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Abstract 

 

This paper is pertinent to the analytical solutions for vibration analysis of initially stressed Nonlocal Euler-Bernoulli 

nano-beams. In order to take into account of small length scale effect, this vibration problem formulation is depending 

upon both nonlocal Euler-Bernoulli and also Eringen’s nonlocal elasticity theory. The boundary conditions and 

governing equation are obtained by use of Hamiltonian’s principle. These equations are solved analytically with 

different initial stresses (both compressive and tensile) and boundary conditions. The effect of small length scale and 

the initial stress on the fundamental frequency are investigated.  The solutions obtained are compared with the ones 

depending upon both classical Euler-Bernoulli and Timoshenko beam theory to comprehend the responses of nano-

beams under the effect of initial stress and small scale in terms of  frequencies for both theories. The results supply a 

better declaration for vibration analysis of nano-beams which are short and stubby with initial stress. 

 

Keywords: Nonlocal Euler-Bernoulli beam theory, fundamental frequency, initially stressed nano-beams, small length 

scale effect, nonlocal elasticity 

 

1 INTRODUCTION 

 
The recent advances in nanotechnology and micro-

technology have paved the way for the manufacturing of 

all types of nano/micro-structures such as nanowires, 

nanoactuators, NEMS/MEMS devices and nano-

beams[1-3]. 

 
The axial residual stress effects are usually imperative 

during the manufacturing of nano/micro- structures. 

Initial stresses are prevalent in the nano and micro scale 

systems on account of a high proportion of surface atoms. 

Initial stresses are existing in unstretched micro/nano-

structures on thermal equilibration in molecular dynamics 

simulation of nano/micro-structures. In the analysis of 

these structures, Wang and Hu[4] demonstrated the 

inadequacy of classical beam theories in grasping the 

small scale effect in nano/micro-structures. This means 

that, these theories are insufficient to estimate the 

reduction in phase velocities of wave propagation in 

SWCNT when the wave number is so great. With 

consideration of the small scale effect, Eringen[5, 6, 7] 

proposed the theory of nonlocal continuum mechanics. 

This theory is employed for modifying the beam theory 

for analysis of nano/micro-beams. In the nonlocal 

elasticity theory, the small-scale effects are seized by 

presuming that the stress at a point is a function of the 

strains at all points in the domain[5, 6, 7]. This is not valid 

in classical elasticity theory. Nonlocal theory regards 

long-range inter-atomic interaction and gives results 

dependent on the size of a body. Furthermore the size-

dependent phenomena can be considerably explained by 

the nonlocal elasticity theory. The nonlocal elasticity 

theory for vibration, the bending, and buckling analyses 

in nano/micro-electromechanical devices have been used 

in some studies[8-15]. Some researchers have employed 

the Timoshenko beam theory in analyzing vibration of 

nano-beams 

 

[16-21]. Despite, few studies have considered the initial 

stress effects in the analysis of vibration behavior of 

micro/nano-beams[22-24]. Only Timoshenko beam 

theory has been used in these studies. Furthermore some 

researchers [25-31] have employed finite element as a tool 

in analyzing the effects of vibration of many structures.  

Neither of these studies has obtained analytical solutions 

for vibration of nano-beams based on nonlocal Euler-

Bernoulli beam theory with considering both effects of 

initial stress and small length scale for all boundary 

conditions.  

Thus, the present work aims to find out analytical 

solutions for the vibration of nano/micro initially stressed 

(compressive or tensile) beam depending upon Eringen’s 

nonlocal elasticity and nonlocal Euler-Bernoulli beam 

theory by taking into account of both initial stress (such 

as compressive and tensile) and small scale effect.  

The governing equation and boundary conditions are 

attained from Hamiltonian’s principle. 

The exact fundamental frequencies for nano-beams are 

attained by taking into consideration both initial stress and 

small length scale effect. 

 

2 MATERIALS AND METHOD 

The strain-displacement relation is explained by the 

following expression in Euler-Bernoulli theory[4, 5, 7, 

19] 

 𝜺𝒙𝒙 = −𝒛
𝒅𝟐𝒘

𝒅𝒙𝟐                                                               (1)           
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where, z the coordinate which is measured from the 

midplane of the beam, x the longitudinal coordinate which 

is measured from the left end of the beam, 𝜺𝒙𝒙 is the 

normal strain and w is the transverse displacement. The 

virtual strain energy 𝜹𝑼 is explained by the following 

integral 

𝜹𝑼 = ∬ 𝝈𝒙𝒙
𝑳

𝟎 𝑨
𝜹 𝜺𝒙𝒙𝒅𝑨𝒅𝒙                                         (2)                                                 

where, L is the length of the beam, 𝝈𝒙𝒙 the normal stress, 

and A the cross-sectional area. By putting Eq. (1) into Eq. 

