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Article Info Abstract

In this paper, we propose a mixture model containing bivariate Weibull distributions—the
Received: 27/10/2017 Marshall-Olkin bivariate Weibull (MOBW) and the Block-Basu bivariate Weibull (BBBW)—
Accepted: 26/02/2018 because each of these distributions alone is inadequate for explaining a data set when certain

special situations occur in bivariate lifetime data sets. We refer to the proposed model as
Mix_BW. To estimate the model parameters, we use the expectation-maximisation (EM)

Keywords algorithm in an adapted form we term the Mix_EM algorithm. We provide illustrative examples
with real and simulated data sets to demonstrate the applicability of the proposed Mix_BW
Block-Basu bivariate model.
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1. INTRODUCTION

In lifetime and reliability data analyses, due to their flexibility and definitions for continuous positive
random variables, the exponential, Weibull and gamma distributions are widely used to model univariate
homogeneous data. Mixtures of these distributions are also used to model univariate heterogeneous data
[4]. However, each of these distributions by themselves is inadequate for multivariate lifetime or
reliability data. Moreover, there has been insufficient research with respect to modelling multivariate
lifetime or reliability data. In recent decades, new bivariate exponential models have been developed in
response to the lack of effective models related to the structure of bivariate lifetime data. To model
bivariate lifetime data, researchers Gumbel [7], Freund [6], and Marshall and OIlkin [12] proposed
bivariate exponential distributions. In subsequent studies, Block and Basu [1] obtained bivariate
exponential distributions from the Marshall-Olkin bivariate exponential (MOBE) distribution by
removing the singular aspects and retaining only the absolutely continuous aspects. Diawara and
Carpenter [3] proposed a mixture of bivariate exponential distributions, investigated the properties of the
associated parameters and predicted the mixture elements. Weibull models are more flexible than
exponential models; so many studies have been conducted using Weibull models. Lu [11] proposed
bivariate Weibull extensions of the MOBE distribution. Various bivariate Weibull models were examined
by Han [8], who also proposed a location-scale bivariate Weibull model for the lifetime modelling.
Kundu and Dey [9] considered the Marshall-Olkin bivariate Weibull distribution and discussed the
application of the EM algorithm for computing maximum likelihood estimators. Kundu and Gupta [10]
extended the BBBE model to the Weibull model known as the Block-Basu bivariate Weibull and derived
the EM algorithm for computing the maximum likelihood estimators of the unknown parameters.
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The MOBW and BBBW distributions can be used on bivariate lifetime data, which occurs in many fields,
including medicine, biology, engineering and demography. However, these distributions are inadequate
when the data are heterogeneous. For heterogeneous data sets, mixture distribution models are appropriate
tools for modelling a wide variety of random phenomena. With this motivation, Calis et al. [2] considered
a mixture of MOBW distributions and calculated maximum likelihood estimators for the mixture using
the EM algorithm. However, the mixture of MOBW distributions is only appropriate for the data sets
including identical observations in each component. When there are heterogeneous data sets with two or
more components, one of the components may have identical observations whereas the other may not. In
this case, the mixtures of MOBW or BBBW distributions do not yield appropriate distributions, so
mixtures of MOBW and BBBW distributions may be a solution to this problem. In the present paper, we
propose a mixture model of bivariate Weibull distributions, including MOBW and BBBW distributions.
We refer to the proposed mixture distribution as Mix_BW. The remainder of this paper is organised as
follow: In Section 2, we provide detailed information about the proposed Mix_BW. In Section 3, we
perform parameter estimations of the Mix_BW distribution and present the steps of the EM algorithm.
We demonstrate the applicability of the proposed Mix_BW distribution on sample data sets with respect
to different situations, as well as a real data set, in Section 4. We conduct a simulation study to
demonstrate our results in Section 5 and we draw our conclusions in Section 6.

