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 ABSTRACT 

Vibration behavior of a bar with variable cross-section, which its material properties vary with temperature, is investigated in this 

study. In the analysis, not only theoretical solution but also numerical solution is performed for validation. The numerical analysis 

is overcome by SolidWorks program based on finite element method. Four types of effects on the bar are investigated. These are 

effects of temperature variation, geometric ratio, slenderness ratio and mode numbers variation. The temperature is increased from 

22 C to 250 C. The geometric ratio is varied from 0 to -1/L at intervals of 0.25/L. The slenderness ratio is varied from 1/10 to 

1/20 by increasing the length of bar from 200 mm to 400 mm. As for the mode numbers, the first three mode shapes are examined 

in the analysis. The boundary condition of the bar is taken as clamped-free. According to the results, the natural frequency decreases 

with increasing the temperature. The natural frequency also decreases with decreasing the slenderness ratio. But, it increases with 

decreasing the geometric ratio and also increases with increasing the mode number. When the theoretical and numerical results are 

examined, it is seen that the results are in harmony. 

Anahtar Kelimeler: Bar, temperature, vibration, variable cross-section. 

Değişken Kesitli Sıcaklığa Bağımlı Çubuğun Boyuna 

Titreşimi 

ÖZ 

Bu çalışmada malzeme özellikleri sıcaklıkla değişen, değişken kesitli bir çubuğun titreşim davranışları araştırılmıştır. Analizde, 

doğrulama için sadece teorik çözüm değil aynı zamanda sayısal çözümde yapılmıştır. Sayısal analiz, sonlu elemanları esas alan 

SolidWorks programı ile yapılmıştır. Çubuğa etkiyen dört tip etki araştırılmıştır. Bunlar, sıcaklık değişiminin, geometrik oranın, 

narinlik oranının ve mod sayısının değişimin etkileridir. Sıcaklık 22 C’den 250 C’ye kadar artırılmıştır. Geometrik oran, 0.25/L 

aralıklarla 0’dan -1/L’ye değiştirilmiştir. Narinlik oranı, çubuğun boyu 200 mm’den 400 mm’ye artırılarak, 1/10’dan 1/20’ye 

değiştirilmiştir. Mod sayılarına gelince, analizde ilk üç mod şekli incelenmiştir. Çubuğun sınır koşulları ankastre-serbest olarak 

alınmıştır. Sonuçlara göre sıcaklığın artmasıyla doğal frekans düşer. Doğal frekans, narinlik oranının düşmesiyle de düşer. Fakat 

geometrik oranın düşmesiyle ve mod sayısının artmasıyla artar. Teorik ve sayısal sonuçlar incelendiğinde, sonuçların uyum içinde 

olduğu görülür. 

Keywords: Çubuk, sıcaklık, titreşim, değiken kesit.

1. INTRODUCTION (GİRİŞ) 

The structural elements such as bars, beams, plates, are 

widely used in the engineering applications. Therefore, 

many studies have been made on the vibrations of 

structural elements [1, 2]. Among these structural 

elements, the bar element has a wide application area in 

the machine and civil engineering such as mechanisms 

and frame structures. Some of the studies on vibration of 

the bar elements are given below.  

Li [3] has studied on the free longitudinal vibration 

analysis of multi-step non-uniform bars. He has reduced 

the differential equations of the free longitudinal 

vibrations of bars with variable distributed mass and 

stiffness to Bessel’s equations and he has derived an 

analytical solution to determine the longitudinal natural 

frequencies and mode shapes. Bert and Zeng [4] have 

applied the differential transform method to the axial 

vibration problems of compound bars. They have showed 

the accuracy, simplicity and efficiency of the differential 

transform method. Ma [5] has presented a new finite 

element formulation and algorithm for exact solutions of 

undamped axial vibration problems of elastic bars. They 

have determined the natural frequencies and the 

associated vibration mode shapes with their iterative 

procedure. Arndt et al. [6] have applied the adaptive 

Generalized Finite Element Method to free longitudinal 

vibration analysis of straight bars and trusses. They have 

shown the efficiency and convergence of the proposed 

method in vibration analysis of uniform and non-uniform 

straight bars in their studies. Velasco et al. [7] have 

recorded the sound wave in a cylindrical steel bar by 

using a microphone and they have obtained resonance 

spectrum of the bar by using a sound analysis software. 