(2), the strain energy can be represented by 

𝜹𝑼 = − ∫ 𝑴
𝑳

𝟎 

𝒅𝟐𝜹𝒘

𝒅𝒙𝟐 𝒅𝒙                                                (3)                                                                                  

here the bending moment M is stated by 

𝑴 = ∫ 𝝈𝒙𝒙𝑨
𝒛𝒅𝑨                                                       (4) 

When a compressive initial stress 𝝈𝒐 applied to a beam, 

the virtual potential energy 𝜹𝑽 of the initial stress is 

expressed as 

𝜹𝑽 = −∫ 𝝈𝒐𝑨
𝒅𝜹𝒘

𝒅𝒙

𝑳

𝟎 

𝒅𝒘

𝒅𝒙
𝒅𝒙                                          (5)                                 

𝝈𝒐 refers to tensile initial stress when it is negative. By 

supposing that motion is free harmonic, the virtual kinetic 

energy 𝜹𝑻 is represented by 

𝜹𝑻 = ∫ 𝝆𝑨𝒘𝝎𝟐𝑳

𝟎 
𝜹𝒘𝒅𝒙                                            (6)                                                                                        

where, 𝝆 is the mass density of the beam material and ω 

is the circular frequency. To Hamiltonian’s principle, one 

can obtain 

𝜹(𝑼 + 𝑽 − 𝑻) = 𝟎  

𝜹(𝑼 + 𝑽 − 𝑻) =

∫ (−𝑴
𝒅𝟐𝜹𝒘

𝒅𝒙𝟐 − 𝝈𝒐𝑨
𝒅𝜹𝒘

𝒅𝒙

𝒅𝒘

𝒅𝒙
− 𝝆𝑨𝝎𝟐𝒘𝜹𝒘)

𝑳

𝟎 
𝒅𝒙        (7)                                                  

The following equation is obtained by applied integration 

by parts 

∫ (
𝒅𝟐𝑴

𝒅𝒙𝟐 − 𝝈𝒐𝑨
𝒅𝟐𝒘

𝒅𝒙𝟐 + 𝝆𝑨𝝎𝟐𝒘)
𝑳

𝟎 
𝜹𝒘𝒅𝒙 + [𝑴

𝒅𝜹𝒘

𝒅𝒙
−

𝒅𝑴

𝒅𝒙
𝜹𝒘 + 𝝈𝒐𝑨

𝒅𝒘

𝒅𝒙
𝜹𝒘]

𝟎

𝑳

= 𝟎                                      (8)                                                 

Hence 𝜹𝒘 is arbitrary in 0<x<L, the governing equation 

of motion may be derived as follows 
 𝒅𝟐𝑴

𝒅𝒙𝟐 = 𝝈𝒐𝑨
𝒅𝟐𝒘

𝒅𝒙𝟐 − 𝝆𝑨𝝎𝟐𝒘                                       (9)                                  

Based upon Eq. (8), nonlocal Euler-Bernoulli beam 

theory’s boundary conditions  are  

𝒘 = 𝟎 or−
 𝒅𝑴

𝒅𝒙
+ 𝝈𝒐𝑨

𝒅𝒘

𝒅𝒙
= 𝟎                              (10) 

 𝒅𝒘

𝒅𝒙
= 𝟎or𝑴 = 𝟎                                                     (11) 

Either one of these conditions may be stated. In one 

dimensional case, for an elastic material, Eringen’s 

complicated nonlocal constitutive relation may be 

rewritten as[7] 

𝝈𝒙𝒙 − (𝒆𝟎𝒂)𝟐 𝒅𝟐𝝈𝒙𝒙

𝒅𝒙𝟐 = 𝑬𝜺𝒙𝒙                                     (12)                                                                                               

Where,  𝒆𝟎 is a constant determined experimentally or by 

calibrating with atomistic modeling,  𝒆𝟎𝒂 is the scale 

coefficient in which a is the internal characteristic length 

(e.g., granular size, molecular diameter and lattice 

parameter) and E is the Young’s modulus. By multiplying 

Eq. (12) by zdA and integrating the results over the area A 

gives 

𝑴 − (𝒆𝟎𝒂)𝟐 𝒅𝟐𝑴

𝒅𝒙𝟐 = −𝑬𝑰
𝒅𝟐𝒘

𝒅𝒙𝟐                                            (13)         

where I is the moment of inertia. By inserting the Eq. (9) 

into Eq. (13), the following equation can be obtained 

𝑴 = −𝑬𝑰
𝒅𝟐𝒘

𝒅𝒙𝟐 + (𝒆𝟎𝒂)𝟐 (𝝈𝒐𝑨
𝒅𝟐𝒘

𝒅𝒙𝟐 − 𝝆𝑨𝝎𝟐𝒘)             (14)                            