2. MIXTURE OF BIVARIATE WEIBULL DISTRIBUTIONS

To flexibly model data, mixture distribution models are used in situations where a single distribution is
insufficient or there is evidence of multimodality [5]. In the current study, we propose the Mix_BW
distribution to model non-homogeneous bivariate lifetime data.

The univariate Weibull distribution with the shape parameter «)0 and the scale parameter )0 has the
following probability density function (pdf) [13]:

foe =(X2,0)=atk®e™ )0  6)0 (1)

A Weibull distribution with the pdf given in Eq.(1) is denoted by VVE(a,H). Suppose U,, U, and U,,
respectively, are independent WE(a,4,), WE(a,/4,), and WE(a,A,) random variables. Define
X, =min{U,,U,} and X, =min{U,,U,}. Then, the bivariate vector (X;,X,) has the MOBW
distribution with the parameters «, 4,, 4, 4,.The joint pdf of X, and X, can be written as follows:

fWE(Xl;a'/ll)fWE(XZ;al/lo+ﬁ“2) O(X; (X, (0
fvosw (Xl’xz): fWEﬂ(Lxl;av/lo +ﬂ¢)fWE (Xz;a’ﬂz) O(X, (X (o0 @)
T a4 y) K=

A MOBW distribution with the pdf given in Eq.(2) is denoted as MOBW(a, Aoy Ay, ﬂ,z) [9], and the

BBBW distribution can be obtained from the MOBW distribution by removing the singular aspect and
keeping only the continuous aspects. Then the joint pdf of the BBBW distribution can be written as
follows:

_ CfWE(Xl;a’A’l)fWE(XZ;a’ﬂ’O+/12) 0(x{Xxp {0 3
Feoou (Xl'XZ)_{CfWE(Xl;a’ﬂo+/11)fWE(X2;av/12) O, (X, (0 )

h+th+h

where ¢ is a normalising constant and ¢ = —=——=——=_ The pdf given in Eq.(3) is denoted

A+
as BBBW(at, 4y, 4,4, ).
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In finite mixture models, it is assumed that the population consists of g (>2) distinct subgroups or
subclasses. Furthermore, a finite mixture density function can be written as follows:

9
F(xlp) =D m i (x16,) (4)
k=1

where the vector y = (r,6) contains all unknown parameters 7 =(r,...,7,) and 6=(4,,...,6;). The

function f,(x|6,) is called the mixture component density function for the 6, and =, parameters,
9

where 7, is the mixture weight of the k th class in which z, €(0,1) and Zﬂ'k =1. Thus, the pdf of the

k=1
Mix_BW model fy;, gy (% X,) can be written in the following form:

g
frix_sw (Xl’XZ)zzﬂ-j fBW(j)(Xl(J')'XZ(i)) ©)

j=1

where fBW(j)(xl(j),xz(j)) are component densities and z; are mixing proportions or weights, which are

nonnegative quantities that sum to one. Here we refer to the density given in Eq.(5) as a g-component
finite mixture density. When this density function is reorganised as a mixture of MOBW and BBBW
distributions, the model for the population with two subgroups can be written as follows:

fix_sw (le Xz) =7 froew (le X2)+ (1—7) feppw (Xl- Xz) (6)

in which the fy,ogy and fggge, are given, respectively, as follows:

fwe (Xl;aMO ) )fWE (Xz ;Ao Aogmoy + A2(mo) ) 0%, (X, {0
frosw (Xl’ X3 ) = fwe (X0 @m0 dovoy + Amoy ) Fwe \X25 @uo s Aogmoy O(X, (X (o0 ()
Ao
(MO) .
P 7 fwe (X'aMO’)’O(MO) +Amoy * ﬂZ(MO)) 0(x; =X, = X(0
omoy T Amoy * A2mo)

and

f (X X ): CfWE(Xl;aBBaﬂi(BB))fWE(XZ;aBB’/IO(BB) +’12('3'3)) 0% (X (o0 (8)
BBBW \”M1 A2 CfWE Xl;aBB’ﬂ’O(BB) +A’1(BB) fWE XZ;aBB’AZ(BB) 0<X2<Xl<w

