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ABSTRACT

Vibration behavior of a bar with variable cross-section, which its material properties vary with temperature, is investigated in this
study. In the analysis, not only theoretical solution but also numerical solution is performed for validation. The numerical analysis
is overcome by SolidWorks program based on finite element method. Four types of effects on the bar are investigated. These are
effects of temperature variation, geometric ratio, slenderness ratio and mode numbers variation. The temperature is increased from
22 °C to 250 °C. The geometric ratio is varied from 0 to -1/L at intervals of 0.25/L. The slenderness ratio is varied from 1/10 to
1/20 by increasing the length of bar from 200 mm to 400 mm. As for the mode numbers, the first three mode shapes are examined
in the analysis. The boundary condition of the bar is taken as clamped-free. According to the results, the natural frequency decreases
with increasing the temperature. The natural frequency also decreases with decreasing the slenderness ratio. But, it increases with
decreasing the geometric ratio and also increases with increasing the mode number. When the theoretical and numerical results are
examined, it is seen that the results are in harmony.

Anahtar Kelimeler: Bar, temperature, vibration, variable cross-section.

Degisken Kesitli Sicakliga Bagimli Cubugun Boyuna
Titresimi

oz

Bu ¢aligmada malzeme 6zellikleri sicaklikla degisen, degisken kesitli bir gubugun titresim davraniglar1 aragtirilmistir. Analizde,
dogrulama i¢in sadece teorik ¢oziim degil ayn1 zamanda sayisal ¢éziimde yapilmistir. Sayisal analiz, sonlu elemanlar esas alan
SolidWorks programu ile yapilmistir. Cubuga etkiyen dort tip etki aragtirilmustir. Bunlar, sicaklik degisiminin, geometrik oranin,
narinlik oraninin ve mod sayisinin degisimin etkileridir. Sicaklik 22 °C’den 250 °C’ye kadar artirilmigtir. Geometrik oran, 0.25/L
araliklarla 0’dan -1/L’ye degistirilmistir. Narinlik orani, ¢gubugun boyu 200 mm’den 400 mm’ye artirilarak, 1/10°dan 1/20’ye
degistirilmistir. Mod sayilarina gelince, analizde ilk {i¢ mod sekli incelenmistir. Cubugun sinir kosullar1 ankastre-serbest olarak
alinmugtir. Sonuglara gore sicakligin artmasiyla dogal frekans diiser. Dogal frekans, narinlik oraninin diismesiyle de diiger. Fakat
geometrik oranin diismesiyle ve mod sayisinin artmasiyla artar. Teorik ve sayisal sonuglar incelendiginde, sonuglarin uyum iginde
oldugu goriiliir.

Keywords: Cubuk, sicaklik, titresim, degiken kesit.

1. INTRODUCTION (GIRiS)

The structural elements such as bars, beams, plates, are
widely used in the engineering applications. Therefore,
many studies have been made on the vibrations of

applied the differential transform method to the axial
vibration problems of compound bars. They have showed
the accuracy, simplicity and efficiency of the differential
transform method. Ma [5] has presented a new finite

structural elements [1, 2]. Among these structural
elements, the bar element has a wide application area in
the machine and civil engineering such as mechanisms
and frame structures. Some of the studies on vibration of
the bar elements are given below.

Li [3] has studied on the free longitudinal vibration
analysis of multi-step non-uniform bars. He has reduced
the differential equations of the free longitudinal
vibrations of bars with variable distributed mass and
stiffness to Bessel’s equations and he has derived an
analytical solution to determine the longitudinal natural
frequencies and mode shapes. Bert and Zeng [4] have

