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Abstract 

For 𝑡 an integer, a  𝑃𝑡  set is defined as a set of 𝑚 positive integers with the property that the 

product of its any two distinct element increased by 𝑡 is a perfect square integer. 

In this study, the certain special  𝑃−5, 𝑃+5, 𝑃−7 and  𝑃+7 sets with size three are considered. It is 

demonstrated that they cannot be extended to 𝑃−5, 𝑃+5, 𝑃−7 and  𝑃+7 with size four. Also, some 

properties of them are proved. 

Mathematics Subject Classifications: 11D45, 11A07, 11A15.  
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BAZI ÖZEL KÜMELER ÜZERİNE 

Özet 

Bir 𝑡 tamsayısı için 𝑃𝑡  kümesi, herhangi iki tane farklı elemanının çarpımının 𝑡 fazlası bir 

tamkare olma özelliğine sahip 𝑚 tane pozitif tamsayıdan oluşan bir küme olarak tanımlanır. 

Bu çalışmada, üç elemanlı bazı 𝑃−5, 𝑃+5, 𝑃−7 ve 𝑃+7 kümeleri gözönüne alıniyor. Bu kümelerin 

dört elemanlı 𝑃−5, 𝑃+5, 𝑃−7 ve 𝑃+7 kümelerine genişletilemez olduğu gösteriliyor. Ayrıca, bu 

kümelerin bazı özellikleri kanıtlanıyor. 
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1. INTRODUCTION 

Let 𝑡 be an integer. A Pt-set of size m is a set 𝐵 =  x1, x2, x3 … . xm  of distinct positive 

integers for which xixj + t is the square of an integer whenever i ≠ j. If there exists a positive 

integer n ∉ 𝐵 such that 𝐵 ∪ {n} is still a Pt-set, then the Pt-set  𝐵 can be extended.   

The simultaneous Pell equations have been studied by most of authors like Anglin, Baker, 

Dickson, Mordell, Davenport, Cohn, Mohanty,  Ramasamy, Pinch, Ponnudurai, Tzanakis, 

etc…In this topic, many authors applied Baker-Davenport method [2]  provided set {1, 3, 8,120} 

of size four to investigate similar problems. Besides, some authors such as Kanagasabapathy and 

Ponnudurai [8], Brown [3] studied on the number of the solutions of simultaneous Pell equations. 

The other like Mohanty and Ramasamy [12], Gopalan [6] as well as Filipin, Fujita and Mignotte 

[5] introduced the concept of characteristic number of two simultaneous Pell’s equations.  

Moreover, Anglin [1] presented a method for solving a system of Pell’s equations with the 

parameters in the boundry. Tzanakis [15] provided elliptic logarithm method using linear forms 

in elliptic logarithms. In [9], Katayama also partially described elliptic logarithm method for 

simultaneous Pell equations. Also, readers can look into [4, 7, 10, 11, 13, 14] references for more 

information about the 𝑃𝑡  sets and Pell equations. 

In this research paper, we will prove the sets  𝑃−5 = {1,6,9} , 𝑃−5 =  1,9,14 , 𝑃+5 =

 1,4,11 , 𝑃−7 =  1,16,23 , 𝑃−7 =  1,16,176 , 𝑃−7 =  2,8,16  and 𝑃+7 =  1,9,18  can not be 

extended with size four 𝑃−5, 𝑃+5, 𝑃−7 and  𝑃+7 sets. Also, we will demonstrate some properties of 

such sets. 

 

2. PRELIMINARIES 

Definition 2.1. ([14]) If 𝑚 ∈ 𝑁 and  𝑎 ∈ 𝑍 with gcd 𝑎,𝑚 = 1, then a is said to be a quadratic 

residue modulo 𝑚 if there exists an integer 𝑥 such that 

                                             𝑥2 ≡ 𝑎  𝑚𝑜𝑑 𝑚                                                                            (2.1) 

and if equivalence has no such solution, then a is a quadratic nonresidue modulo n. 

Definition 2.2. ([14])  If 𝑎 ∈ 𝑍 and 𝑝 > 2 is prime,then 

               
𝑎

𝑝
 =  

0 ,                                                  if  p a
1 ,   if a is quadratic residue modp

−1 ,                                            otherwise

                                                            (2.2) 
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and   
𝑎

𝑝
   is called the Legendre Symbol of 𝑎 with respect to 𝑝. 