In Egs.(7) and (8), MO and BB denote Marshall-Olkin and Block-Basu, respectively.
3. EM ALGORITHM FOR MIXTURE OF BIVARIATE WEIBULL DISTRIBUTIONS

In this section, we present the Mix_EM algorithm, comprising EM algorithms for the MOBW [9] and
BBBW [10] distributions for computing the maximum likelihood estimators of the unknown parameters
of the Mix_BW model. We define the bivariate data set as {(X,;, Xp3 )....,(X,» X5 )}, Which is clustered

using the k-means algorithm. We individually fit the BW distributions to each cluster using the EM
algorithm. After applying the k-means algorithm, we use the EM algorithm for MOBW, as given in [9],
for the sub-cluster containing observations of equal value. For the sub-cluster containing no observations
of equal value, we use the EM algorithm for the BBBW distribution given in [10]. We then appropriately
recluster the data using the weighted pdfs of the BW distributions. We provide the EM algorithms for the
MOBW and BBBW distributions in the following sections.
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3.1. EM for the MOBW

To obtain the maximum likelihood estimators of the MOBW component, we group the data in the sub-
cluster containing observations of equal value, as in the study of Kundu and Dey [9], using following
notations:

limo) = {' XlI(MO)<X2i(MO)}

I om0y =1l Xll(MO)>X2|(MO)}
Ismo) = lymo) Y l2(vo)

I (mo) = lo(mo) “ limo) Y 1a(mo)

where ‘IO(MO)‘:nO(MO)i ||1(MO)|=n1(MO)’ ‘IZ(MO)‘znZ(MO) and 1 (yo) = logwo) Y lymo) Y 1a(mo) - |II(MO)| for
I'=0,1,2 denotes the number of elements in the set I,). We individually fit the Weibull distribution to
each of the X0y, X,mo) and min{xl(Mo),Xz(Mo)} values. We take the average value of the shape
parameters of the fitted distributions as our initial guess for c(yq). Our initial guess values for Ay,

Aimo) and Aoy are 1.0, 1.0 and 1.0, respectively. We update the parameters Aovo), Aimo), @A Ay(mo)
using the notations given below:

_ Aomo) o)
Uymo) = ' Upmo) =5,
Ao(mo) * A2(mo) Ao(mo) + Aa(mo)
Ao(mo) A(mo)
V. = V =
1(0) Ao(vo) T A(mo) 2(vo) Ao(mo) + A(mo)

Equations (9)-(11) show the updated equations:

~

%(Mo)(a(mo))z No(mo) * ta(mo) (o) * Vl(MO)nZ(MO)

9
Zxawo Zxﬁ‘“ﬁo +ZX2| MO) ®)

iely(mo) iel, iel;
A n +V n
%(Mo)(a(lvlo))_ 1(MO) 2(Mmo0) 2(|v|o) (10)
Zx )+ le.
iely(mo) I3(mo)

~

ﬂz(Mo)(Ol(Mo))_ nzz(:r\:(o) . Ui(ngr;l(mo)
2i(M

'Elo (mMO) I3(mo)

11)

Using the updated values of l o(Mo) /11 mo), and A 2(Mo)» We obtain the following equation:
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h(MO)(a(MO))_|: ( { ZX InX (Mo) T Z 1. Inxll (mo) + me Ianl(MO)}

|E|0 (MO) |E|2(MO IEIl(MO)

MO
( ZX ) I Xi(vo +ZX1| ) IN Xii(mo)
i€ly(mo) I3(m

(12)
+A ( {.EZ‘X(I% In X (o), +IZ Xty 1N Xy, MO)]
_ { IZ: IN X, (o), +IZ(In Ximo) + I XZi(MO))ﬂ
1€lo(mo) 3(Mo)
By solving Eq.(12), we obtain ¢;), as shown in Eq.(13) below:
Gy = (nO(MO) + 2Nyo) + 2n2(MO)) (13)

hjy (o)

As the stopping criterion, we choose ‘a(‘,{,)lo) alue|(107°, as in the study by Kundu and Dey [9], when

updating the parameters. Here, “((;A)o) denotes the estimation of ¢y0) at the t th iteration.