*Sorumlu Yazar (Corresponding Author)
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element formulation and algorithm for exact solutions of
undamped axial vibration problems of elastic bars. They
have determined the natural frequencies and the
associated vibration mode shapes with their iterative
procedure. Arndt et al. [6] have applied the adaptive
Generalized Finite Element Method to free longitudinal
vibration analysis of straight bars and trusses. They have
shown the efficiency and convergence of the proposed
method in vibration analysis of uniform and non-uniform
straight bars in their studies. Velasco et al. [7] have
recorded the sound wave in a cylindrical steel bar by
using a microphone and they have obtained resonance
spectrum of the bar by using a sound analysis software.
Ranjbaran et al. [8] have proposed a new method for
computation of longitudinal vibrations of multi-cracked
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bars. They have modelled the cracks by equivalent axial
springs. They have showed the accuracy, efficiency and
robustness of their method in their study. Akgoz and
Civalek [9] have investigated the longitudinal free
vibration analysis of axially functionally graded
microbars. They have used Rayleigh-Ritz solution
technique in their study. Bui et al. [10] have obtained the
optimal configurations of circular bars under free
torsional and longitudinal vibration. They have used
Pontryagin’s maximum principle in their study. II’gamov
[11] has investigated the longitudinal vibrations of a bar
with incipient transverse cracks. He has proposed a
model based on the assumption that the crack size is
small compared with the bar cross-section area. Lee et al.
[12] have proposed an enhanced spectral element model
to solve the axial vibration problems of functionally
graded bars.

As the literature survey is examined, it is seen that the
vibration analysis of bars with variable or constant cross-
section is examined with different methods. Because of
the difficulties in the calculation of natural frequency of
a bar which has variable material properties due to the
temperature, the material properties are assumed to be
constant in earlier studies. A study on the effect of the
temperature on the longitudinal vibration of the bars is
almost never encountered in the open literature. In this
study, free longitudinal vibration of a bar, which its
material properties vary with temperature is performed.
The effects of temperature, geometric ratio, slenderness
ratio and mode numbers on the natural frequency of the
bar are investigated. Moreover, the mode shapes of bar
obtained from theoretical and numerical solutions are
also given in the study.

2. MATERIAL AND GEOMETRIC PROPERTIES
OF THE BAR (CUBUGUN MALZEME VE
GEOMETRIK OZELLIKLERTI)

2.1. Geometric Properties (Geometrik Ozellikler)

An isotropic rectangular bar as shown in Figure 1 is

considered in this study. It is assumed that the width of

the bar varies along x direction.

As shown in Figure 1 that b, is the half width of the

clamped end of the bar and it is varied exponentially as

follow.

b(x) = b,e® (1)
In this equation, &is geometric ratio, and the width of the

bar is constant when the §is equal to zero. The length (L)
and the thickness (h) of the bar are taken as constant.

The boundary condition is assumed as clamped at one
end and free at other end.

Figure 1. Rectangular bar with variable cross-section
(Degisken kesili dikdortgen cubuk)

2.2. Material Properties (Malzeme Ozellikleri)

As in real life, it is assumed that the material properties
of the bar change with temperature in this study. A
Titanium alloy (Ti-6Al-4V) is preferred as bar material.
This material has high strength, and corrosion resistance
and low weight. So, this material is widely used
especially in medical and space industry [13]. Variation
of the material properties of some materials with
temperature is given by the following formula by Shen
[14].

Py =Py(P_s T~ '+ 1+ P, T+ P,T? 4+ P,T?) (2)

In this equation, Po, P.1, P1, P2 and P3 are constants
related to the material and given in Table 1. T is
temperature in Kelvin and P; is material properties.

Table 1. The constants for Ti-6Al-4V [14] (Ti-6Al-4V igin

sabitler [14])
Material
) Po P P1 P2 Ps
Properties
Young’s
modulus  122.56e+9 0 -4586e-4 0 O
[Pa]

It is assumed that the bar is affected by the thermal effect
in this study. The temperature is increased from 100 °C
to 250 °C at intervals of 50 °C. Moreover, the room
temperature (22 °C) is also taken into consideration.
Then, the Young’s modulus of the material is calculated
for each temperature value according to Equation (2).
According to the results obtained from the calculation,
the variation of the Young’s modulus with temperature is
shown in Figure 2.
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Figure 2. Variation of Young’s

modiiliindeki degisim)

(Elastisite

The density of bar is taken as constant since one varies
slightly with temperature and it equals to 4429 kg/m?
[13].