So, the governing equation for the vibration of 

micro/nano-beams depending upon nonlocal Euler-

Bernoulli theory is stated by 

(𝑬𝑰 − (𝒆𝟎𝒂)𝟐𝝈𝒐𝑨)
𝒅𝟒𝒘

𝒅𝒙𝟒 + ((𝒆𝟎𝒂)𝟐𝝆𝑨𝝎𝟐 + 𝝈𝒐𝑨)
𝒅𝟐𝒘

𝒅𝒙𝟐 −

𝝆𝑨𝝎𝟐𝒘 = 𝟎                                                                (15)                                       

 

3. FINDINGS 

 
To ease the governing equation, the following 

nondimensional terms are defined as follows: 

𝒙 =
𝒙

𝑳
      and     𝒘̅ =

𝒘

𝑳
                                                                  (16)                                                                                                    

Frequency parameter is denoted by 

𝜆 = √𝝎𝟐 𝝆𝑨𝑳𝟒

𝑬𝑰
                                                             (17) 

Scaling effect parameter is represented by 

𝜶 =
𝒆𝟎𝒂

𝑳
                                                                       (18)         

In classical Euler-Bernoulli theory, scaling effect 

parameter is 0.                                

Initial stress parameter is given by 

𝚲 = 𝝈𝒐
𝑨𝑳𝟐

𝑬𝑰
                                                                  (19)                                             

Employing the parameters given in Eqs. (16)-( 19), Eq. 

(15) becomes 

𝑩𝟏
𝒅𝟒𝒘̅

𝒅𝒙𝟒 + 𝑩𝟐
𝒅𝟐𝒘̅

𝒅𝒙𝟐 + 𝑩𝟑𝒘̅ = 𝟎                                   (20)                                    

where the coefficients 𝐁𝐢, i=1, 2, 3 are represented in 

terms of scaling effect and initial stress parameters as 

follows 

𝐁𝟏 = 𝟏 − 𝛂𝟐𝚲, 𝐁𝟐 = 𝛂𝟐𝛌𝟐 + 𝚲,     𝐁𝟑 = −𝛌𝟐         (21)                                  

The general solution of Eq. (20) is  

𝒘̅ = 𝑐1 Cosh [𝛽
𝑥

𝐿
 ]  + 𝑐2 Sinh [𝛽

𝑥

𝐿
] + 𝑐3 Cos [𝛾

𝑥

𝐿
] +

𝑐4 Sin [𝛾
𝑥

𝐿
]                                                                 (22)                                            

here 

𝛽 =

√−B2+√B2
2−4B1B3

√2B1
,       𝛾 =

√B2+√B2
2−4B1B3

√2B1
       (23)                                                                                 

The coefficients 𝑐1 − 𝑐4 can be found by considering the 

related boundary conditions. 

3.1. Simply Supported Nano-Beam 

Based on both Eqs. (10) and (11), for simply supported 

end, the boundary conditions are expressed as at 𝒙 = 𝟎 

and  𝒙 = 𝟏; 

𝒘̅ = 𝟎  ,   
𝒅𝟐𝒘̅

𝒅𝒙𝟐 = 𝑴 = 𝟎                                           (24) 

By enforcing the boundary conditions and substituting 

Eq. (24) into Eq. (22), one encounters an eigenvalue 

problem with use of the following matrix: 

128 
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𝑀 =

[
 
 
 
 

1 0 1 0
𝛽2

𝐿2 0 −
𝛾2

𝐿2 0

Cosh[𝛽] Sinh[𝛽] Cos[𝛾] Sin[𝛾]
𝛽2Cosh[𝛽]

𝐿2

𝛽2Sinh[𝛽]

𝐿2 −
𝛾2Cos[𝛾]

𝐿2 −
𝛾2𝑆𝑖𝑛[𝛾]

𝐿2 ]
 
 
 
 

  (25) 

The eigenvalues are computed by equating the 

determinant of the matrix in Eq. (25) to zero. Hence the 

solution of the related characteristic equation yields the 

fundamental frequencies. The fundamental frequency 

formulation for simply supported beam is found as 

λ = √
𝒏𝟒𝝅𝟒(𝟏−𝜶𝟐𝜦)−𝒏𝟐𝝅𝟐𝜦

(𝟏+𝒏𝟐𝝅𝟐𝜶𝟐)
                                         (26) 

The relation between initial stress acting on a simply 

supported armchair nano-beam and fundamental 

frequency at different scale parameters 𝜶 is investigated 

in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Small scale and initial stress effects on λ for simply supported nano-beam 

 

According to Figure 1, the existence of tensile initial 

stress and smaller scale parameter brings about an 

increase in the fundamental frequency. While 

compressive initial stress causes a decrease in 

fundamental frequency. Moreover an increase in scale 

effect (nonlocal) parameter causes a reduction in the 

frequencies.     

To compare Timoshenko and nonlocal Euler and classical 

Euler theories in terms of fundamental frequency and 

initial stress parameter with different 𝜶 values, following 

figure is presented.  