3.2. EM for the BBBW

For the unknown parameters of the BBBW component, which contains no observations of equal value,
we use the same notations as those used in the study of Kundu and Gupta [10], as given below:

lyes) = Jli : Xli(BB)<X2i(BB)}
l2(es) = {i : Xli(BB)>X2i(BB)}

l(ge) = lies) Y loes)

Here, "1(55)‘ = Nygg) and ‘IZ(BB)‘ = Ny(gp)- ‘I,(BB)‘ for 1 =0,1,2 denotes the number of elements in the set
l(es)- We individually fit the Weibull distribution to Xygg), Xp@s) and min{Xyes), Xo(eg) |- As an
initial guess for a(gg), We take the average value of the shape parameters of fitted distributions. As the

initial guess values of Aygg), Aygs) and Aegs), we take 1.0, 1.0 and 1.0, respectively. Using the
following notations:

Uy(ss) = —%(BB) , Uyes) = —AZ(BB) )
Aoes) + A2 (es) Aoes) + Aa(es)
) = ——ER) Vo) = ——2EB)
Ao(es) + Mee) Ao(es) * Au(es)
= Ao(es) 1 1
No(eB) = (nl(BB) + nz(BB))— , Qy(BB) = — T +1
Hies) * Ao(ee) (/IO(BB) + Ayes) + ﬂ’Z(BB))a(TB) (ee)

we update the parameters Aqgg), Aygg) and Ay(gg) as follows:
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il No(es) + Us(es)Mi(es) + Vi(es)N
/10(38)(0‘(35))— 0(BB) 1(BB) l(BBB)B} 1(88)2(8B) "
ofes) ao BB le' + ZX2| BB)
Iel Iel1 (88)
) Nygg) +V n
ﬂi(BB)(“(BB))— (Bs) sz) 2o (15)
lel
I(BB
/{2(53)(0‘(53)) My(es) + UZ(BB)nl(BB) ”

o(sB) ao BB )+ ZX2|

I(BB

Using the updated values of /fo, /11 and iz, we obtain the following equation:

h(er)= ﬁo(a{ﬁoa{j‘ Inag + D x5 Xy + > xi I xli]

iel; iel,

+ ii(a){ﬁoag‘ Inag + > xf Inx, :I + /iz(a{ﬁoag Inag + > x5 In xzi (17)

iel iel

—|:ﬁ0 Inag + Y Inx; +> I xzi

il iel
By solving Eq.(17), we obtain ¢gg) as follows:

. (nO(BB) +2Ny(gg) + 2n2(BB))

T ) “8’

As the stopping criterion, we choose \a{QB) ‘+1f (107°, as given in the study of Kundu and Gupta [10],

for updating the parameters. Here, a((tB)B) denotes the estimation of g at the tth iteration.

After estimating the parameters of the MOBW and BBBW distributions for the subclusters obtained using
the k-means algorithm, we update the label vectors. To update the label vectors, we consider the EM
algorithm containing two EM algorithms for all the observations except those of equal value that use the
pdfs of the sub-clusters.

As the stopping criterion for the log-likelihood value of the obtained parameters, we choose
‘(Ik —Ik‘l)/lk‘l‘(lo‘g. Here, 1 denotes the value of the log-likelihood function at the k th iteration for

each component.

We obtain estimators of the mixing proportions as follows:

7 = No(mo) + M(mo) + N2(mo) and 7, = Mygs) + Na(gB) (19)

n n

The log-likelihood value obtained using the Mix_EM algorithm for all the data is given in Eq.(20), as
follows:

I =7 Iog(fMOBW (Xl(MO)' XZ(MO)))+ 7T, Iog(fBBBW (Xl(BB)' X2(BB))) (20)
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The iterations stops for the Mix_EM algorithm when

| (+D —I“"(lO’S. Here, 19 denotes the log-
likelihood value obtained from i th iteration of the Mix_EM algorithm.