3. THEORETICAL
SOLUTIONS
COZUMLER)

3.1. Theoretical Solution (Teorik C6ziim)

The equation of motion of a longitudinally vibrating bar
is written as follows [15],

PAG)“ 52 = S(AWEM *Z7) ®

where u(x,t) is longitudinal displacement, p is density,
E(T) is variable Young’s modulus and it is calculated
from Equation (2) according to temperature, A(X) is
variable cross-section area and equal to multiply the
variable width by constant thickness.

The longitudinal displacement u(x,t) can be taken as
exponential function to find the natural frequency of the
bar as follows,

u(x, t) = U(x)el* (4)
where U(x) is mode shape, w is circular frequency and t
is time. Substituting Equation (4) into Equation (3),
reduces to,

AND NUMERICAL
(TEORIK  VE  SAYISAL

d?U(x) AU (x) _
74‘574—#2(](36)—0 0<x<L 5)
where

w?
=2 ©

The solution of the Equation (5) is,

0 = el FHE o (Bl )

where C; and C, are constants and determined from
boundary conditions.

Because the boundary conditions of the bar are clamped-
free, the following equations are applied to the Equation

).
U=0 at x=0 (8)
dU/dx =0 at x=1L 9

Applying these two conditions to Equation (7) yields the
following vector form.

[KI{C} = {0} (10)
By equalizing the determinant of the coefficient matrix

[K] to zero, the following characteristic equation is
obtained:

ool g A ) [ e
le%(—&\/m)Lé_ le%<—5+W>L\/m =0

2 2

(11)
Solution of the above characteristic equation yields the
natural frequencies.

Maple software is used to solve the above mathematical
equations.

3.2. Numerical Solution (Sayisal Coziim)

The numerical vibration analysis of the bar is performed
by using SolidWorks commercial program based finite
element method. The SolidWorks is a program that can
do both design and engineering calculations of structural
elements.

Firstly, the bar element is modelled in the drawing
section of the program. In order to do this, two-
dimensional wireframe bar model is drawn. The width of
the bar is drawn according to the Equation (1). The three-
dimensional model is obtained by extruding the
wireframe model along to thickness direction. Then the
simulation section of the program is run. In this section,
the solver type is selected as FFESolver from the Options
menu. Because the material properties of the bar vary
with temperature, a new material is defined in the
program according to the Section 2.2. Then the clamped-
free boundary condition is applied to the bar. Since the
program is based on the finite element method, the model
is meshed. The mesh density is selected as fine mesh. The
bar model after both meshing and analysis are given in
Figures 3 (a) and (b), respectively.

(a) after meshing

(b) after analysis

(aglama sonrast) (analiz sonrast)

Figure 3. The bar model (Cubuk model)

As an example, the element size, numbers of total nodes
and total elements of the bar with 3= -1/L are obtained as
1.84961 mm, 77411 and 51975, respectively.
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4. RESULTS AND DISCUSSION (SONUCLAR VE
TARTISMA)

In this study, the longitudinal vibration analysis of a bar
with variable cross-section is investigated. It is assumed
that the material properties of the bar vary with
temperature.

The thickness of the bar is constant and is assumed as 20
mm. The width of the clamped end of the beam (2b,) is
also constant and is also assumed as 20 mm. But the
width of the bar is decreasing towards the free end
according to the Equation (1). The geometric ratio of the
bar ¢ is varied from 0 to -1/L (=-1/200) with 0.25/L. In
order to see the effects of slenderness ratio, the length of
the beam is varied from 200 mm to 400 mm at intervals
of 50 mm. Five models for geometric ratio and five
models for slenderness ratio are examined in the study.

