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1. INTRODUCTION 

 

Let :n  CC , ,..,3,2,1n   be a sequence of functions having following properties: 

 )i  n   ,...,3,2,1n   is analytic on domain  nD   containing the disk   nnn bbzzB  :C   

such that  


n
n

blim  ;  

 )ii ,1)0( n   for all  ;Nn   

 )iii n   is completely monotone on  ],,0[ nb   i.e.,  0)()1( )(  xk
n

k   for  ,...;2,1,0k   

 )iv   there exists a positive integer  ),(nm   such that  )),(1)(()( ,
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)(
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k
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k
n   

 

],0[ nbx  and )0(,nk   convergences to zero as  n uniformly in k  ;,...2,1k   
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Under above conditions, we will considered rational type Baskakov operators as follow: 
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 (1) 

Obvious that nn
nL

 ,
translated continuous function with the growth condition  )()( 2xOxf    at infinity.  

Note that, if we substitute bbn   in the conditions ),()( ivi  then we obtain following the generalized 

rational type Baskakov operators defined by İspir and Atakut [1] 
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and by simple calculation one have,  
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Baskakov type operators and their generalizations were investigated by many author (see, [1,2-7]). In [1], 

the authors estimated the order of approximation for the operators defined by (1) and obtained a 

Voronovskaja type asymptotic formula and pointwise convergence in simultaneous approximation in the 

case bbn  . In the present paper we study convergence properties of the of the operators nn
nL

 ,
 in 

polynomial weighted spaces when the interval of convergence grows as  .n   We will obtain an 

estimate for these operators on any finite interval by using the modulus of continuity of function f and 

will prove the theorem on weighted approximation on all positive semi-axis. 

 

Note that, as the classical Korovkin theorem [8], the weighted Korovkin theorem(Theorem 1.) proved by 

A. D. Gadjiev in [9,10] plays an important role for weighted approximation in the weighted spaces and 

we will use special case of this theorem. 

 

Let    121)(


 m
m xx )N( m and ),0[2 mB be the space of all functions, satisfying the inequality 

0,)()(  xMxfx fm  

where fM is a constant depending on function .f  We denote by ),0[2 mC the spaces of all continuous 

functions belonging to ),0[2 mB and denote by ),0[2 
mC  the spaces of functions belonging to 

),0[2 mC such that  .)()(lim 


xfxm
x

   

 Theorem 1.([9,10]) Let the sequences of linear positive operators ,nL acting from ),0[2 mC to  

),0[2 mB satisfy the conditions: 
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where  
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then for any function  ),0[2  
mCf   

0)(lim
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 mCn
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ffL  

and there exists a function  ),0[/),0[ 22  
mm CCf   such that 

1)(lim
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holds. 

 

As we shall see in the next section, we will obtain approximation properties for the operators (1) on whole 

positive semi-axis by using this theorem and the order of approximation on any finite interval will be 

given by the modulus of continuity denote by: for ),0[2  mCf   



571 Çiğdem ATAKUT, İbrahim BÜYÜKYAZICI / GU J Sci, 31(2): 569-576 (2018) 
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A well-known properties of modulus of continuity is: if f is uniformly continuous on  ,0 , then 

.0);(lim 0   f
  

 

2. AUXILIARY RESULTS 

 

To obtain approximation properties of the operators defined by (1), we need some useful properties of 

these operators given by following Lemmas. 

 Lemma 1.  For any Nm and ],0[ nbx , one have 
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where  )(, xmk    ),...,2,1( mk  is bounded function on any finite closed interval and 1),(lim 


n
n
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 Proof. We prove by using the induction method. It is easily seen that the result is true when  1m . 

Now, suppose that (2) hold for any positive integer m . We shall show that the result (2) is true for 1m . 

For each m , choose an constant ia ( mi ,...,2,1 ) such that the equality  
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holds. Therefore, by using ( ii ), ( iv ), ( v ) and (3) we obtain  
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    and using condition ( v ) we have 
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where each )(, xik ( ;1,...,1  ik mi ,...,1 ) is bounded function. Since  
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On the other hand, by expanding the sum in the last equality, we get the following form: 
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this establishes desired result and completes the proof of the lemma. 
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 Lemma 2. The operator nn
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 ,
maps from  nm bC ,02  to ],0[2 nm bB  . 
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This completes the proof of the lemma. 

 

3. MAIN RESULTS 

   

In this section, firstly we investigate the order of approximation of continuous function by the operator 
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defined by (1) on any finite interval of positive semi-axis. 
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Firstly, we consider  .),( 1Btx   It is easily seen that  
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and this gives desired result. 
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