4. DATA ANALYSIS

For demonstration purpose, in this section, we present some results to verify how the proposed Mix_EM
algorithm performs on generated data sets with different sample sizes and parameter values. We conduct
analyses for three cases related to the sample sizes of MOBW and BBBW distributions, denoted as n,
and n,, respectively. We perform individual data generation processes for each of the distributions based

on their structures, as defined in section 2, and then merge the separately generated data sets. It is then
possible to apply the proposed EM algorithm for the MOBW distribution and that proposed for the
mixture of the two MOBW (Mix_MOBW) distributions to the data set generated according to the

Mix_BW distribution. In the application of the Mix_EM algorithm, we keep the initial values Aq;) =1,
Ay =1, Ay =1, (j =1, 2) and consider the average value of the shape parameters to be the initial value

of «. We take the stopping conditions provided in section 3. Tables 1, 2, 3 and 4 present the obtained
estimation results for the generated data sets.

In this section, we also include an analysis of a real data set containing mice data from Sreeja [14]. This
data set contains information for 300 rats divided into 50 male litters and 50 female litters, all which had a
size of three. In the data, each observation pair represents lifetimes (in weeks) for a pair of mice.

Case 1 (n,=100, n,=100): First, we consider Case 1. To obtain the parameter estimations using the
Mix_EM algorithm for the Mix_BW model, we generate a synthetic data set using the following
parameter values: aq), Agq), Ay, An), @nd 7y as 2, 2, 4, 6, and 0.50, respectively and ), Ay,
A2)s Aa2), and () as 5, 1, 2, 3, and 0.50, respectively. The contours and surface plots of the data set are
given in Figs. 1(a) and 1(b), respectively.

The components of Mix_BW are close to each other, as shown in the Figs. 1(a) and 1(b), in which the
synthetic data set is an example of a Mix_BW distribution. Table 1 shows the obtained estimation results
for the generated data set.
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(a)

(b)

Figure 1. (a) The contour plot of the generated data set with components close to each other (b) The
surface plot of the generated data set with components close to each other

Table 1. The estimation results for the Case 1

N AIC
Distribution | @) Aog) A Loy | Ty | %% | e | he | e | e
(logL)
129.252
MOBW 21599 | 0.5515 | 2.3516 | 2.8369 | - ; ; ; (60.626)
Mix BW | 2.0917 | 1.8806 | 4.5798 | 8.1728 | 0.485 | 5.3506 | 0.9608 | 2.4471 | 2.8367 | 0.515 (11458834142)

Next, we generate a data set in which the components of the Mix_BW distribution are far away from each
other, in contrast to the data set presented above. The contours and surface plots of the data set are given
in Figs. 2(a) and 2(b), respectively. From Figs. 2(a) and 2(b), we can see that components are far away
from each other, with respect to the data set generated from the Mix_BW distribution with the parameter

values ), Aon), Ay, 42y, and 7y being 2, 5, 5, 5, and 0.50, respectively, and a(y), Ao2), Ao), Ao2)s
and (2) being 10, 1, 0.3, 0.1, and 0.50, respectively. Table 2 shows the obtained estimation results for the
generated data set.
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Figure 2. (a) The contour plot of the generated data set with components far from each other (b) The
surface plot of the generated data set with components far from each other

Table 2. The estimation results for the data set with far from components

N AIC
Distribution | &) Aog) A b | Tw | 2 i) | A | A | P
(logL)
390.500
MOBW 1.8074 | 0.9465 | 1.4362 | 0.9658 | - - - ; ; - | (1o1.25)
. -155.764
Mix BW | 18922 | 49146 | 5.0475 | 39824 | 05 | 117813 | 05321 | 1.0425 | 03109 | 05 | oo

