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Abstract 

Optimal solution of a desired optimization problem is mostly obtained via minimizing or 

maximizing a real function considering several predefined limitations. Selection of proper 

optimization algorithm as an optimizer tool plays a key role on the solution process. In this 

respect, current study intends to compare the performances of two different prevalent 

metaheuristic optimization algorithms. These are integrated particle swarm optimizer (iPSO) 

and teaching and learning based optimizer (TLBO). The former method is a single-phase 

algorithm while the latter one is the double-phase algorithm. Capabilities of both algorithms 

were compared separately on some mathematical benchmark test problems. Furthermore, to 

exhibit and compare their performance on solving more complex problems, size and topology 

optimization of the structural systems are also examined. Achieved results demonstrate the 

superiority of iPSO in comparison with TLBO in both search capability and convergence rate. 
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1. INTRODUCTION 

 

Mathematically, the optimization process is defined as the selection of the best elements considering 

certain criteria from a set of existing choices. Nowadays optimization process is widely applied in the 

different fields of engineering in the form of maximization or minimization problems [1-3]. 

Consequently, in the structural optimization process the main goal is to find the minimum weight and/or 

production cost of the structure [4-9]. Related quantities are definable through an appropriate 

mathematical function. In case of being more than one objective, they are represented by a number of 

mathematical functions depending on the total number of purposes [10]. 

 

For a structural optimization, depending on the requirements of the designer the cross sectional areas of 

the members, the nodal coordinates and the connectivity pattern of members might be considered 

individually or in combination as the decision variables [11-16]. It is possible to obtain more optimal 

results via implementing simultaneously size, shape and topology optimization. However, in such a case 

the optimization problem becomes very complex due to increasing the number of design variables and/or 

non-convexities of the search space. Additionally, components of these three types of design variables can 

belong to discrete and/or continuous search spaces [7]. Two different approaches can be utilized for 

                                                           
*
 Corresponding author, e-mail: ali.mortazavi@usak.edu.tr 

http://dergipark.gov.tr/gujs


417 Ali MORTAZAVİ, Vedat TOĞAN, Ayşe DALOĞLU, Ayhan NUHOĞLU/ GU J Sci, 31(2): 416-435 (2018) 

optimization; these aspects are unimodal and multimodal [7,17]. In unimodal approach all variables are 

taken into account simultaneously while in the multimodal approach variables are optimized separately. It 

is notable that since the corresponding design variables (i.e. size, shape and topology) are not linearly 

independent and so they should be taken into account all together. Due to this fact, the solution process 

for this class of problems requires using a robust algorithm as the optimization tool. Metaheuristic 

algorithms, which copycat the natural phenomena or physics rules, have been applied widely to attain the 

optimal solution of complex problems. 

 

Unlike the classical form of Particle Swarm Optimizer (PSO) [18], Integrated Particle Swarm Optimizer 

(iPSO) offers enhanced version of PSO with robust and novel techniques such as improved fly-back 

method and weighted particle concept [19]. On the other hand, TLBO [20] is conceptually modeled on the 

two types of pedagogies within a classroom: class-level learning from a teacher and individual learning 

between students [21]. It is notable, TLBO is the two-phase algorithm, it means in each iteration objective 

function should be evaluated twice (i.e. once in the teaching phase and once in the learning phase). 

Indeed, exploration and exploitation search strategies are separately performed in each iteration in this 

method, and as shown in different work studies [5, 20-30] such an approach can provide a proper search 

capability to find an optimal solution. However, such methods (two-phases or higher) seems inappropriate 

for solving several types of engineering problems (e.g. structural optimization problems). Because in this 

type of problems objective function evaluation (OFE) is the most time consuming part of the optimization 

process. In this respect, although the iPSO demonstrates adequate ability on handling the different types 

of complex optimization problems [4, 31-33], in this study we precisely tested capabilities of iPSO, as the 

single-phase optimizer, in comparison with TLBO as a double-phase algorithm in more details. It is 

notable that since TLBO have been widely applied in the different fields of science and engineering [5, 

20-30] this comparison can provide illustrative and explanatory outcomes on capabilities of these two 

class of optimizers. Based on this argue, current study intends to compare the performances of the 

Integrated Particle Swarm Optimizer (iPSO) and Teaching Learning Based Optimizer (TLBO) over 

minimizing both the mathematical benchmark functions and obtaining the optimal topology and size 

parameters of truss structures.  The results show that iPSO as single-phase algorithm, outperforms TLBO 

as a double-phase approach in terms of convergence rate and solution’s accuracy. 