Ranjbaran et al. [8] have proposed a new method for 

computation of longitudinal vibrations of multi-cracked 
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bars. They have modelled the cracks by equivalent axial 

springs. They have showed the accuracy, efficiency and 

robustness of their method in their study. Akgoz and 

Civalek [9] have investigated the longitudinal free 

vibration analysis of axially functionally graded 

microbars. They have used Rayleigh-Ritz solution 

technique in their study. Bui et al. [10] have obtained the 

optimal configurations of circular bars under free 

torsional and longitudinal vibration. They have used 

Pontryagin’s maximum principle in their study. II’gamov 

[11] has investigated the longitudinal vibrations of a bar 

with incipient transverse cracks. He has proposed a 

model based on the assumption that the crack size is 

small compared with the bar cross-section area. Lee et al. 

[12] have proposed an enhanced spectral element model 

to solve the axial vibration problems of functionally 

graded bars. 

As the literature survey is examined, it is seen that the 

vibration analysis of bars with variable or constant cross-

section is examined with different methods. Because of 

the difficulties in the calculation of natural frequency of 

a bar which has variable material properties due to the 

temperature, the material properties are assumed to be 

constant in earlier studies. A study on the effect of the 

temperature on the longitudinal vibration of the bars is 

almost never encountered in the open literature. In this 

study, free longitudinal vibration of a bar, which its 

material properties vary with temperature is performed. 

The effects of temperature, geometric ratio, slenderness 

ratio and mode numbers on the natural frequency of the 

bar are investigated. Moreover, the mode shapes of bar 

obtained from theoretical and numerical solutions are 

also given in the study. 

 

2. MATERIAL AND GEOMETRIC PROPERTIES 

OF THE BAR (ÇUBUĞUN MALZEME VE 

GEOMETRİK ÖZELLİKLERİ) 

2.1. Geometric Properties (Geometrik Özellikler) 

An isotropic rectangular bar as shown in Figure 1 is 

considered in this study. It is assumed that the width of 

the bar varies along x direction. 

As shown in Figure 1 that bo is the half width of the 

clamped end of the bar and it is varied exponentially as 

follow. 

𝑏(𝑥) = 𝑏𝑜𝑒𝑥 (1) 

In this equation,  is geometric ratio, and the width of the 

bar is constant when the  is equal to zero. The length (L) 

and the thickness (h) of the bar are taken as constant.  

The boundary condition is assumed as clamped at one 

end and free at other end. 

 
Figure 1. Rectangular bar with variable cross-section 

(Değişken kesili dikdörtgen çubuk) 

 

2.2. Material Properties (Malzeme Özellikleri) 

As in real life, it is assumed that the material properties 

of the bar change with temperature in this study. A 

Titanium alloy (Ti-6Al-4V) is preferred as bar material. 

This material has high strength, and corrosion resistance 

and low weight. So, this material is widely used 

especially in medical and space industry [13]. Variation 

of the material properties of some materials with 

temperature is given by the following formula by Shen 

[14]. 

𝑃𝑗 = 𝑃0(𝑃−1𝑇−1 + 1 + 𝑃1𝑇 + 𝑃2𝑇2 + 𝑃3𝑇3) (2) 

In this equation, P0, P-1, P1, P2 and P3 are constants 

related to the material and given in Table 1. T is 

temperature in Kelvin and Pj is material properties. 

Table 1. The constants for Ti-6Al-4V [14] (Ti-6Al-4V için 

sabitler [14]) 

Material 

Properties 
P0 P-1 P1 P2 P3 

Young’s 

modulus 

[Pa] 

122.56e+9 0 -4.586e-4 0 0 

It is assumed that the bar is affected by the thermal effect 

in this study. The temperature is increased from 100 C 

to 250 C at intervals of 50 C. Moreover, the room 

temperature (22 C) is also taken into consideration. 