The abovementioned dimensions of clamped end of the
bar are summarized in Table 2.

Table 2. The dimensions of clamped end of the bar (Cubugun
ankastre ucunun boyutlari)

Length Width Thickness
(D[mm]  (2bo)[mm]  (h)[mm]
Values 200 20 20

The boundary condition of the bar is assumed as
clamped-free. Furthermore, as for the temperature which
affected the bar, it is increased from 22 °C to 250 °C.
Moreover, first three mode shapes are taken into
consideration for natural frequencies.

Both theoretical and numerical calculations have been
made to see these effects. It can be seen from the results
that the numerical and the theoretical results are in good
agreement. The above mentioned effects are explained in
detail below.

4.1 The Effects of Temperature (Sicakligin Etkileri)

In order to see the effects of temperature on the natural
frequency of the bar with variable cross-section, the
geometric and the slenderness ratios are taken -0.25/L (=
-0.25/200) and 1/10, respectively. The results obtained
from theoretical solution are compared with those
obtained from numerical solution in Figure 4.
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= 6350 -
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£ 6300 -
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g 6250 4
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= 6200 -

E

3 6150 -

Z 6100
6050 -
6000

0 50 100 150 200 250
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Figure 4. The effect of temperature on natural frequency
(Dogal frekans iizerine sicakligin etkisi)

It can be seen from Figure 4 that the natural frequency of
the bar with variable cross-section (8=0.25) decreases
with increasing the temperature. It is also seen that this
decline is about linear. When the natural frequencies
obtained at room temperature and 250 °C are compared,
the difference is almost 400 Hz. Therefore, it is clear that
the effect of temperature on the material properties must
be taken into account in vibration calculations. However,
in literature, it is generally assumed that the material
properties do not change with temperature in the
vibration calculations.

When the theoretical and numerical results are examined,
it is seen that the results are in harmony.

4.2 The Effects of Geometric Ratio (Geometrik Oranin

Etkileri)

The variation of the natural frequency of the bar with
geometric ratio is represented in Figure 5. In this figure,
the temperature and the slenderness ratio are taken 22 °C,
1/10, respectively,

7600

7400 {4 | —*— Theoretical-Model

—@— - Numerical-Model

o 9 2
® =
e & o
e & o

6600

Natural Frequency [Hz|

6400

0 -0.25/L. -0.5/L -0.75/L. -1/L
Geometric Ratio (8)

Figure 5. The effect of geometric ratio on natural frequency
(Dogal frekans iizerine geometric oranin etkisi)

The geometric ratio of the bar is varied from 0 to -1/L (=-
1/200) with 0.25/L. This means that the width of the free
end of the bar is gradually decreased. But width of the
clamped end of the bar is always taken as constant. When
d is equal to zero, the cross-sectional area of the bar does
not change. It can be seen from the figure that the natural
frequency of the bar increases gradually with decreasing
the width of the free end of the bar. If high natural
frequency is desired, it is more advantageous to use the
narrowing bar. Another advantage of the narrowing bar
is that less material is used in the bar. The theoretical and
numerical results are shown in Figure 5, and they are also
in good agreement.

4.3 The Effects of Slenderness Ratio (Narinlik Oraninin
Etkileri)

The ratio of the width to the length of the bar is defined
as slenderness ratio in this study. To see the effect of
slenderness ratio of the bar, it is taken 1/10, 1/12.5, 1/15,
1/17.5 and 1/20. In order to get these ratios, the length of
the bar is increased from 200 mm to 400 mm at intervals
of 50 mm while the width was fixed at 20 mm. The
geometric ratio is 0 and the temperature is 22 °C. The
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variation of the natural frequency of the bar with
slenderness ratio is shown in Figure 6.