 

2. INTEGRATED PARTICLE SWARM OPTIMIZATION (iPSO) 
 

The particle swarm optimization (PSO) mimics the behavior of animals (e.g. the colony of fish and birds) 

to find food sources or to avoid from enemies in the nature. This method is utilized in variety application 

areas and based on reported results it is observed that the traditional PSO has some drawbacks such as 

staggering of the convergence in later stage of the process. To relieve these burdens, the different forms 

of PSO are developed to improve its performances [34-37]. The iPSO is one on these methods. Initially 

the fly-back approach and weighted particle definitions are presented. Subsequently, the corresponding 

formulations for iPSO are given in this section. 

 

2.1. Improved Fly Back Method to Handle Constraints of the Problem 

 
In many engineering problems it is necessary to apply some proper constraints to acquire feasible 

solutions. The fly-back method was introduced by He et al. [38] to handle the relevant constraints. This 

method satisfies the constraints by constantly keeping all particles in the feasible region during the 

optimization process.  

 

To enhance the performance of standard fly back method, it is modified by considering type of the 

violated constraints. This new approach is called improved fly-back mechanism and it works in three 

main steps [19]. These steps can be expressed logically as: (i) determine whether the updated particle 

violates the constraints or not; (ii) for violation, find which components cause the violation. Then, 
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replaces them with corresponding components; (iii) determine whether the new particle obeys the 

constraints and produces a better fitness function value than old particle or not. If so, change it with the 

old one. 

 

2.2. Weighted Particle 

 

In standard PSO a drawback occurs when a particle stands very close to its own best prior position, 
P

iX , 

and the location of the global best particle, 
G

X , or both of them. In such a case, the effect of one or even 

both of these important points on guiding the current particle is highly reduced or even vanished and the 

probability of trapping into the local minimum(s) increases. Li et al. [35] defined a new particle so called 

weighted particle to avoid the aforementioned situation. Weighted particle actually is the weighted gravity 

center of all particles available in the swarm, so it can be defined as below: 
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in which, M denotes the number of particles, 
WX is the position of weighted particle, ˆ

W

ic is the weighted 

constant of each particle. Also, f(.) indicates the objective function of the problem, while  
1
max ( )P

k
k M

f x
 

 

and  
1
min ( )P

k
k M

f x
 

 are represent the worst and the best fitness values in the Pbest, respectively. Finally, 

  specifies a small positive value just to prevent division-by-zero condition. In this study, it is taken as 

0.001.  

 

2.3. Integrated Particle Swarm Optimization (iPSO) Formulation 

 
The iPSO proposed by Mortazavi and Toğan [4] is different form of the classical PSO, which is 

strengthened with powerful concepts of improved fly-back method and weighted particle. Both the 

concepts and remarkable characteristics of them are explained below. This new formulation enhances the 

swarm search ability to find the optimal solution via providing more chance to escape from local minima. 

Accordingly, the iPSO mathematically can be formulated as: 
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where, 1iφ , 2iφ , 3iφ  and ir  are the vectors of coefficients contain random numbers uniformly selected 

from interval of U (0, 1). Superscripts of “t” and “t+1” indicate current and updated time steps, 

respectively. Also, C1= −(𝜑1𝑖 + 𝜑2𝑖) , C2 = 2, C3 =1, and C4=2 are accelerator factors, and  rand𝑘𝑖 

where {0,1,2,3,4}k  is a value which randomly selected from [0, 1] interval; 
t P

jX is the randomly 

selected from previous best memory and 
t G
X  is the global best particle while 

1t

i


X  and 

t

iX  

respectively give the updated location and current location of the ith particle. Also,
wXt

is the weighted 

particle of the current colony. Inertia factor ( iw ) is randomly selected between [0.5, 0.55] and α is taken 

as 0.4 correspondingly [4]. 

 

3. TEACHING LEARNING BASED OPTIMIZATION (TLBO) 
 

Rao et al. [20] introduced a new approach so called Teaching Learning Based Optimization (TLBO) 

which simulates the interaction arisen within a classroom between the teacher and the students and 

between the students themselves as well. This process is also known as the teaching-learning process, 

pedagogically. The main goal in this process is to increase the performance level of the students and 

overall performance of the class towards the optimal point of knowledge level. The TLBO algorithm has 

two main phases: the teacher phase, where the average knowledge of the class is moved towards teacher; 

and the learner phase, where students share their knowledge with each other. Several studies over the 

structural optimization were carried out using the TLBO [5, 28, 29]. 