The following is a fundamental result on quadratic residuacity modulo n. This term means 

the determination of whether n integer to be a quadratic residue or a non-residue modulo n. 

Theorem 2.1. ([14]) If   𝑝 ≠ 𝑞 are odd primes, then  

                                   
𝑝

𝑞
  

𝑞

𝑝
 = (−1)

𝑝−1

2
  .  

𝑞−1

2                                                                             (2.3) 

where  
.

.
  represents Legendre symbol. 

Theorem 2.2. ([14]) For any odd prime p, 

                                  
2

𝑝
 ≡  −1  𝑝

2−1 8   𝑚𝑜𝑑 𝑝                                                                     (2.4) 

Theorem 2.3. ([14]) Let   𝑠 > 1  be an integer,   𝑐 ∈ 𝑍 with  gcd 𝑐, 𝑠 = 1   and 

                                        𝑠 =  2𝑎0  𝑝𝑗
𝑎𝑗𝑚

𝑗=1                                                                               (2.5) 

be the canonical prime factorization of  𝑠  where 𝑎0 ≥ 0  and 𝑎𝑗 ∈ 𝑁 for the distinct odd primes 

𝑝𝑗  , 𝑗 = 1,2, … ,𝑚.  Then  

                                      𝑥2 ≡ 𝑐  (𝑚𝑜𝑑 𝑛)                                                                                  (2.6) 

is solvable if and only if 

                                              𝑎 𝑝𝑗  = 1                                                                                    (2.7) 

for all 𝑗 = 1,2, … ,𝑚 and 𝑎 ≡ 1   𝑚𝑜𝑑  gcd 8,2𝑎0  . 

Theorem 2.4. ([14]) If 𝑚, 𝑛 ∈ N are odd and relatively primes, then 

                                    
𝑚

𝑛
  

𝑛

𝑚
 = (−1)

𝑚−1

2
  .  

𝑛−1

2                                                                         (2.8) 

holds. 

 

3. MAIN THEOREMS AND RESULTS  

Theorem 3.1. The set P−5 = {1,6,9} can not be extended to the set  𝑃−5  with size 4. 

Proof. We assume that P−5 = {1,6,9} can be extended for any positive integer 𝑑. 

i.e, {1, 6,9, d}  is a P−5 set. We can find  𝑥, 𝑦, 𝑧 integers  such that; 

𝑑 − 5 = 𝑥2                                                                        (3.1) 

6𝑑 − 5 = 𝑦2                                                                        (3.2) 

9𝑑 − 5 = 𝑧2                                                                        (3.3) 
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by dropping d from (3.1) and (3.3) we obtain 

𝑧2 − 9𝑥2 = 40                                                                      (3.4) 

In (3.4), we can write left side as difference of two squares since 9 is a perfect square  𝑧 −

3𝑥𝑧+3𝑥=40. Also, it is clear that 40 can be factorized as finitely. So, integer solutions of (3.4) 

are obtained as following: 

 𝑥, 𝑧 =  ±3,±11                                                               (3.5) 

or  

  𝑥, 𝑧 =  ±1,±7                                                                 (3.6) 

Eliminating d from (3.1) and (3.2) simultaneously, then we obtain 

𝑦2 − 6𝑥2 = 25                                                                   (3.7) 

Using the solutions of equation (3.5) and substituting  𝑥2 = 9 into (3.7) we have 𝑦2 = 79 which 

𝑦 is not an integer solution. 

In a similar way, substituting (3.6) solutions (𝑥2 = 1) into the (3.7), we get  𝑦2 = 31.  This 

shows that 𝑦 is not integer for the solution of (3.7). Thus, there is no a such 𝑑 ∈ 𝑍 and the set  

P−5 = {1,6,9} can not be extended. 

 

Theorem 3.2. The set P−5 = {1,9,14} is nonextendible. 

Proof. It can be proved in a similar way of the proof of Theorem 3.1. Suppose that P−5 =

{1,9,14} can be extended for any positive integer 𝑑. It means that {1, 9, 14, d}  is a P−5 set.  

We can find  𝑥, 𝑦, 𝑧 integers  such that; 

𝑑 − 5 = 𝑥2                                                                        (3.8) 

9𝑑 − 5 = 𝑦2                                                                        (3.9) 

14𝑑 − 5 = 𝑧2                                                                      (3.10) 

by dropping d from (3.8) and (3.9) we obtain 𝑦2 − 9𝑥2 = 40 which correspond to (3.4) equation. 

