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In the present paper, we give a generalization of rational type Baskakov operators. We obtain
Received: 25/07/2017 the order of approximation of continuous functions having polynomials growth at infinity by
Accepted: 14/03/2018 using the modulus of continuity and prove the theorem on weighted approximation on all

positive semi-axis for these operators.
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1. INTRODUCTION

Let ¢, : C—>C, n=12,3,.., beasequence of functions having following properties:
i) ¢, (1=12,3,...,) isanalytic on domain D, containing the disk B, = {z eC: |z-by|< bn}
suchthat limb, = oo;

nN—o0
ii) ,(0)=1, forall neN;
iii) @, is completely monotone on [0,b,], ie., (1)@ (x)>0 for k=0,1,2,..;
iv) there exists a positive integer m(n), such that ¢ (er,X) =—Ne, @l (@, )AL+ i (@0 X)),

x€[0,b,] and , ,(0) convergences to zero as n — couniformly in k (k =1, 2,...);

(k)
V) |imL=1andJ_1 0( ).

n—=m(n) n“@y (@) na,
Under above conditions, we will considered rational type Baskakov operators as follow:
k)
LonAn(f:x) = ! z (0)( X f( ), 0<x<b,. 1)
®n (an X) k=0 ﬂ

Obvious that L2"/n translated continuous function with the growth condition f (x) =O(x?) at infinity.

Note that, if we substitute b, =b in the conditions (i) — (iv),then we obtain following the generalized
rational type Baskakov operators defined by Ispir and Atakut [1]
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(k)
an,ﬂn . ¢n (0)
Lo (f5x) = ( 02 Z a

and by simple calculatlon one have,
Lan/n (1, x) = 1,

(e, X)" f(ﬁL), x>0

n

a anX
Lnn,ﬁn (t;l) §0n( )
ﬁn (pn( aX)’
ﬁn Pn (a X) ﬂn (pn (a X)
Baskakov type operators and their generalizations were investigated by many author (see, [1,2-7]). In [1],

the authors estimated the order of approximation for the operators defined by (1) and obtained a
Voronovskaja type asymptotic formula and pointwise convergence in simultaneous approximation in the

case b, =b. In the present paper we study convergence properties of the of the operators Lﬁ”’ﬁ” in

polynomial weighted spaces when the interval of convergence grows as n-—oo. We will obtain an
estimate for these operators on any finite interval by using the modulus of continuity of function f and
will prove the theorem on weighted approximation on all positive semi-axis.

Note that, as the classical Korovkin theorem [8], the weighted Korovkin theorem(Theorem 1.) proved by
A. D. Gadjiev in [9,10] plays an important role for weighted approximation in the weighted spaces and
we will use special case of this theorem.

Let o, (X)= (1+ x2m )_1 (m e N)and B,,,[0,0) be the space of all functions, satisfying the inequality
on ([ f () <M;, x>0

where M is a constant depending on function f. We denote by C,,[0,0) the spaces of all continuous
functions belonging to B,,,[0,0)and denote by C,,,[0,00) the spaces of functions belonging to
C,[0,0) such that lm o (X) f(X) <.

Theorem 1.([9,10]) Let the sequences of linear positive operators L, acting from C,,[0,) to

B, [0,0) satisfy the conditions:

=0, v=0,m,2m

where
|f ||c2m[o,oo) = lei(F))Gm Ol ()

then for any function f € Cj,,[0,0)
i s ()= Pl =0

and there exists a function f* eC,[0,00)/C,[0,00) such that

C2ml[0,)
holds.

As we shall see in the next section, we will obtain approximation properties for the operators (1) on whole
positive semi-axis by using this theorem and the order of approximation on any finite interval will be

given by the modulus of continuity denote by: for f €C,,[0,0)
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w,(f;5)= sup {[f(t)—f(x)|: t—x <o}

t,xe[0,4
A well-known propertles of modulus of continuity is: if f is uniformly continuous on [0, ﬂ,], then
lim; ,o,(f;0)=0.