The TLBO applies two different phases as teaching phase and learning phase to conduct agents through 

the search domain. Teaching phase is mathematically described as bellow: 
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where, x
*
 shows the renewed form of xi, r is a random number varying [0,1], TF is a teaching factor, TF = 

round [1 + rand (0,1)] and is defined randomly [39].  

Also, learning phase is given as follows: 
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where, x* and ix
 are the new and existing solution of i, jx

is the any solution to be different from ix
. If 

the solution,
*x , provides better objective function value than ix

 then ix
 is eliminated and replaced with 

*x , otherwise ix
is preserved. For more clarity, the corresponding pseudo code for TLBO is provided in 

Table 1. 

 

Table 1. The pseudo code for TLBO 

 

Generate initial random population (i.e. class) 

while one of termination criteria is not occurred do  

   evaluate each student (solution) in the population 

   determine the best learner and assign him/her as the teacher ( Teacherx ) 

   obtain mean of population based on Eq. (6) 

   perform teaching phase using Eq. (5) 

   perform the Learning phase using Eq. (7) 

end do 

report the results 

 

4. THE FORMULATION OF THE OPTIMUM DESIGN PROBLEM 
 

Structures can be optimized for size, shape and topology aspects and any combination of them. Each form 

serves for different task and only the definition of the design variables and the constraints of the problem 

are changed. A classical structural optimization problem is generally formulated as follows: 
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where X is a vector of the design variables; nd represents total number of design variables; f(X) is the 

objective function, which is taken as the weight of the structure; Le, ρe, and Ae are the length, material 

density and cross-sectional area of the eth element while ne demonstrates the total number of elements in 

the structure; gk(X) is the kth constraint function, xi is the ith design variable, while xmin,i and xmax,i are its 

lower bound and upper bound, respectively. In engineering applications, design variables might be linked 
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so as to acquire a symmetric structure and/or to reduce the search space. For this reason, nd actually 

shows the total independent design variables. 

 

In this study, since size-topology optimization of truss structures is examined, the optimization constraints 

and fitness function are mathematically expressed as: 
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In which, W is the weight of structure, ne is the total number of members in the corresponding truss 

structure, ρ is the material density, L is the length of the members. dk and dmax,k show the displacement and 

maximum displacement allowed for node k, correspondingly. σe is the stress available in the eth member, 

while σa,e is the allowable tensile or compression stress. xmin,e and xmax,e are the lower and upper boundary 

values for the cross section of eth member. and the kinematic stability indicates the dynamic stability and 

bucking criterion limitations for the structure. 

 

In this investigation, in order to topology optimization, cross sections are considered both negative and 

positive. Such that, the negative values imply that the corresponding member must be removed while 

positive values are applied for valid elements. 

 

5. CRITERIA OF EVALUATION FOR MATHEMATICAL FUNCTIONS 
 

In current investigation in order to make comprehensive comparison between TLBO and iPSO one shifted 

unimodal and two shifted and rotated multimodal functions taken from CEC2005 [40] are minimized via 

two investigated methods. The dimension of all functions is taken as D=30. For all functions maximum 

number of objective function evaluations (OFEs) is taken as 10000*D (i.e. OFEs=300000). All processes 

are started uniform random initialization inside the search space. Termination criteria are to reach 

maximum OFEs or maximum error value. The error value (f(X)-f(X
*
)) is taken as 1.0E-05 in which the X

*
 

is the vector of decision variables which gives the optimum value of f(X).  The diversity index for all runs 

are reported via following formulation [41]: 
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where t is the current iteration, N is total number of agents, L is the search space longest diagonal length, 

D is the dimension of the problem,  
jX is the mean value of all swarm over j

th
 component. 
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6. EXAMPLES 
 

This section is divided into two parts as mathematical functions and real world structural problems in 

order to demonstrate clearly the performances of the relevant algorithms on the different types of 

optimization problems from the different fields. To solve the numerical problems, the computer equipped 

with the Intel
TM

 CORE i5 CPU @ 2GHz and 4 MB of installed RAM is utilized. 

