

= 0, θ̈ +2cotha ȧ θ̇ = 0.

Proof. To find the general equations of geodesics on H2
1 , we need to the general formula of the geodesic equations on Riemann manifolds

given by

ẍα +Γ
α

γβ
ẋγ ẋβ = 0, (5.1)

and the Christoffel symbols given by

Γ
α

βγ
=

1
2

gαµ
(
gµγ,β +gβ µ,γ −gβγ,µ

)
, (5.2)

and where gαβ is the components of the matrix representation of the metric tensor of H2
1 and gαβ is inverse of gαβ . The non-zero components

of the Christoffel symbols of H2
1 are obtained as follows:

Γ1
22 =−sinhacosha, Γ2

12 = Γ2
21 = cotha. (5.3)

If we put the non-zero Christoffel symbols in (5.3) into (5.1) , we get the general equations of geodesics on H2
1 as follows:

ä− coshasinha (θ̇)
2
= 0, θ̈ +2cotha ȧ θ̇ = 0. (5.4)

Theorem 5.2. The pseudo Riemann metric Cg on T ∗H2
1 has components

Cg =−4p2 cothadadθ +2p1 sinhacosha(dθ)2 +2dad p1 +2dθd p2. (5.5)

Proof. By using the equations in (3.3) and (5.3), the pseudo Riemann metric Cg on T ∗H2
1 has following component

Cg =
(
−2p1Γ

1
11−2p2Γ

2
11

)
(da)2 +2

(
−2p1Γ

1
12−2p2Γ

2
12

)
dadθ +

(
−2p1Γ

1
22−2p2Γ

2
22

)
(dθ)2 +2dad p1 +2dθd p2.

The matrix representation of Cg is as follows:

gAB :


0 −2p2 cotha 1 0

−2p2 cotha 2p1 sinhacosha 0 1
1 0 0 0
0 1 0 0

 ,

and the matrix representation of inverse of Cg is as follows:

(
Cg
)−1

:


0 0 1 0
0 0 0 1
1 0 0 2p2 cotha
0 1 2p2 cotha −2p1 sinhacosha

 .

Theorem 5.3. The non-zero components of the Christoffel symbols of T ∗H2
1 with the pseudo Riemann metric Cg has the following

components:

Γ
1
22 =−sinhacosha

Γ
2
12 = Γ

2
21 = cotha

Γ
3
12 = Γ

3
21 = 2p2coth2a,Γ3

22 =−p1 cosh2a,Γ3
24 = Γ

3
24 =−cotha

Γ
4
11 = 2p2 cosech2a,Γ4

12 = Γ
4
21 =−p1,Γ

4
22 =−2p2cosh2a,

Γ
4
14 = Γ

4
41 =−cotha,Γ4

23 = Γ
4
32 = sinhacosha.

(5.6)
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Proof. By using the general formula of the Christoffel symbols in (5.2), it is seen to be correct of theorem.

Theorem 5.4. Any curve c̃ : t→ c̃(t) = (a,θ , p1, p2) on (T ∗H2
1 ,Cg) is geodesic iff following differential equations system must provide:

ä− sinhacosha
(
θ̇
)2

= 0,

θ̈ +2cotha ȧ θ̇ = 0,

p̈1 +4p2coth2a ȧ θ̇ − p1 cosh2a
(
θ̇
)2−2cotha θ̇ ṗ2 = 0,

p̈2 +2p2 cosech2a (ȧ)2−2p1 ȧ θ̇ −2p2cosh2a
(
θ̇
)2−2cotha ȧ ṗ2 +2sinhacosha θ̇ ṗ2 = 0.

Proof. By using the general formula of the geodesic equation in (5.1) and components of the Christoffel symbol in (5.6), it is seen easily to
be correct of theorem.

Theorem 5.5. The general equations of geodesics of (T ∗H2
1 ,Cg) obtained in Theorem 3.2 by using the Euler Lagrange equations provide

the geodesic equations obtained by classical method at Theorem 5.1.

Proof. If we rewrite with respect to the components of the general equations of geodesics of (T ∗M,Cg) obtained by Theorem 3.2 for
(T ∗H2

1 ,Cg), we get the following equations:

dẋ1

dt
+Γ

1
22ẋ2ẋ2 = 0,

dẋ2

dt
+2Γ

1
12 ẋ1ẋ2 = 0,

d ṗ1

dt
+ p1

∂Γ1
22

∂x1 ẋ2ẋ2−2Γ
2
12 ṗ2ẋ2 +2p2Γ

2
12Γ

2
21ẋ1ẋ2 = 0,

d ṗ2

dt
−2p2

∂Γ2
21

∂x1 ẋ1ẋ1−2p1
∂Γ1

22
∂x1 ẋ2ẋ1 +2p1Γ

1
22Γ

2
12ẋ2ẋ1 +2p2Γ

2
21Γ

1
22ẋ2ẋ2−2Γ

2
21 ṗ2ẋ1−2Γ

1
22 ṗ1ẋ2 = 0.

When we use the coefficients of the Christoffel symbol in (5.1), it is seen to be the above equations is equal to the geodesic equations
obtained by classical method at Theorem 5.4.

6. Conclusion

This study contains six sections. In the second section, the geometrical interpretation of the mechanic concepts are considered such as the
movement of the particles by the effect of the gravitational field, the conservation of momentum or energy, well known in classic mechanic.
In the third section, the general equations of geodesics on the cotangent bundle

(
T*H1

2,gC) are found by using the Euler Lagrange equations.
In the fourth section, the space-like geodesics on pseudo hyperbolic 2-space are obtained by using the Euler Lagrange equations.
Finally, in the fifth section, the general equations of geodesics on the cotangent bundle of pseudo hyperbolic 2-space

(
T*H1

2,gC) are
obtained by using general formula of geodesics on a Riemann manifold and then it is shown that the general equations of geodesics on(
T*H1

2,gC) are equal to the geodesic equations obtained by using the Euler Lagrange equations in the second section.
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