Then, the Young’s modulus of the material is calculated 

for each temperature value according to Equation (2). 

According to the results obtained from the calculation, 

the variation of the Young’s modulus with temperature is 

shown in Figure 2. 
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Figure 2. Variation of Young’s modulus (Elastisite 

modülündeki değişim) 

 

The density of bar is taken as constant since one varies 

slightly with temperature and it equals to 4429 kg/m3 

[13]. 

 

3. THEORETICAL AND NUMERICAL 

SOLUTIONS (TEORİK VE SAYISAL 

ÇÖZÜMLER) 

3.1. Theoretical Solution (Teorik Çözüm) 

The equation of motion of a longitudinally vibrating bar 

is written as follows [15], 

𝐴(𝑥)
𝑢(𝑥,𝑡)

𝑡2 =


𝑥
(𝐴(𝑥)𝐸(𝑇)

𝑢(𝑥,𝑡)

𝑥
) (3) 

where u(x,t) is longitudinal displacement,  is density, 

E(T) is variable Young’s modulus and it is calculated 

from Equation (2) according to temperature, A(x) is 

variable cross-section area and equal to multiply the 

variable width by constant thickness.  

The longitudinal displacement u(x,t) can be taken as 

exponential function to find the natural frequency of the 

bar as follows, 

𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝑡  (4) 

where U(x) is mode shape,  is circular frequency and t 

is time. Substituting Equation (4) into Equation (3), 

reduces to, 

𝑑2𝑈(𝑥)

𝑑𝑥2 + 
𝑑𝑈(𝑥)

𝑑𝑥
+ 2𝑈(𝑥) = 0     0 ≤ 𝑥 ≤ 𝐿 (5) 

where 

2 =
2

𝐸
 (6) 

The solution of the Equation (5) is, 

𝑈(𝑥) = 𝐶1𝑒
(−

1

2
+

1

2
√2−42)𝑥

+ 𝐶2𝑒
(−

1

2
−

1

2
√2−42)𝑥

 (7) 

where C1 and C2 are constants and determined from 

boundary conditions.  

Because the boundary conditions of the bar are clamped-

free, the following equations are applied to the Equation 

(7). 

𝑈 = 0                    𝑎𝑡          𝑥 = 0 (8) 

𝑑𝑈/𝑑𝑥 = 0          𝑎𝑡          𝑥 = 𝐿 (9) 

Applying these two conditions to Equation (7) yields the 

following vector form. 

[𝐾]{𝐶} = {0} (10) 

By equalizing the determinant of the coefficient matrix 

[K] to zero, the following characteristic equation is 

obtained: 

−
1

2
𝑒

−
1

2
(+√2−42)𝐿

 −
1

2
𝑒

−
1

2
(+√2−42)𝐿

√2 − 42 +

  

1

2
𝑒

1

2
(−+√2−42)𝐿

 −
1

2
𝑒

1

2
(−+√2−42)𝐿

√2 − 42 = 0

 (11) 

Solution of the above characteristic equation yields the 

natural frequencies.  

Maple software is used to solve the above mathematical 

equations. 

3.2. Numerical Solution (Sayısal Çözüm) 

The numerical vibration analysis of the bar is performed 

by using SolidWorks commercial program based finite 

element method. The SolidWorks is a program that can 

do both design and engineering calculations of structural 

elements.  

Firstly, the bar element is modelled in the drawing 

section of the program. In order to do this, two-

dimensional wireframe bar model is drawn. The width of 

the bar is drawn according to the Equation (1). The three-

dimensional model is obtained by extruding the 

wireframe model along to thickness direction. Then the 

simulation section of the program is run. In this section, 

the solver type is selected as FFESolver from the Options 

menu. Because the material properties of the bar vary 

with temperature, a new material is defined in the 

program according to the Section 2.2. Then the clamped-

free boundary condition is applied to the bar. Since the 

program is based on the finite element method, the model 

is meshed. The mesh density is selected as fine mesh. The 

bar model after both meshing and analysis are given in 

Figures 3 (a) and (b), respectively. 