Table 1. Comparison of Timoshenko and Euler Theory with small scale and initial stress effects on λ for simply 

supported nano-beam 
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The frequency value increases with smaller scale effect in 

Euler theory than Timoshenko theory in Table 1. When α 

value equals to 0, classical Euler-Bernoulli beam theory 

is the case. It is also seen that the frequency values are 

almost same as tensile and compressive initial stress when 

𝜦 < 5 where there exists a critical stress of each α value 

and vibration ceases. 

 

Multiplying the general solution in Eq. (22) with the 

inverse of matrix in Eq. (25) gives a row vector N which 

consists of four shape functions and each one corresponds 

to a unit value of the generalized frequency. 

𝑁1 = 
𝛽2Csc[𝛾]Sin[𝛾−

𝑥𝛾

𝐿
]+𝛾2Csch[𝛽]Sinh[𝛽−

𝑥𝛽

𝐿
]

𝛽2+𝛾2               (27) 

 

𝑁2 =
𝐿2(−Csc[𝛾]Sin[𝛾−

𝑥𝛾

𝐿
]+Csch[𝛽]Sinh[𝛽−

𝑥𝛽

𝐿
])

𝛽2+𝛾2               (28) 

 

𝑁3 =
(𝛽2Csc[𝛾]Sin[

𝑥𝛾

𝐿
]+𝛾2Csch[𝛽]Sinh[

𝑥𝛽

𝐿
])

𝛽2+𝛾2                        (29) 

 

   𝑁4 =
𝐿2(−Csc[𝛾]Sin[

𝑥𝛾

𝐿
]+Csch[𝛽]Sinh[

𝑥𝛽

𝐿
])

𝛽2+𝛾2                        (30) 

To investigate only the length effect,  one can take limits 

of these shape functions when 𝛽 and 𝛾 converge to zero. 

Then Eqs. (27) to (30) take the following form: 

 𝑁1 = 1 −
x

L
                                                                (31) 

 𝑁2 = −
𝑥(2𝐿2−3𝐿𝑥+𝑥2)

6L
                                                (32) 

 𝑁3 =
𝑥

L
                                                                       (33) 

𝑁4 =
−𝐿2𝑥+𝑥3

6L
                                                              (34) 

Table 2 displays the shape functions for different lengths. 

 

Table 2. Shape functions with various lengths for simply supported nano-beam 

 

 

  

To Table 2, it is seen that an increase in length of the 

simply supported nano-beam leads to a decrease in N2, N3, 

N4 corresponding to a unit value of the generalized 

frequency. 

 

3.2. Cantilever Nano-Beam 

Due to both Eqs. (10) and (11), for cantilever beam, 
the boundary conditions at 𝑥̅ = 0 and  𝑥̅ = 1 are 

expressed as 

𝑤̅ = 0  ,   
𝑑𝑤̅

𝑑𝑥
= 0                                                                      (35) 

𝑑3𝑤̅

𝑑𝑥3 = 0  ,   
𝑑2𝑤̅

𝑑𝑥2 = 𝑀 = 0                                                        (36) 

By applying the boundary conditions and putting Eqs. 

(35) and (36) into Eq. (22),  one needs to solve an 

eigenvalue problem with use of the following matrix: 
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𝑀 =

[
 
 
 
 
 

1 0 1 0

0
𝛽

𝐿
0

𝛾

𝐿

𝛽3Sinh[𝛽]

𝐿3

𝛽3Cosh[𝛽]

𝐿3

𝛾3Sin[𝛾]

𝐿3 −
𝛾3Cos[𝛾]

𝐿3

𝛽2Cosh[𝛽]

𝐿2

𝛽2Sinh[𝛽]

𝐿2 −
𝛾2Cos[𝛾]

𝐿2 −
𝛾2Sin[𝛾]

𝐿2 ]
 
 
 
 
 

  (37) 

 

The fundamental frequency formulation for cantilever 

nano-beam is obtained as 

λ =
𝝅

2
√

−𝟒𝜦−𝝅𝟐

(𝟒+𝝅𝟐𝜶𝟐)
                                                        (38) 

 

The eigenvalues are calculated by equating the 

determinant of the matrix in Eq. (37) to zero. Solution of 

the related characteristic equation gives the fundamental 

frequencies. These frequencies are computed for various 

initial stresses and scale effect parameters. The results are 

presented in Figure 2. 

 

 

 

Figure 2. Small scale and initial stress effects on λ for cantilever nano-beam 

 

To Figure 2, it is obvious that the existence of tensile initial stress and smaller scale parameter bring on an increase in 

λ. While compressive initial stress causes a decrease in fundamental frequency. While  small length scale increases, 

fundamental frequencies decrease. This is also seen in Table 3. 