 

6.1. Mathematical Functions 

 
This section is devoted to solve 3 mathematical functions to test the performance of the two considered 

metaheuristic algorithms. All of these functions are taken from problem definitions and evaluation criteria 

for the CEC 2005 database [40]. It is remarkable that, to provide a unified set of test problems to 

evaluating different methods in the common circumstances and in the more systematic manner, several 

mathematical functions are defined in the CEC 2005 databased. All of these test problems are defined 

and/or modified by experts in this field. So, all available benchmarks (e.g. shifting and rotating functions) 

in this selective database can efficiently applied to assess the optimization algorithms. Due to this reason 

the numerical benchmark functions for the current study are selected from this database. 

 

6.1.1. Shifted Sphere Function 

 
As shown in Figure 1 the shifted sphere function is considered as the first example. The dimension, D, of 

the function is taken as 30. The formulation of corresponding function is shown in Eq. (12). In this 

equation O indicates shifted global optimum.  

 

 
Figure 1. The shifted sphere function 

 

The convergence history and diversity of the optimization process are shown in Figs.Figure 2-Figure 3. 

As can be seen from convergence history plots, the iPSO outperforms the TLBO with faster convergence 

rate in optimization of shifted sphere function. It is notable that the average required time for iPSO and 

TLBO methods for optimizing of the current example are registered as 115.98 s and 396.07 s, 

respectively. However, as the interaction level is much higher in TLBO due to learning phase the 

diversity index of TLBO is higher during whole optimization process. 
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Figure 2. Convergence history for iPSO and TLBO over shifted sphere function optimization 
 

 
Figure 3. Diversity indexes for iPSO and TLBO over shifted sphere function optimization 

 

6.1.2. Shifted Rosenbrock’s Function 

 
As shown in Figure 4 the shifted Rosenbrock’s function is addressed as next example. The dimension, D, 

of the function is taken as 30. The formulation of this function is given in Eq. (13). In this equation O 

indicates shifted global optimum.  
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Figure 4. The shifted Rosenbrock’s function 
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The convergence history and diversity of the optimization process for current example are given in Figs. 

Figure 5-Figure 6, respectively. As can be seen from convergence history plots, the iPSO similar to prior 

example outperforms the TLBO with both faster convergence rate and final solution in optimizing the 

Rosenbrock’s function. It is remarkable that, average run time for iPSO and TLBO methods for solving 

the current example are 201.1 s and 502.09 s, respectively. The diversity index of TLBO is higher than 

iPSO nearly during whole optimization process; this can be result of learning phase of TLBO. The 

rationale behind this issue is that TLBO in each iteration performs both exploration and exploitation 

search strategies separately through the teaching and learning phases, respectively. Consequently, high 

number of local search performed during the learning phase (i.e. in each iteration) causes the agents 

continuously affected by each other rather than just going toward the best agent (i.e. teacher), 

subsequently, such a strategy provides higher diversity level among the agents. 
 

 
Figure 5. Convergence history for iPSO and TLBO over Rosenbrock’s function optimization 
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Figure 6. Diversity indexes for iPSO and TLBO over Rosenbrock’s function optimization 

 

6.1.3. Shifted Rotated Griewank’s Function 

 

For last mathematical problem as shown in Figure 4 the Shifted Rotated Griewank’s Function is 

addressed as next example. The dimension (D) of the function is taken as 30.  

 

 
Figure 7. The Shifted Rotated Griewank’s Function 

 

The formulation of this function is given in Eq. (14). 
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The convergence history and diversity of the optimization process for current example are given in Figs. 

Figure 8-Figure 9, respectively. As can be seen from convergence history plots, the iPSO similar to prior 

example outperforms the TLBO with faster convergence rate in optimizing the Shifted Rotated 
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Griewank’s function. It is notable that, average required time for iPSO and TLBO methods for current 

example are 48.2 s and 201.87 s, respectively. Since the interaction level is higher in TLBO, due to 

learning phase, the diversity index of TLBO is higher during whole optimization process. 