Case 2 (n, =120, n,=80): We generate a third synthetic data set using the same parameter values as those

used in the Case 1 to obtain components far away from each other with different sample sizes. Note that
in the Cases 2 and 3, all the parameters are the same for both distributions although their proportions
differ. The Case 2 is more likely a MOBW distribution than a BBBW distribution. The situation in the
Case 3 is vice versa. Figure 3 shows the contours and surface plots of the data set for the Case 2, and
Table 3 shows the obtained estimation results for the generated data set.
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Figure 3. (a) The contour plot for case 2 (b) The surface plot for case 2
Table 3. The estimation results for the Case 2
Distributi 2 2 2 A ) AIC
istribution ) 0(1) 1(1) 2(1) ) A(y) 0(2) ’11(2) 2(2) e)
(logL)
394.280
MOBW 2.1537 | 0.7074 | 1.3114 | 0.9077 | - - - - - - | (19314
) -167.153
Mix_BW 2.0379 | 5.0282 | 4.7744 | 5.0184 | 0.6 | 11.0154 | 0.7388 | 0.5613 | 0.1779 | 0.4 (92.5766)

Case 3 (n, =80, n,=120): To obtain the synthetic data set, we choose the same parameter values as those

in the Case 2. Figure 4 shows the contours and surface plots of this data set and Table 4 shows the
obtained estimation results for the generated data set.
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Figure 4. (a) The contour plot for case 3 (b) The surface plot for case 3
Table 4. The estimation results for the Case 3
istributi 2 ) ) 2 2 2 AIC
Distribution ) 0(1) 1(1) 2(1) ) (2 0(2) 1(2) 2(2) 7(2)
(logL)
369.760
MOBW 1.5923 | 0.9551 | 1.5704 | 1.1404 | - - - - (-180.88)
. -106.047
Mix_BW 2.0326 | 4.3063 | 6.3453 | 55713 | 0.40 | 11.7569 | 0.5799 | 0.5740 | 0.1501 | 0.60 (62.0235)

From Tables 1, 2, 3 and 4, we can see that the performance of the proposed Mix_EM algorithm is
satisfactory, based on the log L and AIC (Akaike information criterion) values, even when the Mix_BW
components are far away from each other. If a data set is distributed using a Mix_BW distribution, more
satisfactory results are obtained using the proposed Mix_EM algorithm to estimate the parameters.
Applying the EM algorithm for a MOBW distribution will not generate better results with respect to the
logL and AIC values. The EM algorithm for the Mix_MOBW distribution does not work for the
generated data set since there are no observations for the singular aspect of the MOBW distribution in one
of the components of the Mix_BW distribution.

Real Data (Mice Data): In this section, we analyse a data set from Sreeja [14]. The data represent the
lifetimes (in weeks) of a pair of mice. We divide all the data points by 100 to generate parameters that are
easy to understand. We obtain the maximum likelihood estimators and corresponding log L values for the
MOBW and Mix_BW distributions for the mice data using the EM algorithm. Figure 5 shows the
contours and surface plots of the mice data fitted to the Mix_BW distribution.
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Figure 5. (a) The contour plot of the mice data (b) The surface plot of the mice data

Table 5 shows the parameter estimations and the log L and AIC values of the models. As shown in the
table, the obtained logL and AIC values of the Mix BW distribution are 34.7050 and -51.41,
respectively, so we know that the Mix_BW distribution is more appropriate than the MOBW distribution
for this data structure.

