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ABSTRACT 
 

Nowadays, in many industrial applications, porous materials play an important role in the design and development 
processes. For instance, in alloy solidification, between the solid and the fluid phases there is a region called mushy zone 
which contains both fluid and solid. Its structure is very complicated but can be handled as an anisotropic porous medium 
with directional variation in permeability. Other industrial applications such as flow over heat exchanger matrices, flow 
through turbo-machines, primary and secondary oil recoveries etc. can very well be approximated as porous media. 
Finally, it seems appropriate to mention that cooling of electronic micro systems is becoming more and more important as 
much of our modern day equipment contains more and more electronic circuits. In order to increase their performance and 
life, it is essential to have proper cooling arrangement. A reliable flow and heat transfer prediction in these arrangements 
is always difficult due to the complexity of flow structure. However, a porous medium approximation to such problems 
can be efficient. The generalized procedure described in this study is a good approximation for these structures. 

 

Keywords: Non-isothermal Porous media flow, Mathematical modelling; Representative Elementary Volume 
(REV).  

İZOTERMAL OLMAYAN VE KÜTLESEL DİFÜZYONUN MEVCUT OLDUĞU 
DURGUN BİR GÖZENEKLİ ORTAM İÇERİSİNDEKİ AKIŞKAN AKIŞININ 

TEMSİLİ BİR TEMEL HACİM KULLANILARAK MODELLENMESİ  

ÖZET 
 

Günümüz teknolojisinde, birçok endüstriyel uygulamada gözenekli materyaller dizayn ve geliştirmede önemli bir rol 
oynar. Örneğin, katılaşma problemindeki katılaşma esnasında oluşan katı ve akışkan bölgeleri bu ortama bir örnektir. Bu 
problem çok zor bir problem olmakla birlikte, gözenekli ortam akış modeli kullanılarak çözülebilir. Birkaç diğer 
uygulama örnekleri ise ısı değiştirgeçleri, termik-turbu makinalardaki akışlar, petrol çıkarılması ve proseslere tabi 
tutulması  sayılabilir. Son bir örnek olarak, performans ve ömürlerinin arttırılması için, elektronik mikro sistemlerin 
soğutulması bu akış modeli kullanılarak yapılabilir. Bu çalışmada tanımlanan prosedüre ve model, bu türlü problemlerin 
çözümünde iyi  ve güvenilir sonuçlar verir. 

 
Anahtar Kelimeler: İzotermal olmayan gözenekli ortam akışı, matematiksel modelleme, REV. 

 
1. Introduction 
 
Scientific approach to the study of porous media flow began during the second half of the last century even though 
a solution to this type of problem was needed long before. In fact many of the materials employed in ancient time 
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were basically porous in nature. As technology became more “sophisticated”, a practical solution to the problem 
became necessary. The first attempt was made in 1856 by Henry Darcy [1], who presented the results of his 
experiments on water flow through sand filters. He summarized his findings in the form of a mathematical 
relation, in which the flow rate through a porous filter is inversely proportional to the length of filter and 
proportional to the constant cross-sectional area times the difference in piezometric head across the medium. The 
proportionality coefficient used by Darcy is called “permeability” of the medium.  
 
Darcy’s equation was the only one available to describe fluid flow through porous media for almost half of a 
century. Due to the lack of applications and facilities, very little was done to understand flow through porous 
media until the beginning of the last century. Later, the discovery and development of new technologies greatly 
influenced the study of flow and heat transfer through porous media. Nuclear energy, geothermal energy, as well 
as petroleum and water reservoir exploitation are just a few of the porous medium applications  The demands of 
new technologies were met quickly, but as it often happens, most of the work was done to solve specific 
problems, and the results were therefore difficult to be synthesized in a general theory. Different extensions of 
Darcy’s law were introduced and some mathematical tools were developed in order to obtain a more rigorous 
formulation of the porous medium equations. 

 
2. Mathematical flow models 
 
A porous medium is usually considered to be composed of a solid matrix and voids. The so called saturated 
porous media, with which this work is concerned, present voids that are interconnected and completely filled with 
one or more fluids. Unsaturated porous media are in general partially filled with liquid, and since not all the voids 
are connected, the fluid can not  flow everywhere in the pores. 
 
In natural porous media, pore distribution is generally irregular, and so are quantities such as velocity, 
temperature, etc. However, in most practical engineering problems, the interest is focused on the spatial average 
values of these quantities, which from a macroscopic point of view, vary uniformly. Therefore, where not 
specified, we will be considering al l the variables in the sense of their mean spatial values over the so called 
representative elementary volume (REV). The concept of REV is fundamental in the volume averaging technique 
introduced by Bear [2] to study the porous media, which is still the basis of a large part of the work on porous 
media. The REV has to be so that the values of the quantities of interest are independent of the size of the volume 
itself, and its length scale should be larger than the pore scale, but smaller than the dimensions of the macroscopic 
domain [3], [14], [15]. 