 

Timoshenko and Euler theories both classical and nonlocal in terms of fundamental frequency and initial stress 

parameter are compared at different scale effect parameters. As a result the following figures in Table 3 are plotted. 
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Table 3. Comparison of Timoshenko and Euler Theory with small scale and initial stress effects on λ for cantilever 

nano-beam 

To Table 3, the frequency value increases when initial 

stress is tensile and theory is Timoshenko. With 𝜦 < 2.5, 

the frequency values become zero in Timoshenko Theory 

where there exists a critical stress of each α value and 

vibration ceases. It is also observed that the frequency 

values are almost same in higher scale effects. 
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Multiplying the general solution in Eq. (22) with the 

inverse of matrix in Eq. (37) gives a row vector N which 

consists of four  shape functions and each one corresponds 

to a unit value of the generalized frequency for cantilever 

nano-beam. 

 

𝑁1 =

(𝛽4Cos[
𝑥𝛾

𝐿
]+𝛾(𝛾2Cosh[

𝑥𝛽

𝐿
](𝛾+𝛽Sin[𝛾]Sinh[𝛽])−𝛽2Sinh[𝛽](𝛽Sin[𝛾−

𝑥𝛾

𝐿
]+𝛾Cos[𝛾]Sinh[

𝑥𝛽

𝐿
])+

𝛽𝛾Cosh[𝛽](𝛽Cos[𝛾−
𝑥𝛾

𝐿
]+𝛽Cos[𝛾]Cosh[

𝑥𝛽

𝐿
]−𝛾Sin[𝛾]Sinh[

𝑥𝛽

𝐿
])))

(𝛽4+𝛾4+𝛽𝛾(2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(−𝛽2+𝛾2)Sin[𝛾]Sinh[𝛽]))
                    (39) 

 

𝑁2 =

(𝐿𝛽2(𝛽3Sin[
𝑥𝛾

𝐿
]+𝛽𝛾2Cosh[𝛽](Cosh[

𝑥𝛽

𝐿
]Sin[𝛾]−Sin[𝛾−

𝑥𝛾

𝐿
])+𝛾3(Cos[𝛾−

𝑥𝛾

𝐿
]−

Cos[𝛾]Cosh[
𝑥𝛽

𝐿
])Sinh[𝛽])+𝐿𝛾2(𝛾3+𝛽2𝛾Cos[𝛾]Cosh[𝛽]−𝛽3Sin[𝛾]Sinh[𝛽])Sinh[

𝑥𝛽

𝐿
])

(𝛽𝛾(𝛽4+𝛾4+𝛽𝛾(2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(−𝛽2+𝛾2)Sin[𝛾]Sinh[𝛽])))
                               (40) 

 

𝑁3 =

𝐿3(−𝛽(𝛾2Cos[𝛾]+𝛽2Cosh[𝛽])Sin[
𝑥𝛾

𝐿
]+𝛽𝛾Cos[

𝑥𝛾

𝐿
](𝛾Sin[𝛾]+𝛽Sinh[𝛽])−

𝛽𝛾Cosh[
𝑥𝛽

𝐿
](𝛾Sin[𝛾]+𝛽Sinh[𝛽])+𝛾(𝛾2Cos[𝛾]+𝛽2Cosh[𝛽])Sinh[

𝑥𝛽

𝐿
])

𝛽𝛾(𝛽4+𝛾4+𝛽𝛾(2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(−𝛽2+𝛾2)Sin[𝛾]Sinh[𝛽]))
                                              (41) 

 

   𝑁4 =

𝐿2(𝛽3𝛾Cosh[𝛽](−Cos[
𝑥𝛾

𝐿
]+Cosh[

𝑥𝛽

𝐿
])+𝛽𝛾3(−Cos[𝛾−

𝑥𝛾

𝐿
]+

Cos[𝛾]Cosh[
𝑥𝛽

𝐿
])+𝛽4Sin[

𝑥𝛾

𝐿
]Sinh[𝛽]+𝛾(𝛾3Sin[𝛾]−𝛽3Sinh[𝛽])Sinh[

𝑥𝛽

𝐿
])

𝛽𝛾(𝛽4+𝛾4+𝛽𝛾(2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(−𝛽2+𝛾2)Sin[𝛾]Sinh[𝛽]))
                                           (42) 

To observe only the length effect, one can take limits of these shape functions when 𝛽 and 𝛾 converge to zero. Then 

Eqs. (39) to (42) take the following form: 

 𝑁1 = 1                                                                                                                                      (43) 

 

 𝑁2 = 𝑥                                                                                                                                      (44) 

 

 𝑁3 =
1

6
𝑥2(−3𝐿 + 𝑥)                                                                                                                (45) 

 

𝑁4 =
𝑥2

2
                                                                                                                                      (46) 

Since only  𝑁3 is the shape function dependent to length.  𝑁3 is plotted for various lengths in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Shape function  𝑁3 with various lengths for cantilever nano-beam 

 

Figure 3 illustrates an increase in length values causes a 

reduction in related shape function. 