 

 
Figure 8. Convergence history for iPSO and TLBO over Shifted Rotated Griewank’s function 

optimization 

 

 
Figure 9. Diversity indexes for iPSO and TLBO over Shifted Rotated Griewank’s function optimization 

 

6.2. Truss Structures Optimization 

 
Two typical truss optimization examples are considered to demonstrate the feasibility and validity of the 

iPSO and the TLBO for solving size-topology optimization of trusses. For each example, the optimization 

process is repeated 30 times. At every turn, the population used in the solution process is generated 

independently and randomly. The value of TF is taken as 1 in the TLBO process.  
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6.2.1. 11-Bar Truss Structure  

 

The ground structure of 10 bar truss is given in Figure 10. Size and topology optimization of this structure 

is already studied by Deb and Gulati [39] and Hajela and Lee [42] using genetic algorithms (GA) and 

Miguel et al. [7] using firefly algorithm (FA) via a multimodal approach. The design parameters adopted 

in the present optimization process are taken as the modulus of elasticity E=10000 ksi (68947.59 MPa), 

density of the material ρ=0.1 lb/in
3
 (2768 kg/m

3
), allowable stress in both tensile and compressive σa=±25 

ksi (172.36 MPa), and maximum displacement dmax=±2 in (±5.08 cm). (in all principal directions). In 

addition, the cross sections can be selected from [0, 35] in
2
 ([0, 225.8] cm

2
) interval which specify the 

continuous search space for sizing variables. 

 

 
Figure 10. Ground structure 

 

 
Figure 11. Optimum solution for 11-bar truss structure 

 

Table 2 comparatively summarizes the results found by different techniques for current example. As can 

be seen from this table the iPSO found the lightest structure among all other referred methods. 

Particularly, iPSO in comparison with TLBO could find the structure which is 16.95 lb (128.38 N) 

lighter. Such difference for such a simple example can be remarkable. The required duration for iPSO and 

TLBO for optimizing this problem are 210.22 s and 552.91 s, respectively. The convergence history 

diagrams for both iPSO and TLBO are given in Figure 12. In this figure the best, worst and mean 

diagrams indicate the history of the best agent, the worst agent and mean value of all available agents in 

the colony, respectively. Also, Figure 12  demonstrates that convergence rate of both algorithms nearly is 

the same (780 OFEs for iPSO and 1100 OFEs for TLBO) but it is astonishing that TLBO shows 

significant inconsistency in finding final solution. Such that standard deviation for iPSO is 90.12 lb 

(581.41) while this value for TLBO is 680.34 lb (4389.28 N). 
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Table 2. The results comparison 

Member 

number 

Member areas, in
2
 

    Current Study 

FA [7] GA[42] GA [43] GA [39] iPSO (cm
2
) TLBO (cm

2
) 

2 24 24 30.1 29.68 21.419 (138.19) 22.271 (143.68) 

3 20 21 22 22.07 21.893 (141.24) 20.947 (135.14) 

4 6 6 15 15.3 6.1233 (39.51) 6.038 (38.95) 

5 30 28 6.08 6.09 29.651 (191.3) 31.023 (200.15) 

6 16 16 21.3 21.44 14.695 (94.81) 17.367 (112.04) 

9 21 22 21.3 21.29 21.34 (137.68) 19.243 (124.15) 

Weight (lb) 4912.85 4942.7 4900 4899.15 4880.36 4897.32 

Weight (N) 21853.44 21986.216 21796.27 21792.50 21708.91 21784.36 

 

  
                       (a)                                            (b) 

Figure 12. Convergences histories of the (a) iPSO and the (b) TLBO methods 

 

6.2.2. 39-bar Truss Structure  

 
As last example a 39 bar two-layer truss structure is addressed. This example was previously optimized 

by Deb and Gulati [39] using GA. Configuration of the ground structure for this example is depicted in 

Figure 13, wherein the overlapped members are displayed with a little gap to clarify the visualization. 

Member’s connectivity is presented in Figure 13. To maintain symmetry members are grouped 

symmetrically about middle vertical member. So, members are placed into 21 independent groups. The 

cross section variables considered within the continuous search space (Amin= -2.25 in
2 
(-14.51 cm

2
) ≤ Ai ≤ 

Amax= 2.25 in
2 

(14.51 cm
2
)). A negative cross section indicates that its corresponding element should be 

removed. To give the equal chance for both existence and eliminations of the elements, the size search 

space is selected symmetric around the origin (A=0). The modulus of elasticity is 10000 ksi (68947.59 
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MPa) and the material density is 0.1 lb/in
3
. Allowable stresses in both tensile and compressive are 20 ksi 

(137.89 MPa). The nodal displacements are limited to ±2in and critical area є=0.05 in
2 
(0.32 cm

2
). 