2. AUXILIARY RESULTS
To obtain approximation properties of the operators defined by (1), we need some useful properties of

these operators given by following Lemmas.
Lemma 1. Forany me Nandx [0,b,], one have

Lm0 (t™; x) = g(m, ez, )X™ +Z_1”’kﬂ"‘() 2)
k=1 n

where wy (X) (k=12,...,m)is bounded function on any finite closed interval and lim g(m,e,,) =1
n—o0

Proof. We prove by using the induction method. It is easily seen that the result is true when m=1.
Now, suppose that (2) hold for any positive integer m . We shall show that the result (2) is true for m+1.
For each m, choose an constant &; (i =1,2,...,m) such that the equality

m+1 i
k _ k(k- k— k
(ﬁ_nJ ( 1) m+(1 m) z m+1 i (ﬂnJ )

holds. Therefore, by using (i), (Iv) (v) and (3) we obtain

an,fBn (3 m+L. 1 q)nk)((_)) " Lmﬂ
Lan P (@™ x) = p— X)Z q (@) (ﬂn)
1 200 kk-D..k-m) o a (k)
(Dn(a X)z k! () { r§n+1 %,Bmﬂf ﬂ
MO
= r%1+1(0 (i X)kZO kl(o)( XKk (k=1)...(k —m)
& o (0) ‘
+§ m+1—i ¢n(a X)Z k! ( ap, ) (ﬂnj
s £ s S B i

®n (a X) i=1 ﬂn

(m+1)
[ Pn (X)) | &
_(ﬁ’n Xj 22 (@X) +§ﬂm+“

By

setting «, =~ and using condition (v ) we have
n

Lon +Pn (t X).
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m+l ()
1 a, ®, (a,X)
pmdan) = (ﬂnj 00 (@)

_ o™ (@)

", (@,X)

=1+ O(—).
n

n
SO we can write,

LonAn (™ x) = g(m+1,a )xm+1+z L

i=1 Pn

Lan/n (' x)

=¢(m+1,an)xm+1+i%{¢(i’ n)X +§l/jk|( )}
i=1 Pn

where each w, ; (X) (k=1,...,i—1 i=1,...,m) is bounded function. Since ¢(i,an)Xi is also a bounded

function on any finite interval, we can also denote /g ; (X) = ¢(i,0¢n)xi . Then we have

i-1 (X
Lon Ao (™ x) = g(m+1, )xm+l+z jﬂ_ zl//k"k( ).
i=1 Pn k=0 Sy

On the other hand, by expanding the sum in the last equality, we get the following form:

a . a w12(X)
Lnn'ﬂn (tm+l;X) — ¢(m +11an)xm+l+ﬂ—§nl//0,l(x)+_mzl (l//O,Z(X)_{- 1182 J-l—
n n "

LB ( qu_l(x)+t//1,;;1(x) LV znT_Zl(x)j

B
+_{l// ( ) l//l,m(x) - V/m—l,m(x)j
o B

B
= ¢(m +1’ an)xm+l " aml/lo,m (X) N amlWO,ml(X); aml//l,m (X) N
B ﬂn

N W1 (X)+awy o (X) +.+ AW g m(X)

By

if we denote,

l//l,m+1(x) = am'r//O,m (X)’
l//2,m+1(x) = amfll//o,mfl (X) + a-ml//l,m (X),

l//m,m+1(x) = alV/O,l(X) + azf//l,z (X) +...+ a-me—l,m (X)’
then we have

Lan +Pn (tm+1 X)=p(m+1,a, )Xm+1+zlz”k m( )
k=1 :Bn

this establishes desired result and completes the proof of the lemma.
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Lemma 2. The operator L2/ maps from C,,,[0,b, ] to B,,,[0,b,] .
Proof. Let f €C,,[0,b,]} Then

Lin/ ()| = sup o (x)

BIO.bn]  o<x<hy

sup o, (X)Lam (| £ x)

0<x<bp

M Sup oy (X)LEM 0 (L+2);%)

0< Xﬁbn

L/ (£3)

IN

IN

< M{1+ sup o, (x)Len/n (tzm;x)}

OSXSbn
Since wy 1, (X) is bounded function, it can be shown easily that for all k =1,...,m—1 the following
inequality
k
Wion (9] <C,, (@L+x")
where Cy, is a constant depending on function y .., holds. Then there exists an constant C such that
sup o, (X)L A (2™ x) < C.
0<x<bp
Therefore, we have

Len-Fn (f)HB[O L <M @+0)

This completes the proof of the lemma.

3. MAIN RESULTS

In this section, firstly we investigate the order of approximation of continuous function by the operator
L‘,’f”’ﬁ” defined by (1) on any finite interval of positive semi-axis.
Theorem 2. Let f €C,,, [0, banhen for all sufficiently large n, the inequality

an B (§Y_ .
L (6) = 1]y <t Dz (Fi7(nm)
holds: where 7(n’m):maX{a(Zm,n)—2a(m,n)+q1’2m,$}
n
C&™(4
¢ ()=6M, @+ amy2 F B L,
w/1+1(f;1)

and

o m-1 . 2m-1 1/2m
CE"(2) =max{ Sup | 37 icom () = 2" W+ X [ian | A
<x< k=1 k=m

Proof. Clearly, for x [0, 4] and t & (0,0) we can divide the [0, 1]x(0,0) into the two subsets as
follows:
B, ={(xt): 0<x<A, A+l<t<ow |,