  In order to macroscopically describe the flow through a saturated porous medium, it is necessary to introduce 
variables that take into account the space left by the solid matrix to the fluid. One of them is the porosity, defined 
as the fraction of the total volume of the porous medium “occupied” by the voids. 
 
When averaging over the REV (Fig. 1), it is possible to consider the whole volume of the porous medium, or the 
volume of the holes, which is entirely left to the fluid. Therefore it is possible to define two averages, the so called 
intrinsic average velocity U, obtained averaging over the pore volume in the REV, and the seepage or Darcy 
velocity u, averaged over the whole REV. The two velocities are not independent, but related by the Depuit-
Forchheimer relation: u=ε U [3]. 
A first use of these quantities may be represented by the derivation of the continuity equation, which can be 
shown to be described by the: 

                                               ( ) 0. =∇+
∂

∂
u

t f
f ρ

ρ
ε                                                                                           (1) 

where ρf is the  fluid density. The above equation balances the rate of increase of the  fluid within the REV and the 
net mass  flux through the surface contour of the REV, assuming that the porosity is constant. The derivation of 
the momentum conservation equation is not obvious, and is still a matter of discussion [11], [16], [17]. 
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2.1 Darcy’s model 
 
During the last century researchers have derived generalized forms of the Darcy equation using either 
deterministic or statistical models [3], [18]. The well known original form of the equation has been re-written as: 

                                                                        pKu ∇−=
µ

                                                                                (2) 

for an isotropic medium, where K is the so-called intrinsic permeability, and  p is the pressure gradient. Although 
Darcy’s law can describe the flow through many natural occurring porous media, it is not valid for all types of 
situations. In fact, defined for a porous medium the Reynolds number based on the permeability of the porous 

medium as    
µ

ρ uKK =Re      has been proved that Darcy’s equation is not adequate for  flows where is Re 

grater than unity[5]. Even before, many researchers had already noticed the inappropriateness of Darcy’s law and 
had started to propose new models. 
 
2.2 Forchheimer extension of Darcy’s Law 
 
Quite a larger agreement can be found in the scientific community about the need to modify the Darcy equation to 
take into account the effect of non-linear terms in the momentum equation, as supported by experimental evidence 
[4]. The physical explanation for non-linear terms is still not completely understood. Some researchers have 
explained that even if the average of microscopic inertial terms are negligible in typical practical circumstances, 
the averaging of microscopic drag forces on the fluid due to the solid matrix leads to a macroscopic non linear 
theory for flow. Independently from their physical explanation, non-linear terms are usually introduced through 
the so called Forchheimer’s equation: 
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where the cF is a non-dimensional form-drag constant. In the last ten years different expressions have been 
proposed for the Forchheimer’s equation. Another form of the equation was derived by Irmay [3] and in this 
particular form: 
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is known as Ergun’s equation [19]. The linear term in equation (4) is equal to that in equation (3) if we assume: 
 

( )2

32

1150 ε
ε
−

= sd
K   which is the so called Carman-Kozeny equation, and where ds  is the average size of the 

solid particles [4], [19]. 
 
2.3 Brinkman extension of Darcy’s Law 
 
In 1947 Brinkman [6,7] presented a new model, derived for an assembly of spheres, in which he obtained a 
relationship between the permeability and the porosity. Furthermore, Brinkman presented an equation that is often 
referred to as “Brinkman’s extension of Darcy’s law” [3], or Brinkman’s equation: 
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                                                            uu
K

p 2∇+−=∇
ε
µµ ε                                                                            (5) 

 
in which the effective viscosity µε     was introduced for the first time, along with the Laplacian of the velocity, to 
take into account the viscous effect that becomes greater as the porosity and the permeability of the medium 
become larger. The effective viscosity was initially assumed by Brinkman to b e equal to the fluid viscosity. The 
first drawback usually pointed out about this equation is related to the procedure used by Brinkman to derive it. In 
fact this makes it valid only for media with very large porosity (greater than 0.6). The second problem associated 
with the use of equation (2.6) is related to the value of the effective viscosity, which is known to be dependent on 
the geometry of the medium, but is not experimentally well documented [4], and is still subject to investigation 
[20,21]. Even though the validity of the Brinkman equation has not been proved, it has still been used for the 
solution of several problems, such as, for instance, the interaction between a viscous fluid and a saturated porous 
medium, and it has given accurate results [5,9,13,12,22]. 
 