In the previous proof we solved this equation and obtained solutions as  𝑦, 𝑥 =  ±11,±3   or  

 𝑦, 𝑥 =  ±7,±1 . Eliminating d from (3.8) and (3.10) simultaneously, then we get 

𝑧2 − 14𝑥2 = 65                                                                   (3.11) 

Using  𝑦, 𝑥 =  ±11,±3  solution and substituting  𝑥2 = 9 into the (3.11), we obtain 𝑧2 = 191 

which 𝑧 is not an integer. 

In a similar way, considering  𝑦, 𝑥 =  ±7,±1  solutions and substituting  𝑥2 = 1 into 
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the (3.11), we get  𝑧2 = 79.  This shows that 𝑧 is not integer. 

Thus, there is no such 𝑑 ∈ 𝑍 and the set  P−5 = {1,9,14} can not be extended. 

 

Theorem 3.3. The set  𝑃+5 =  1,4,11  is nonextendable to set 𝑃+5 with size four. 

Proof. We assume that the set   1,4,11, 𝑑  is a 𝑃+5 for any positive integer 𝑑. If we consider the 

definition of 𝑃+5, then we have 

𝑑 + 5 = 𝑥2                                                                   (3.12) 

4𝑑 + 5 = 𝑦2                                                                   (3.13) 

11𝑑 + 5 = 𝑧2                                                                    (3.14) 

We have to find integers 𝑥, 𝑦, 𝑧, satisfying (3.12), (3.13) and (3.14). From (3.12) and (3.13) we 

get 

4𝑥2 − 𝑦2 = 15                                                            (3.15) 

and from (3.12) and (3.14) we have 

11𝑥2 − 𝑧2 = 50                                                           (3.16) 

By the same manner of  the  proof  of  above theorems and  factorising (3.15) we get; 

 2𝑥 − 𝑦  2𝑥 + 𝑦 = 15                                                   (3.17) 

If we get the solutions of equation (3.17), we obtain (x,y)=( ±4,±7) and (x,y)=(±2,±1). If we 

substituting 𝑥2 = 16 or 𝑥2 = 4 into the (3.16) then we obtain 𝑧2 = 126 which 𝑧 is not an integer 

or 𝑧2 = −6 which is impossible, consecutively. So, there is no any integer 𝑧 satisfying the 

equation (3.16). 

Hence, the set  𝑃+5 =  1,4,11  is non-extendable. 

 

Theorem 3.4. The set  𝑃+7 =  1,9,18  can not extendible. 

Proof. Suppose that the set   1,9,18, 𝑑  is a 𝑃+7 for any positive integer 𝑑. Using the definition of 

set 𝑃+7, then we obtain  

𝑑 + 7 = 𝑥2                                                                (3.18) 

9𝑑 + 7 = 𝑦2                                                                (3.19) 

18𝑑 + 7 = 𝑧2                                                                (3.20) 

We have to find integers 𝑥, 𝑦, 𝑧, holding (3.18), (3.19) and (3.20). From (3.18) and (3.19) we get 

9𝑥2 − 𝑦2 = 56                                                             (3.21) 
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and by using (3.19) and (3.20) we obtain 

−𝑧2 + 2𝑦2 = 7                                                              (3.22) 

By factorising (3.21) we have 

 3𝑥 − 𝑦  3𝑥 + 𝑦 = 56                                                        (3.23) 

If we search the solutions of the (3.23), we get  𝑥, 𝑦 =  ±5,±13  and  𝑥, 𝑦 =  ±3,±5 . If we 

substituting 𝑦2 = 169 or 𝑦2 = 25 into the (3.22), then we get 𝑧2 = 331 or 𝑧2 = 43 not integer 

solution of (3.22) consecutively.  

Therefore, the set  𝑃+7 =  1,9,18  is nonextendable. 

 

Theorem 3.5. The set  𝑃−7 =  2,8,16  is nonextendable. 