3.3. Clamped Nano-Beam 
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By use of  both Eqs. (10) and (11), for clamped beam, the 

boundary conditions at 𝒙 = 𝟎 and  𝒙 = 𝟏 are expressed 

as follows 

𝒘̅ = 𝟎  ,   
𝒅𝒘̅

𝒅𝒙
= 𝟎                                                    (47) 

By enforcing the boundary conditions and substituting 

Eq. (47) into Eq. (22), an eigenvalue problem is required 

to solve with use of the following matrix: 

𝑀 =

[
 
 
 
 

1 0 1 0

0
𝛽

𝐿
0

𝛾

𝐿

Cosh[𝛽] Sinh[𝛽] Cos[𝛾] Sin[𝛾]
𝛽Sinh[𝛽]

𝐿

𝛽Cosh[𝛽]

𝐿
−

𝛾Sin[𝛾]

𝐿

𝛾Cos[𝛾]

𝐿 ]
 
 
 
 

        (48) 

The eigenvalues are computed by equating the 

determinant of the matrix in Eq. (48) to zero. So λ can be 

obtained due to the solution of the related characteristic 

equation. The computed λ values are displayed under the 

effects of initial stresses and various scale effect 

parameters in Figure 4. 

 

The fundamental frequency formulation for clamped 

nano-beam is computed as 

 

λ =
2𝜋√−𝛬−2√2𝜋2(−1+𝛼2𝛬)

√√2+4𝜋2𝛼2
                                        (49)        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Small scale and initial stress effects on λ for clamped nano-beam 

 

According to Figure 4, smaller scale parameter and the existence of tensile initial stress bring on an increase in the 

fundamental frequency. Whereas compressive initial stress causes a decrease in fundamental frequency.  

For clamped nano-beam, Timoshenko and nonlocal and classical Euler theories are compared with the effects of 

fundamental frequency and initial stress parameter at different scale effect parameters. As a result, Table 4 is presented. 
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Table 4. Comparison of Timoshenko and Euler Theory with small scale and initial stress effects on λ for clamped 

nano-beam 

 

 

  

In Table 4, fundamental frequencies based on all theories 

display a decreasing trend when initial compressive stress 

and nonlocal parameter are increasing.  

For clamped nano-beam, multiplying the general solution 

in Eq. (22) with the inverse of matrix in Eq. (48) gives a 

row vector N which consists of four shape functions and 

each one corresponds to a unit value of the generalized 

frequency. 

 

𝑁1 =

𝛽𝛾Cos [
𝛾𝑥

L
]+𝛾Cosh [

𝛽𝑥

L
](

𝛽−𝛾Sin[𝛾]Sinh[𝛽])+𝛽Sinh[𝛽](𝛽Sin[𝛾−
𝑥𝛾

𝐿
]+𝛾Cos[𝛾]Sinh[

𝑥𝛽

𝐿
])

+𝛾Cosh[𝛽](−𝛽(Cos[𝛾−
𝑥𝛾

𝐿
]+Cos[𝛾]Cosh[

𝑥𝛽

𝐿
])+𝛾Sin[𝛾]Sinh[

𝑥𝛽

𝐿
]
)

2𝛽𝛾−2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(𝛽−𝛾)(𝛽+𝛾)Sin[𝛾]Sinh[𝛽]
                             

                 (50)                                  

𝑁2 =

(
𝐿(−𝛽Cosh[𝛽]Cosh[

𝑥𝛽

𝐿
]Sin[𝛾]+𝛽Sin[

𝑥𝛾

𝐿
]+𝛽Cosh[𝛽]Sin[𝛾−

𝑥𝛾

𝐿
]−𝛾Cos[𝛾−

𝑥𝛾

𝐿
]Sinh[𝛽]+

𝛾Cos[𝛾]Cosh[
𝑥𝛽

𝐿
]Sinh[𝛽]+(𝛾−𝛾Cos[𝛾]Cosh[𝛽]+𝛽Sin[𝛾]Sinh[𝛽])Sinh[

𝑥𝛽

𝐿
])

)

2𝛽𝛾−2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(𝛽−𝛾)(𝛽+𝛾)Sin[𝛾]Sinh[𝛽]
                            (51) 

𝑁3 =

𝛽(𝛾Cos[
𝑥𝛾

𝐿
](Cos[𝛾]−Cosh[𝛽])+𝛾(−Cos[𝛾]+Cosh[𝛽])Cosh[

𝑥𝛽

𝐿
]

+Sin[
𝑥𝛾

𝐿
](𝛾Sin[𝛾]+𝛽Sinh[𝛽]))−𝛾(𝛾Sin[𝛾]+𝛽Sinh[𝛽])Sinh[

𝑥𝛽

𝐿
]

2𝛽𝛾−2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(𝛽−𝛾)(𝛽+𝛾)Sin[𝛾]Sinh[𝛽]
                                                            (52)                         