2.3 The generalized model 
 
Most naturally occurring porous media have porosity less than 0.6 and generally Darcy’s law can be used to solve 
flow in these media. However human influence in the last century, has created many things which are not 
“natural” any more, but still need to be studied. A similar example is represented by the most common refrigerant 
fluids, that are not found in nature, but should still be investigated. At the same time some very important porous 
materials, such as for instance polyurethane foam, fibre glass or some isolating materials, have a great number of 
practical applications, and therefore cannot be ignored. Since porous media can have porosity from 0.02 up to 0.99 
[3,4], it should be possible to study all different situations using one single generalized model. In the present work 
incompressible viscous flows through porous media have been mathematically described using a generalized 
model, in which all the models described above are taken into account. Furthermore advective and temporal terms 
are included in the momentum equation in order to make the model more general. Even though some authors have 
argued about the inappropriateness of these terms [11,16], it is clear that they do have some effect during the 
development of boundary layer and transient solutions. Also regarding problems with porous medium and single 
phase fluid, these terms produce appropriate effects naturally [4,5]. 
 
The general form of the momentum equation for a medium of variable porosity saturated by an incompressible  
fluid can be derived by averaging the Navier-Stokes equations over the REV, using the well known procedure 
introduced by Whitaker [15,23] . The generalized momentum equation for a fluid saturated porous medium can be 
written as: 
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where all quantities are represented by their average values in the REV: u is the seepage (Darcy) velocity vector, p 
is the fluid pressure, ρ f  is the  fluid density, cF  is the Forchheimer’s coefficient, B represents the body forces 
acting on the system and µε  is the effective (or e Brinkman) viscosity that will be discussed extensively later. The 
hydrodynamic dispersion has been neglected in the above equation, for the sake of simplicity. Egrun’s correlation 
(4), initially introduced for packed beds, is used to represent the total drag force of the solid matrix on the fluid. In 
this case the permeability K and the coefficient c can respectively be written as: 
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bcF =                                                           (7) 

With a and b being Egrun’s constants (a =1.75,b = 150), and d the particle size of the beds. The generalized 
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momentum equation has been derived theoretically [10] and it has been extensively and successfully used in 
literature [ 16,8,9,10, 12,22]. There is no evidence that any of the terms of the momentum equation should be 
omitted. Furthermore, as will be shown later in this work, this model has the great advantage of allowing the 
solution of interface problems between a porous medium and a free fluid, considering a single domain. This 
approach is particularly convenient in the study of many applications, such as for instance alloy solidification [6, 
24,25]. 
 
3. Heat and Mass Transfer models 
 
3.1 Heat Transfer 
 

This work is mainly concerned with the transport of heat, in addition to fluid  flow, through porous media. There is 
a large number of applications, particularly in mechanical engineering, where the thermal aspect is fundamental: 
solidification of binary mixtures, dehumidification, insulation, and heat pipes are just a few examples [4]. In all 
these cases the temperature distribution inside the medium can be recovered from the solution of energy 
conservation equation, coupled to the momentum conservation and continuity equations. 
 
The macroscopic energy equation for a saturated porous medium, derived using the volume averaging procedure, 
assuming local thermal equilibrium in the REV and neglecting thermal dispersion, can be written [10]: 
 
 

                            ( ) ( )( )[ ] ( ) ( ) ( )TkuTc
t
Tcc

fpspfp ∇∇=∇+
∂
∂

−+ ηρρερε ..1                                          (8) 

 
where T is the temperature in the REV, and the volumetric heat capacity ( cp ) is considered  for the fluid and the 
solid (subscripts f and s respectively). The effective conductivity kε of saturated porous media is calculated from 
conductive heat transfer through the medium (i.e. for the fluid in static conditions) [4]. 
 
3.2 Mass Transfer 
 
Applications such as under-ground pollutant transport, nuclear waste disposal etc., involve a third component 
transport into a fluid saturated porous medium. In such situations, in addition to mass, momentum and energy, 
also a species conservation equation needs to be solved. The transport equation for the third component is similar 
to the convective heat transfer equation. The study of the component in the mixture can be performed in terms of 
its concentration in the medium or solutal mass fraction: C = m/V .In particular the macroscopic equation for the 
calculation of concentration can be derived from the volume-averaging method, under the assumption of local 
chemical equilibrium in the REV, and represents the species conservation equation: 
 

                                                         ( ) ( )CDuC
t
C

∇∇=∇+
∂
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ηε ..                                                                   (10) 

 
where Dε  is the effective mass diffusivity  coefficient of the component. We should mention here that for both 
heat and mass transfer the case of “production” of energy or mass has not been considered in this work. It is well 
known that in these cases another term, the volume-averaged production rate, would appear in the energy equation 
or the mass equation, without introducing any particular difficulty to the problem. 
 