 

  
Figure 13. Ground structure for 39-bar truss structure 

 

  
(a) (b) 

Figure 14. Convergences histories of the TLBO with a) 30 and b)100 agents 
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Figure 15. Convergences histories of the iPSO 

 

In this example firstly, iPSO and TLBO both start from same number of initiated agents (as 30 agents) 

and both algorithms run for 30 times and best results are reported. The obtained optimal structures for 

iPSO and TLBO are shown in Figure 16 and Figure 18, respectively. In this figure the cross-sectional 

areas are shown in in
2
, and for more clarity in parentheses they also reported in cm

2
 form. As the structure 

is symmetric, these sections are shown for half of structure to prevent complexity in the figures and 

overlapped members are shown with a little gap. Based on this figure the iPSO can find highly lighter 

structure than TLBO. Also, the iPSO outperforms the TLBO in the number of objective function 

evaluations (OFEs), since iPSO required 16000 OFEs while the TLBO needs up to 60000 OFEs. Also, 

computational time for iPSO and TLBO on solving the current example are 640.55 s and 3025.59 s, 

respectively. In order to decrease the sensitivity of TLBO to the number of initial agents, the TLBO is run 

one more time but with a colony consist of 100 number of agents. In later run, TLBO within the 3041.95 

seconds could find more optimal structure. This structure and corresponding cross-sectional areas of the 

members are also presented in Figure 17. As can been seen in latter case the TLBO runs with a population 

size nearly five time larger than the number available variables of the problem. Also, it needs 80000 

OFEs which is considerably higher than required OFEs for iPSO. 

Since several topologies can be obtained for this example, rather than any detailed table just the final 

solutions (final value of objective function) obtained by different methods are tabulated in Table 3. The 

achieved optimal topologies and cross-sectional areas are addressed in Figs Figure 16-Figure 18. Based 

on the reported results in Table 3, FA method acquires the lightest structure in comparison with all other 

cited methods. However, it should be noted that in the related study [7] the accuracy for continuous sizing 

variables for FA is accepted up to nine digits after decimal, while to make a fair comparison, this 

accuracy is taken up to two digits after decimal in this study. For current example iPSO is considerably 

superior than TLBO in both convergence rate and final solution. The standard deviation for iPSO is 180.3 

lb and this value for TLBO is 199.22 lb (886.17 N) and 197.21 lb (877.23 N) for the first case (i.e. TLBO 

with population size=30 and the second case (i.e. TLBO with population size=100), respectively. Thus, 

the stability of iPSO nearly is higher than TLBO. It is notable that via implementing the proper velocity 

control strategies for iPSO lighter structure can be founded however to provide an impartial comparison 

condition any velocity control is not applied.  
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Figure 16. Optimum solution obtained by TLBO with 30 agents in form of in

2 
(cm

2
) 

 

 
Figure 17. Optimum solution obtained by TLBO with 100 agents in form of in

2 
(cm

2
) 

 

 
Figure 18. Optimum solution obtained by iPSO in form of in

2 
(cm

2
) 
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Table 3. The results comparison 

   Current Study 

Method GA [39] FA [7] iPSO 
TLBO 

(Pop=30) 

TLBO 

(Pop=100) 

Weigh (lb) 196.54 193.54 194.99 244.83 197.31 

Weigh (N) 874.25 860.90 867.35 1089.05 877.67 

 

7. CONCLUSIONS 

 

The current study deals with comparison of two metaheuristic optimization algorithms, teaching and 

learning based optimizer (TLBO), and integrated particle swarm optimizer (iPSO). TLBO and iPSO 

respectively are the two-phase and single-phase algorithms. To test their performances one unimodal, two 

multimodal mathematical functions and two combined size and topology truss structures optimization 

problems are addressed as test problems.  
 

Based on the attained results for mathematical functions optimization, the iPSO outperforms TLBO on 

both convergence rate and final solution. However, due to learning phase of TLBO the diversity of this 

algorithm is higher than iPSO. The efficiency and applicability of iPSO and TLBO on truss optimization 

problems indicate that iPSO demonstrates superiority in comparison with TLBO in size and topology 

optimization of truss structures. Based on the all results achieved for all test cases the single-phase 

integrated particle swarm optimization (iPSO) overlay is superior to double-phase teaching and learning 

based optimizer (TLBO). 
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