—=&— Theoretical-Model
—@= - Numerical-Model

2
z

4500

Natural Frequency [Hz|

1/10 1/12.5 115 1/17.5 1/20
Slenderness Ratio (b/L)

Figure 6. The effect of slenderness ratio on natural frequency
(Dogal frekans iizerine narinlik oranin etkisi)

It can be seen from the Figure 6 that the natural frequency
of the bar decreases with decreasing the slenderness ratio.
It can also seen from the figure that the curve decreases
exponentially. In the other words, the natural frequency
decreases with increasing the length of the bar.

4.4 The Effects of Variation in Mode Numbers (Mod
Sayilarindaki Degisimin Etkileri)

The first three mode shapes are taken into consideration
in the study. The normalized mode shapes of the bar with
uniform cross-section are given in Figure 7.

Model name-part1
Stucly name:frequency 1(-Default:)

Plot type: Frequency e6

Mode Shape : 6 Value = 61317 Hr
Deformation scale: 0,00640145

-
Figure 8. First mode shape (Birinci mod sekli)
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Plot type: Frequency Amplitude15

Mode Shape : 15 Value= 18368 Hz
Deformation scale: 0.00836776
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A

Figure 9. Second mode shape (ikinci mod sekli)
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Figure 7. Mode shapes of the bar (Cubugun mod sekilleri)

These three longitudinal mode shapes are also obtained
from SolidWorks program and given in Figures 8, 9 and
10. It can be seen from the Figure 7 that there is only one
peak in the curve of Mode 1. But, there are one peak and
one trough in the curve of Mode 2. As for the curve of
Mode 3, there are two peaks and one trough in it. The
SolidWorks results shown in Figures 8-10 are supported
the graph shown in Figure 7.
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According to the results obtained from Figures 7-10, the
results obtained from SolidWorks are in agreement with
the theoretical results.

Moreover, the variation of the natural frequency of the
bar with mode numbers is depicted in Figure 11.

35000

—@— Theoretical
30000

—@— Numerical

25000
20000
15000

10000

Natural Frequency [Hz]

5000

1 2 3
Mode Number

Figure 11. The effect of mode number on natural frequency
(Dogal frekans iizerine mod sayisinin etkisi)

In this figure, the geometric and the slenderness ratios of
the bar are taken 0 and 1/10, respectively. Besides, the
temperature is taken as 22 °C. As expected, the natural
frequency increases gradually with increasing the mode
number. It can be seen in the figure that the difference is
very large when the results obtained for modes 1 and 3
are compared. Moreover, this increase appears to be
almost linear.

In addition to Figure 11, Figure 12 shows the effect of
temperature on the natural frequency as well as the
number of modes.

30000 - '—I‘-*.*.
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Figure 12. The effects of temperature and mode number on
natural frequency (Dogal frekans iizerine sicaklik
ve mod sayisinin etkileri)

In this figure, the geometric and the slenderness ratios of
the bar are taken as 0 and 1/10, respectively. As
mentioned before (in Section 4.1), the natural frequency
of the bar decreases with increasing the temperature. But,
it is seen in Figure 12 that this decrease is more for Mode
3. This means that the effect of temperature on natural
frequency increases with increasing the number of
modes.

The increase in natural frequency with the increase in the
number of modes is also seen in Figure 12 similar to
Figure 11.

5. CONCLUSIONS (SONUCLAR)

The theoretical free axial vibration analysis of the
temperature dependent bar with variable cross-section is
investigated in this study. Furthermore, the results
obtained theoretical solutions are supported by those
obtained from the SolidWorks program. The effects of
temperature, geometric and slenderness ratios and mode
numbers on the natural frequency of the bar are studied
and the following conclusions are drawn from the study.

e  The natural frequency of the bar decreases with
increasing the temperature.

e  The natural frequency of the bar increases as the
section of the bar narrows.

e  The natural frequency of the bar decreases with
decreasing the slenderness ratio.

e The natural frequency increases gradually with
increasing the mode number and this increase is
linear.
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