  

(a) after meshing 

(ağlama sonrası) 

(b) after analysis 

(analiz sonrası) 

Figure 3. The bar model (Çubuk model) 

As an example, the element size, numbers of total nodes 

and total elements of the bar with = -1/L are obtained as 

1.84961 mm, 77411 and 51975, respectively. 
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4. RESULTS AND DISCUSSION (SONUÇLAR VE 

TARTIŞMA) 

In this study, the longitudinal vibration analysis of a bar 

with variable cross-section is investigated. It is assumed 

that the material properties of the bar vary with 

temperature. 

The thickness of the bar is constant and is assumed as 20 

mm. The width of the clamped end of the beam (2bo) is 

also constant and is also assumed as 20 mm. But the 

width of the bar is decreasing towards the free end 

according to the Equation (1). The geometric ratio of the 

bar  is varied from 0 to -1/L (=-1/200) with 0.25/L. In 

order to see the effects of slenderness ratio, the length of 

the beam is varied from 200 mm to 400 mm at intervals 

of 50 mm. Five models for geometric ratio and five 

models for slenderness ratio are examined in the study. 

The abovementioned dimensions of clamped end of the 

bar are summarized in Table 2. 

Table 2. The dimensions of clamped end of the bar (Çubuğun 

ankastre ucunun boyutları) 

 
Length 

(L)[mm] 

Width 

(2bo)[mm] 

Thickness 

(h)[mm] 

Values 200 20 20 

The boundary condition of the bar is assumed as 

clamped-free. Furthermore, as for the temperature which 

affected the bar, it is increased from 22 C to 250 C. 

Moreover, first three mode shapes are taken into 

consideration for natural frequencies. 

Both theoretical and numerical calculations have been 

made to see these effects. It can be seen from the results 

that the numerical and the theoretical results are in good 

agreement. The above mentioned effects are explained in 

detail below. 

4.1 The Effects of Temperature (Sıcaklığın Etkileri) 

In order to see the effects of temperature on the natural 

frequency of the bar with variable cross-section, the 

geometric and the slenderness ratios are taken -0.25/L (= 

-0.25/200) and 1/10, respectively. The results obtained 

from theoretical solution are compared with those 

obtained from numerical solution in Figure 4. 

 
Figure 4. The effect of temperature on natural frequency 

(Doğal frekans üzerine sıcaklığın etkisi) 

It can be seen from Figure 4 that the natural frequency of 

the bar with variable cross-section (=0.25) decreases 

with increasing the temperature. It is also seen that this 

decline is about linear. When the natural frequencies 

obtained at room temperature and 250 C are compared, 

the difference is almost 400 Hz. Therefore, it is clear that 

the effect of temperature on the material properties must 

be taken into account in vibration calculations. However, 

in literature, it is generally assumed that the material 

properties do not change with temperature in the 

vibration calculations. 

When the theoretical and numerical results are examined, 

it is seen that the results are in harmony. 

4.2 The Effects of Geometric Ratio (Geometrik Oranın 

Etkileri) 

The variation of the natural frequency of the bar with 

geometric ratio is represented in Figure 5. In this figure, 

the temperature and the slenderness ratio are taken 22 C, 

1/10, respectively,  

 

 
Figure 5. The effect of geometric ratio on natural frequency 

(Doğal frekans üzerine geometric oranın etkisi) 

 

The geometric ratio of the bar is varied from 0 to -1/L (=-

1/200) with 0.25/L. This means that the width of the free 

end of the bar is gradually decreased. But width of the 

clamped end of the bar is always taken as constant. When 

 is equal to zero, the cross-sectional area of the bar does 

not change. It can be seen from the figure that the natural 

frequency of the bar increases gradually with decreasing 

the width of the free end of the bar. If high natural 

frequency is desired, it is more advantageous to use the 

narrowing bar. Another advantage of the narrowing bar 

is that less material is used in the bar. The theoretical and 

numerical results are shown in Figure 5, and they are also 

in good agreement. 