𝑁4 =
𝐿(Cosh[

𝑥𝛽

𝐿
](𝛽Sin[𝛾]−𝛾Sinh[𝛽])+Cos[

𝑥𝛾

𝐿
](−𝛽Sin[𝛾]+𝛾Sinh[𝛽])+(Cos[𝛾]−Cosh[𝛽])(𝛽Sin[

𝑥𝛾

𝐿
]−𝛾Sinh[

𝑥𝛽

𝐿
]))

2𝛽𝛾−2𝛽𝛾Cos[𝛾]Cosh[𝛽]+(𝛽−𝛾)(𝛽+𝛾)Sin[𝛾]Sinh[𝛽]
   (53) 
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To see only the length effect, one can take limits of these 

shape functions when 𝛽 and 𝛾 converge to zero for 

clamped beam. Then Eqs. (50) to (53) become 

 𝑁1 =
(𝐿−𝑥)2(𝐿+2𝑥)

𝐿3                                  (54) 

 𝑁2 =
(𝐿−𝑥)2𝑥

𝐿2                                                     (55) 

 𝑁3 =
(3𝐿−2𝑥)𝑥2

𝐿3                                                     (56) 

𝑁4 =
𝑥2(−𝐿+𝑥)

𝐿2                                      (57) 

Each of these new shape functions are plotted for various 

lengths in Table 5.  

 

Table 5. Shape functions with various lengths for clamped nano-beam 

  

 
 

It is obvious from Table 5 that an increment in length of 

the clamped nano-beam leads to a decrease in N3, N4 

corresponding to a unit value of the generalized 

frequency. 

 

3.4. Clamped-Simply Supported Nano-Beam 

 
Due to both Eqs. (10) and (11), the boundary conditions 

at 𝒙 = 𝟎 and  𝒙 = 𝟏 are represented as 

𝒘̅ = 𝟎  ,   
𝒅𝒘̅

𝒅𝒙
= 𝟎                                                 (58) 

𝒘̅ = 𝟎  ,   
𝒅𝟐𝒘̅

𝒅𝒙𝟐 = 𝑴 = 𝟎                                       (59) 

By applying the boundary conditions and substituting 

Eqs. (58) and (59) into Eq. (22), an eigenvalue problem is 

required to be solve with use of the following matrix: 

𝑀 =

[
 
 
 
 

1 0 1 0

0
𝛽

𝐿
0

𝛾

𝐿

Cosh[𝛽] Sinh[𝛽] Cos[𝛾] Sin[𝛾]
𝛽2Cosh[𝛽]

𝐿2

𝛽2Sinh[𝛽]

𝐿2 −
𝛾2Cos[𝛾]

𝐿2 −
𝛾2Sin[𝛾]

𝐿2 ]
 
 
 
 

  (60) 

The eigenvalues are computed by equating the 

determinant of the matrix in Eq. (60) to zero. So the 

related characteristic equation can be solved to obtain the 

fundamental frequencies.  

The fundamental frequency formulation for clamped 

simply supported nano-beam is computed as 
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λ =
√−𝜋2𝛬−𝜋4(−1+𝛼2𝛬)

√(1+𝜋2𝛼2)
                    (61)                                                                        

 

The frequencies are illustrated in Figure 5 with initial 

stress parameters at various small scale effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Small scale and initial stress effects on λ for clamped-simply supported nano-beam 

 

 

To Figure 5, smaller scale parameter and the existence of 

tensile initial stress bring on an increase in the 

fundamental frequency. While compressive initial stress 

and increasing scale effect cause a decrease in 

fundamental frequency.  

 

Timoshenko and both Euler theories are compared in 

terms of fundamental frequency and initial stresses at 

different scale effects in Table 6. 
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Table 6. Comparison of Timoshenko and Euler Theory with small scale and initial stress effects on λ of clamped-

simply supported nano-beam 
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For clamped-simply supported nano-beam, Timoshenko 

Theory leads to an increase in the frequency values for all 

small effect parameters in Table 6. Furthermore, 

fundamental frequencies based on all theories display a 

decreasing trend when nonlocal parameter and initial 

compressive stress are increasing. 

Multiplying the general solution in Eq. (22) with the 

inverse of matrix in Eq. (60) yields a row vector N which 

consists of four  shape functions and each one corresponds 

to a unit value of the generalized frequency for clamped-

simply supported nano-beam. 