3.3 Non-dimensionalization 
 
It is very common, especially for complex fluid-dynamic problems which depend on several variables, to non-
dimensionalize the governing equations before their solution. The non-dimensionalization process involves the 
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choice of different normalizing factors and scales. As pointed out by Ostrach [26] the choice of these parameters 
is rather arbitrary, but the physical implication of this choice and its effects on the non-dimensional equations is 
very often underestimated. The present case is very peculiar since we are studying phenomena that have 
completely different scales: the macroscopic and microscopic fluid flow. 

To give an example of this issue, we may think of natural convection in enclosures filled with porous media. This 
problem is governed by several parameters; scale analysis can considerably reduce their number. According to 
Bejan [27] the heat and fluid  flow in such systems depend on two parameters: the geometric aspect ratio, H/L and 
the Rayleigh number based on the height of the cavity. Unfortunately, there is no homogeneous normalization 
procedure for this type of problem and therefore many authors propose the use of Rayleigh number based on the 
width of the cavity. The following scales and parameters have been employed to obtain the non-dimensional 
equations presented in the next section, which describe natural convection heat and mass transfer in a porous 
medium and are given as: 
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with αf thermal diffusivity, βT and βC coefficient of thermal and solutal expansion respectively, µf and  υf   
dynamic and kinematic viscosity of the  fluid respectively; x is the position vector and g represents the magnitude 
of the gravitational vector, Th, Tc, Ch and Cc  respectively are the hot and cold wall temperatures and 
concentrations while L is the characteristic length of the problem considered. In the above quantities, an asterisk is 
used for the non-dimensional variables, that will be used from now on, but for the sake of simplicity the asterisk 
will be dropped. This should not cause any misunderstanding, since it will always be specified when the equations 
are dimensional. Furthermore Rk   is the ratio between the effective thermal conductivity of the porous medium 
and the fluid thermal conductivity, Rε  is the ratio between the effective (or Brinkman) viscosity and the fluid 
viscosity, RD is the ration between the effective and the fluid mass diffusivity coefficient of the third component, 
Rß  is the buoyancy ratio, and RC   is the non-dimensional overall  heat capacity per unit volume. The parameters 
introduced are the Rayleigh number Ra, the Prandtl number Pr, the Lewis number Le, and the Darcy number, Da. 
For forced convection problems, where the buoyancy forces are negligible compared to the external (with respect 
to the domain under study) forces responsible for the fluid motion, another more adequate non-dimensional 

parameter is introduced, the Reynolds number as
f

f uL
µ
ρ

=Re . In this case the momentum equation is slightly 

different, since it does not present the buoyancy terms, and therefore the momentum equation is not strongly 
coupled to the energy equation.  
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4. The dimensionless mathematical model 
 
The study of  fluid  flow, heat and mass transfer through porous media is based on the conservation of the various 
quantities, such as mass, momentum, energy and species. The related partial differential equations have been 
presented in their dimensional form. On the basis of what was written in the previous section, the equations can be 
written in non-dimensional form, with respect to fluid properties. For a piecewise homogeneous medium, with 
constant, uniform porosity and constant properties, except the fluid density, the system of non-dimensional 
governing equations is  
mass conservation: 
                                                                            0. =∇ u                                                                                      (12) 

 
momentum conservation: 
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energy  conservation: 
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species conservation: 
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defined in  the domain of interest. In the momentum equation g is the  unit vector along the gravity direction, and 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−

u
Da
c

Da
F FPr

is the porous term that incorporates the Darcy term, proportional to the ratio Pr/Da, and 

the Forchheimer term, proportional to  Dauc
F

−

.  Furthermore, as mentioned, all the properties are assumed 

to be constant except density of the fluid. The density variation of the binary mixture is incorporated by invoking 
the Oberbeck-Boussinesq approximation, ( ) ( )[ ]000 1 CCTT CT −−−−= ββρρ  with ρ0   density of the 
mixture for the reference conditions T0 and C0 . As mentioned, dispersion in the porous medium has not been 
included and the Soret (mass flux due to temperature gradients) and Dufour (heat  flux produced by concentration 
gradients) effects that have been considered negligible, for the sake of simplicity. 
 
It seems appropriate to emphasize here that the presented model tends to the classical Navier-Stokes equations as 
the porosity of the medium goes to one and its permeability tends to infinity. Therefore the model is particularly 
suitable for the solution of interface problems.  
 
5. Conclusion 
 
In the present research, following a brief introduction on the available models for the study of fluid flow through 
porous media, the generalized model has been introduced. This model is presented in the form valid for a non-
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deforming porous medium fully saturated by an incompressible Newtonian fluid. The different contributions to 
the momentum equation, ob served by scientists over the years, are taken into account in this model, which can 
therefore be used for many types of media. The system of equations of the generalized model that describes the 
heat and mass transfer through the porous medium is presented in its non-dimensional form. Also the non-
dimensional quantities and parameters introduced have been presented. 
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Figure 1: Representative Elementary Volume (REV) 
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