4.3 The Effects of Slenderness Ratio (Narinlik Oranının 

Etkileri) 

The ratio of the width to the length of the bar is defined 

as slenderness ratio in this study. To see the effect of 

slenderness ratio of the bar, it is taken 1/10, 1/12.5, 1/15, 

1/17.5 and 1/20. In order to get these ratios, the length of 

the bar is increased from 200 mm to 400 mm at intervals 

of 50 mm while the width was fixed at 20 mm. The 

geometric ratio is 0 and the temperature is 22 C. The 
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variation of the natural frequency of the bar with 

slenderness ratio is shown in Figure 6. 

 

 
Figure 6. The effect of slenderness ratio on natural frequency 

(Doğal frekans üzerine narinlik oranın etkisi) 

 

It can be seen from the Figure 6 that the natural frequency 

of the bar decreases with decreasing the slenderness ratio.   

It can also seen from the figure that the curve decreases 

exponentially. In the other words, the natural frequency 

decreases with increasing the length of the bar. 

4.4 The Effects of Variation in Mode Numbers (Mod 

Sayılarındaki Değişimin Etkileri)   

The first three mode shapes are taken into consideration 

in the study. The normalized mode shapes of the bar with 

uniform cross-section are given in Figure 7. 

 
Figure 7. Mode shapes of the bar (Çubuğun mod şekilleri) 

 

These three longitudinal mode shapes are also obtained 

from SolidWorks program and given in Figures 8, 9 and 

10. It can be seen from the Figure 7 that there is only one 

peak in the curve of Mode 1. But, there are one peak and 

one trough in the curve of Mode 2. As for the curve of 

Mode 3, there are two peaks and one trough in it. The 

SolidWorks results shown in Figures 8-10 are supported 

the graph shown in Figure 7. 

 

 
Figure 8. First mode shape (Birinci mod şekli) 

 
Figure 9. Second mode shape (İkinci mod şekli) 

 

Figure 10. Third mode shape (Üçüncü mod şekli) 
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According to the results obtained from Figures 7-10, the 

results obtained from SolidWorks are in agreement with 

the theoretical results. 

Moreover, the variation of the natural frequency of the 

bar with mode numbers is depicted in Figure 11. 

 

 
Figure 11. The effect of mode number on natural frequency 

(Doğal frekans üzerine mod sayısının etkisi) 

 

In this figure, the geometric and the slenderness ratios of 

the bar are taken 0 and 1/10, respectively. Besides, the 

temperature is taken as 22 C. As expected, the natural 

frequency increases gradually with increasing the mode 

number. It can be seen in the figure that the difference is 

very large when the results obtained for modes 1 and 3 

are compared. Moreover, this increase appears to be 

almost linear. 

In addition to Figure 11, Figure 12 shows the effect of 

temperature on the natural frequency as well as the 

number of modes. 

 
Figure 12. The effects of temperature and mode number on 

natural frequency (Doğal frekans üzerine sıcaklık 

ve mod sayısının etkileri) 

 

In this figure, the geometric and the slenderness ratios of 

the bar are taken as 0 and 1/10, respectively. As 

mentioned before (in Section 4.1), the natural frequency 

of the bar decreases with increasing the temperature. But, 

it is seen in Figure 12 that this decrease is more for Mode 

3. This means that the effect of temperature on natural 

frequency increases with increasing the number of 

modes. 

The increase in natural frequency with the increase in the 

number of modes is also seen in Figure 12 similar to 

Figure 11. 

 

5. CONCLUSIONS (SONUÇLAR)  

The theoretical free axial vibration analysis of the 

temperature dependent bar with variable cross-section is 

investigated in this study. Furthermore, the results 

obtained theoretical solutions are supported by those 

obtained from the SolidWorks program. The effects of 

temperature, geometric and slenderness ratios and mode 

numbers on the natural frequency of the bar are studied 

and the following conclusions are drawn from the study. 

 The natural frequency of the bar decreases with 

increasing the temperature. 

 The natural frequency of the bar increases as the 

section of the bar narrows. 

 The natural frequency of the bar decreases with 

decreasing the slenderness ratio. 

 The natural frequency increases gradually with 

increasing the mode number and this increase is 

linear. 
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