B, ={(x,t): 0<x<A, 0<t<A+1}
Firstly, we consider (x,t) € B;. It is easily seen that
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|f(t)— f(X)|S |f(t)|+|f(X)|
<M (2+t2™ + X"
<M (2+ (@™ =x™)2 424" (™ —x™) +242™)

since X< and t>A+1, wehave X" <A™ and t™ > (1+1)™ , thus we get t™ —x™ >1. Using the
this conclusion, we obtain

[T = FO)[< Mg (@+ A" (™ —x™)? + 2L+ A™)* (t" - x™)?)
<3M; (@L+AM)2 (™ —x™)2,

If (x,t) eB,,we get

()= F(X)|< @, (F3ft—x)

— 5
< [1+|t5—x|jwm(f;5n). ©)

by using (4) and (5), we have

[F@O- 0] <3M ¢ @+ AN (" ~x")? +(1+ 'tgxqwm(f 5,) ©)

n

(4)

forany t >0 and 0 < x < A. Now, by applying the operator Lﬁ”'ﬂ” to both sides of (6) and, use
Holder's inequality to get
Lan A0 (£ (t)— £ ()} X)< 3M @+ A™)2LenAn (1™ — x™)2;x)

+,.,4(F;6, )[1+ % [L"f]‘n Pn ((t _x)2m )]1/sz

n
and using the inequality (t—x)*™ < (t™ —x™)?, we have
LA ([ () = £ (0 X) < BM ¢ L+ )L (™ —x™)2; x)

a 12m (7)
v, (15 )[1+—[L nsn (¢ - xm)2 )| J
n
Now, we consider the term L%n/n ((tm -x™) ) Using (2), one get
2m-1 X
Lﬁnvﬁn ((tm —Xm)2)= ¢(2m’an)X2m n Z l//k,;nll( )
k=l n

(yﬁ(m, a,)x" +Z_:1V/kﬂm( )J+x2m

n

<|p2m,a,) - 26(m, e, ) + 1 x°"

m-1
+ﬂi{ Z Wi.om (X) = 2X "y ()| + Z ‘Wk,m(x)‘:|
hence,
sup La (e - x™)? )< |g(2m. ;) - 2(m, ) +1| 2"
0<x<4
+ios<u£)i|: kZ:ka 2m (X) 2X Yik,m (X) + Z ‘l//k " (X)‘:|

therefore,
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1/2m

( sup Lon/n ((tm - xm)z)j

0<x<4

1/2m
<C, () [p2m, ) - 26(m, ) + 1" + [; ]

where C; (4) given as above. Setting &, = max {¢(2m, a,)—2¢6(m, ) +]jll2m : (ﬂ%)uzm } we see that
Lan/n (1™ —x™)? )< (5,C (4))°™ and lim 5, =0,
N—0
Using this result in (7),
Lan (£ () — £ (0 X)<3M L+ A™)2(5,C ()" + 29,4 (F:5,)
and we have

Lo ()= 1] M @ AP E,C (D)™ +20,(1:6,). ®)

Since 0,, & 0 as n — oo, for sufficiently large n, we have 5{,“" < J, and by using properties of the

modulus of continuity J, < ®,.1(f;0,). Thus, from (8) we obtain the desired result which

2
wy1(f:1)
gives the proof.

In order to result on weighted approximation by operators (1) in whole semi-axis [O, oo), we have the
following theorem:

Theorem 3. For any function f €C,,.[0,00), we have

lim sup o, (X)L (f;x)— f(x)‘_

n—oo 0<X<b

Proof. Recall that according to the theorem 1., we have to show that the conditions

IimHL‘;‘”'ﬂ” (t";x) - x" —0, v=0,m,2m
n— Com[0,:)

hold. Obviously, the result is true for v =0. We will prove only for v = m, since the other case, for
v =2m, can be proven easily in a similar manner. Using (2) we can write

m-1
LonAn (£ X) — X" <|p(m,e,) -1 sup o, (X)X™ + sup Zam(x)l/jkm( )
2ml0,bn] 0<x<bp 0<x<bp k=1 n

<[p(mag) 1+ 2 sup S o (O m (X,

n 0<x<hy k=1
Since forall k =1,2,...,m-1, ‘l//k,m (x)‘ <C, @+ x*), we have r:Z_llam (X)wy m (X) < C. Therefore, we
get

ST

C
<lp(ma,)-1+—
C2m[0.bn] p(m. )] B
and this gives desired result.
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