Proof. We assume that the set   2,8,16, 𝑑  is a 𝑃−7 for any positive integer 𝑑. By considering the 

definition of the set 𝑃−7, then we get 

2𝑑 − 7 = 𝑥2                                                                (3.24) 

8𝑑 − 7 = 𝑦2                                                                (3.25) 

16𝑑 − 7 = 𝑧2                                                                (3.26) 

We have to find integers 𝑥, 𝑦, 𝑧, satisfying above equations. From (3.24) and (3.25), we get 

𝑦2 − 4𝑥2 = 21                                                            (3.27) 

and by using (3.25) and (3.26), we obtain 

𝑧2 − 2𝑦2 = 7                                                             (3.28) 

Considering the factorization of (3.27), we have 

 𝑦 − 2𝑥  𝑦 + 2𝑥 = 21                                                   (3.29) 

We obtain (x,y)=( ±5, ±11) or (x,y)=( ±1, ±5). If we substituting 𝑦2 = 121 or 𝑦2 = 25 into the 

(3.28), then we get 𝑧2 = 249 or 𝑧2 = 57 consecutively. So, there is no any integer 𝑧 holding the 

(3.28) equation. 

Hence, the set  𝑃−7 =  2,8,16  is non-extendable. 

 

Theorem 3.6. The sets  𝑃−7 =  1,16,23  and 𝑃−7 =  1,16,176  are nonextendable. 

Proof. Let the set   1,16,23, 𝑑  is a 𝑃−7 for any positive integer 𝑑. Then we have  

𝑑 − 7 = 𝑥2                                                                (3.30) 

16𝑑 − 7 = 𝑦2                                                                (3.31) 
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23𝑑 − 7 = 𝑧2                                                                (3.32) 

From (3.30) and (3.31) we obtain 

𝑦2 − 16𝑥2 = 105                                                              (3.33) 

and by using (3.30) and (3.32) we obtain 

𝑧2 − 23𝑥2 = 154                                                              (3.34) 

Using the factorization of (3.33) we get 

 𝑦 − 4𝑥  𝑦 + 4𝑥 = 105                                                        (3.35) 

We get  𝑥, 𝑦 =  ±13,±53 ,  𝑥, 𝑦 =  ±4,±19 ,  𝑥, 𝑦 =  ±2,±13  or  𝑥, 𝑦 =  ±1,±11 . If 

we substituting 𝑥2 = 169 into the (3.34), then we get 𝑧2 = 4041 which 𝑧 isn’t an integer holding 

the (3.34) equation. In the same manner, substituting 𝑥2 = 16 , 𝑥2 = 4 or 𝑥2 = 1  into the (3.34), 

we get 𝑧2 = 522, 𝑧2 = 246 or 𝑧2 = 177 that 𝑧 is not an integer holding the (3.34) equation 

either. 

Therefore, the set  𝑃−7 =  1,16,23  is non-extendable. 

For the set 𝑃−7 =  1,16,176 , we have  (3.30) and (3.31) with the equation 

176𝑑 − 7 = 𝑧2                                                                  (3. 36) 

From (3.30) and (3.36), we have  

𝑧2 − 176𝑥2 = 1225                                                              (3.37) 

If we put the solutions of (3.33) into the (3.37), then we  get 𝑧2 = 30969, 𝑧2 = 4041, 𝑧2 =

1929 or 𝑧2 = 1401 which 𝑧 isn’t an integer holding the (3.37). As a consequence, 𝑃−7 =

 1,16,176  can not extendible. 

 

Theorem 3.7. There is no set 𝑃−5 includes any  multiple of 4, 11 or 17. 

Proof. (i) Suppose that 𝑚  is an element of set  𝑃−5. If  4𝑟 is also an element of set  𝑃−5  for 𝑟 ∈

𝑍, then  

4𝑟𝑚 − 5 = 𝑎2                                                               (3.38) 

has to satisfy for integer 𝑎.  If we apply (modulo 4) into the (3.38), we have  

𝑎2 ≡ 3  𝑚𝑜𝑑 4                                                               (3.39) 

If 𝑎 is even integer, then 𝑎2 ≡ 0  𝑚𝑜𝑑 4  holds. If 𝑎 is odd integer, then 𝑎2 ≡ 1  𝑚𝑜𝑑 4  holds. 

So, there is no an integer satisfying 𝑎2 ≡ 3  𝑚𝑜𝑑 4 .  
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Hence, there is no set 𝑃−5 includes any multiple of 4. 