Table 5. The estimation results for the mice data

N AIC
Distribution | &) Aot) Ao bo | Ty | %) | e | e | e | Fe
(logL)
44,8776
MOBW 6.4657 | 0.1908 | 2.6344 | 3.2433 | - - - - ; - | (6.4388)
Mix BW | 4.3532 | 0.00004 | 7.2636 | 29.1190 | 0.13 | 9.1637 | 0.2125 | 3.0515 | 3.9731 | 0.87 (3'5%510)

5. SIMULATION STUDY

In this section, we present some simulation results to determine how well the Mix_EM algorithm
performs for a mixture of MOBW and BBBW distributions with different sample sizes and parameter
values. For this purpose, first, we generate samples from the mixture of the MOBW and BBBW

distributions using the parameter values aq), /10(1), /11(1), and /12(1) as 5, 1, 2, and 3, respectively, and
) /10(2), /11(2), and /12(2) as 2, 1.5, 5, and 7.5, respectively, for equal and unequal sample sizes,
respectively. Next, we generate samples with the values ), 4oq), Aa)s 4on)s 2@2)s Zo2)r ), @nd
Ay2) 85 2,5,5,5,11,0.7, 0.8, and 0.3, respectively. We obtain parameter estimators for the mixtures of

MOBW and BBBW distributions using the Mix_EM algorithm. Tables 6 and 7 give the means and
standard errors of the EM estimators. The standard error values of the estimators obtained from different
sample sizes with different iteration numbers are remarkably close to zero. Moreover, as the sample size
increases, the standard errors of the estimators decrease. These results indicate that the Mix EM
algorithm can successfully estimate the parameters.
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Table 6. The means (AV) and standard errors (SE) of the EM estimators for samples generated from
mixture of the MOBW and BBBW distributions

Iteration number

100 500 1000
Parameters AV SE AV SE AV SE
7q)=0.5 0.5528 0.0099 0.5551 0.0043 0.5517  0.0029
BBBW %272 2.1004 0.0190 21073 0.0083 2.0980  0.0060
Parameters  4y;)=1.5 1.3385  0.0600 1.3064 0.0256  1.3234  0.0206
(n, =100) A()=5 49899 0.2092 4.9509 0.0919 4.9192 0.0634
Ao(2)=7.5 72543  0.3249 7.2954 0.1517  7.1900  0.1030
&) =5 5.7324  0.0977 5.7833 0.0422 57155 0.0312
MOBW Aoy =1 0.8169 0.0346 0.8134 0.0200 0.7905 0.0132
Parameters
(n,=100) =2 23521 0.0614 2.3652 0.0392 23358 0.0174
Ap(1) =3 3.5526  0.0844 3.6336 0.0400 3.6223  0.0282
Iteration number
100 500 1000
Parameters AV SE AV SE AV SE
74)=0.3 0.3672 0.0095 0.3562 0.0041 0.3584  0.0029
(2)=2 2.0851 0.0260 2.0987 0.0124 20775 0.0087
BBBW Ao2)=1.5 15937 0.0743 1.6539 0.0429 1.6206  0.0323
Parameters
(n,=60) “2)=> 43999 0.2886 4.8924 0.1487 4.6147  0.0965
Ao(2)=7.5 7.0760 05228 7.4678 0.2494 7.2795 0.1731
&) =5 5.4260 0.0553 5.3995 0.0293 54084 0.0174
MOBW Aoy =1 0.7910 0.0316 0.8435 0.0151 0.8613 0.0101
Parameters
(n,=140) =2 22705 0.0418 2.2726 0.0182 2.2694 0.0123
A1) =3 3.4978 0.0550 35129 0.0317 3.4601 0.0185
Iteration number
100 500 1000
Parameters AV SE AV SE AV SE
7q)=0.7 0.7256  0.0077 0.7265 0.0033 0.7255  0.0024
(2)=2 21206 0.0158 21053 0.0065 2.1116  0.0046
BBBW Ao2)=1.5 1.0832 0.0552 1.1531 0.0296 1.1346  0.0196
Parameters
(n,=140) ‘)= 52138 0.1362 51213 0.0566 5.2455  0.0441
Ay2)=T7.5 78316 0.2360 7.6224 0.1011  7.7047 0.0722
&) =5 59948 01311 5.9930 0.0509 59710 0.0413
MOBW — 7,)=1 0.7679  0.0473 0.7717 0.0211 0.8506  0.0246
Parameters
(n,=60) )= 24759 0.0901 24291 0.0314 23840 0.0231

o) =3 3.7338  0.1407 3.7422 00474 3.7180  0.0419
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Table 7. The means (AV) and standard errors (SE) of the EM estimators for samples generated from
mixture of the MOBW and BBBW distributions