𝑁1 =
−𝛾Cos[𝛾]Cosh[

𝑥𝛽

𝐿
]Sinh[𝛽]+Cosh[𝛽](𝛽Sin[𝛾−

𝑥𝛾

𝐿
]+𝛾Cos[𝛾]Sinh[

𝑥𝛽

𝐿
])

𝛽Cosh[𝛽]Sin[𝛾]−𝛾Cos[𝛾]Sinh[𝛽]
                                                   (62)                                  

𝑁2 =
(𝐿((−Cosh[

𝑥𝛽

𝐿
]Sin[𝛾]+Sin[𝛾−

𝑥𝛾

𝐿
])Sinh[𝛽]+Cosh[𝛽]Sin[𝛾]Sinh[

𝑥𝛽

𝐿
]))

𝛽Cosh[𝛽]Sin[𝛾]−𝛾Cos[𝛾]Sinh[𝛽]
                                                   (63)      

𝑁3 =

𝛽(𝛾2Cos[𝛾]+𝛽2Cosh[𝛽])Sin[
𝑥𝛾

𝐿
]−𝛽𝛾Cos[

𝑥𝛾

𝐿
](𝛾Sin[𝛾]+𝛽Sinh[𝛽])+

𝛽𝛾Cosh[
𝑥𝛽

𝐿
](𝛾Sin[𝛾]+𝛽Sinh[𝛽])−𝛾(𝛾2Cos[𝛾]+𝛽2Cosh[𝛽])Sinh[

𝑥𝛽

𝐿
]

(𝛽2+𝛾2)(𝛽Cosh[𝛽]Sin[𝛾]−𝛾Cos[𝛾]Sinh[𝛽])
                                                    (64)                                                                   

𝑁4 =
𝐿2(Cosh[

𝑥𝛽

𝐿
](𝛽Sin[𝛾]−𝛾Sinh[𝛽])+Cos[

𝑥𝛾

𝐿
](−𝛽Sin[𝛾]+𝛾Sinh[𝛽])+(Cos[𝛾]−Cosh[𝛽])(𝛽Sin[

𝑥𝛾

𝐿
]−𝛾Sinh[

𝑥𝛽

𝐿
]))

(𝛽2+𝛾2)(𝛽Cosh[𝛽]Sin[𝛾]−𝛾Cos[𝛾]Sinh[𝛽])
                          

                   (65)      

To investigate only the length effect, one can take limits of these shape functions when 𝛽 and 𝛾 converge to zero for 

clamped-simply supported nano-beam. Then Eqs. (62) to (65) take the following form:     

 𝑁1 =
2𝐿3−3𝐿𝑥2+𝑥3

2𝐿3  (66) 

 𝑁2 =
𝑥(2𝐿2−3𝐿𝑥+𝑥2)

2𝐿2                                                                    (67) 

 𝑁3 =
𝑥2(3L−x)

2𝐿3                     (68) 

𝑁4 =
𝑥2(−L+x)

4L
                              (69) 

Each of these new shape functions are displayed at various lengths in Table 7. 

Table 7. Shape functions with various lengths for clamped-simply supported nano-beam 
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An increase in length of the clamped-simply supported 

nano-beam causes to a reduction in N3, N4 corresponding 

to a unit value of the generalized frequency. 

 

4 DISCUSSION AND CONCLUSIONS 

 
The boundary conditions and governing equation of 

motion for nano-beams dependent on Eringen’s nonlocal 

elasticity and nonlocal Euler-Bernoulli theory are derived 

by use of Hamiltonian’s principle with the consideration 

of small scale and initial stress effect. This beam 

formulation considers the existence of initial stress, 

nonlocal effect (small scale) and also relations of them 

with fundamental frequencies for all boundary conditions 

and this becomes remarkable when dealing with short and 

stubby beams such as nano-beams as the frequencies are 

high. In other words, for an increment in small scale 

(nonlocal) effect leads to a reduction in the value of 

fundamental frequencies. This decrease in fundamental 

frequency results from the incorporation of nonlocal 

effects, shear deformation parameter and mass inertia in 

the material properties of the initially stressed nano-

beams. The nonlocal effect decreases the stiffness of the 

material and so the comparative lower fundamental 

frequencies.  

 
Timoshenko and both nonlocal and classical Euler 

theories are also compared in terms of fundamental 

frequencies and initial stress at different small scale 

effects. 

 
For all boundary conditions, existence of tensile initial 

stress leads to an increase in fundamental frequency 

values while compressive initial stress cause a decrease in 

frequency values. Moreover, the allowance for the small 

scale effect causes an increase in frequencies for all 

boundary conditions. 

 
For simply supported and clamped nano-beam, Euler 

theory leads to an increase in frequencies only when the 

nonlocal parameter is not 0 so the case is not classical 

Euler theory while Timoshenko theory cause a reduction 

in frequencies for cantilever and clamped-simply 

supported nano-beam with various initial stress at 

different small scale effects. 

 

As a result, this study yields physical perceptiveness 

which can be practical for the design and vibration 

analysis of micro/nano-structures. 

 
Finally, this study is also practicable for acquiring the 

bending and buckling solutions of initially stressed 

micro/nano-beams using both Timoshenko and nonlocal 

Euler-Bernoulli beam theory. The present work  can be 

furthered to analysis and design of nanostructures with 

complicated geometries and different load conditions 

under various boundary conditions and also higher order 

beam theories for precise analysis of thick nano-structures 

based on both Timoshenko and nonlocal Euler-Bernoulli 

beam theory. 
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