 

(ii) Assume that 𝑚  is an element of set 𝑃−5. If  11𝑠 is also an element of set  𝑃−5  for 𝑠 ∈ 𝑍 ,then  

11𝑠𝑚 − 5 = 𝑏2                                                               (3.40) 

has to satisfy for integer 𝑏.  If we apply (modulo 11) on the (3.40), we get 

𝑏2 ≡ 6  𝑚𝑜𝑑 11                                                               (3.41) 

Using Theorem 2.2. and the Definition 2.2 or considering residue classes (modulo 11), we 

obtain 𝑏2 ≡ 1,3,4,5,9  𝑚𝑜𝑑 11  which not satisfies 𝑏2 ≡ 6  𝑚𝑜𝑑 11 . (It means that there is no 

any 𝑏 integer holding  (3.41)). This is a contradiction. So, there is no 𝑃−5 set contains any 

multiple of 11.   

 

(iii) Similarly, if we suppose that 𝑚  is an element of set  𝑃−5 and 17𝑘 is also an element of set  

𝑃−5   for 𝑘 ∈ 𝑍, then we have, 

                                  𝑐2 ≡ 12  𝑚𝑜𝑑 17                                                               (3.42) 

Using residue classes (modulo 17), we have 𝑐2 ≡ 1,2,4,8,9,13,15  𝑚𝑜𝑑 17  which implies that 

there is no integer holding 𝑐2 ≡ 12  𝑚𝑜𝑑 17 . This is a contradiction. As a consequence, there is 

no set 𝑃−5 involves any  multiple of 17.                                                           

 

Theorem 3.8. There is no set 𝑃+5 contains any multiple of 3,7 or 13. 

Proof.  (i)Assume that 𝑛  is an element of set 𝑃+5. If  3𝑢 is also an element of set  𝑃+5  for 𝑢 ∈ 𝑍 

,then  

3𝑢𝑛 + 5 = 𝐴2                                                               (3.43) 

has to satisfy for some integer 𝐴.  If we apply (modulo 3) on the (3.43), we obtain  

𝐴2 ≡ 2  𝑚𝑜𝑑 3                                                               (3.44) 

 By using Theorem 2.2  and the Definition 2.2, we have 

  
2

3
 ≡ (−1)

1

8
(32−1) = −1                                                (3.45) 

since 3 is odd prime number. This means that equation (3.44) is unsolvable, i.e. 2 is non quadratic 

residue (mod 3). This is a contradiction.  

Therefore, 3𝑢 can not be an element of  𝑃+5 for 𝑢 ∈ 𝑍.  
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(ii)  In a similar manner, suppose that 𝑟 is an element of set 𝑃+5 and 7𝑡,  𝑡 ∈ 𝑍  is also an element 

of set  𝑃+5 then  

7𝑡𝑟 + 5 = 𝐵2                                                          (3.46) 

has to satisfy for integer 𝐵. Applying  (modulo 7) of both sides, we get 

                                                       𝐵2 ≡ 5  𝑚𝑜𝑑 7                                                                 (3.47)  

We have to calculate the Legendre symbol  
5

7
  by using Theorem 2.1 and Definition 2.2. From 

Theorem 2.1, we obtain 

  
5

7
  

7

5
 = (−1)

5−1

2
  .  

7−1

2 = +1                                                    (3.48)  

since 5 and 7 are odd primes. By substituting   
7

5
 =  

2

5
 = −1 into the (3. 48) then we have  

 
5

7
 = −1 which means that equation (3.47) is unsolvable. So 7𝑡 can not be an element of  𝑃+5 

for 𝑡 ∈ 𝑍. 

 

(iii) Similarly, suppose that 𝑟 is an element of set 𝑃+5 , If  13𝑛,  𝑛 ∈ 𝑍  is also an element of set  

𝑃+5 then  

13𝑛𝑟 + 5 = 𝐶2                                                          (3.49) 

has to satisfy for integer 𝐶. Applying  (modulo 13) of both sides, we have                                                 

    𝐶2 ≡ 5  𝑚𝑜𝑑 13                                  (3.50) 

By using Theorem 2.1 and Definition 2.2, then we obtain 

  
5

13
  

13

5
 = (−1)

5−1

2
  .  

13−1

2 = +1                                       (3.51)  

since 5 and 13 are odd primes. By substituting   
13

5
 =  

3

5
 = −1 into the (3.51) then we have  

 
5

13
 = −1 which implies that equation (3.50) is unsolvable. So 13𝑛 can not be an element of  

𝑃+5 for 𝑛 ∈ 𝑍. 

 

Remark 3.9. We can prove that there is no set 𝑃+7 contains any positive multiple of 4,5 or 11 

and there is no set 𝑃−7 contains any positive multiple of 6,13 or 17 by using the similar way of 

the proof of the Theorem 3.7 or Theorem 3.8. 
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