Iteration number
100 500 1000
Parameters AV SE AV SE AV SE
71)=0.5 0.5055 0.0033 0.5092 0.0019 0.5080  0.0012
a(x=11 111301 0573 11.0735 0.0776 11.0389  0.0541

BBBW ﬂvo(z)=0-7 0.6612 0.0143 0.6632 0.0063 0.6633 0.0043
Parameters

(n,=100) Ay(2)=0.8 0.7786  0.0130 0.7723 0.0058 0.7708  0.0041
Ay(2)=0.3 0.2776  0.0088 0.2803 0.0038 0.2840  0.0029
o) =2 2.0169 0.0137 2.0514 0.0063 2.0410 0.0044
ngwi\t/grs Ao(r) =5 50802 0.1148 5.1387 0.0501 5.1902 0.0389
(n,=100) Ay(1)=5 53346 0.1433 55824 0.0773 55369 0.0548
Ap1) =5 52828 0.1301 5.6670 0.0808 5.5732 0.0583
Iteration number
100 500 1000
Parameters AV SE AV SE AV SE
7)=0.3 0.3085 0.0034 0.3119 0.0021 0.3087 0.0012

=11 10.8660 0.2504 10.8612 0.1128 10.9285  0.0740
BBBW  3,2=07 09277 01049 0.8610 0.0446 07914 0.0281

Parameters
(n,=60) Ay(2)=0.8 1.6423 03345 1.3187 0.1175 1.3477 0.0872
Ap(2)=0.3 12122 03523 0.9237 0.1371 0.9764 0.1107
o) =2 2.0332 0.0127 2.0264 0.0052 2.0337 0.0036
P;\faomi\t/grs Ao =5 49120 0.1282 4.8984 0.0492 4.9939  0.0365
(n,=140) M) = 48379 0.1389 51488 0.0709 5.1159  0.0469
Aya)= 49137 0.1540 5.1321 0.0763 5.0445 0.0481
Iteration number
100 500 1000
Parameters AV SE AV SE AV SE
7q)=0.7 0.7026  0.0020 0.7023 0.0007 0.7023  0.0005
o(z)=11 11.3163  0.1043 11.2349 0.0433 11.2419  0.0296
Pal?fn?gi\elzrs Ao(2)=0.7 0.6663 0.0121 0.6604 0.0049 0.6488 0.0036
(n, =140) A(2)=0.8 0.7665 0.0108 0.7687 0.0051 0.7626  0.0035
Ay(2)=0.3 0.2670  0.0074 0.2720 0.0033 0.2771  0.0023
o) =2 2.0330 0.0178 2.0685 0.0074 2.0477  0.0053
P;\fa?nBe\t/(\e/rs Ao =5 53306 0.1683 54164 0.0615 5.3228 0.0452
(n,=60) Ay(1)=5 5.2655 0.1663 55546 0.0739 55561  0.0533

Ap1) =5 5.3213 0.1433 56054 0.0726  5.5487  0.0602
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6. CONCLUSIONS

In this paper, we use MOBW and BBBW distributions in a new finite mixture bivariate model. Although
the data set structure that inspired this study is not wide enough, especially for data sets related to the
health field and modelled by the MOBW distribution, our proposed finite mixture bivariate model could
serve as an alternative for mixtures of the Marshall-Olkin bivariate Weibull distributions. We call the
proposed mixture distribution the Mix_BW. To estimate the model parameters, the EM algorithm is
adapted and it is called as the Mix_EM. We demonstrate the performance of the Mix_BW model and
Mix_EM algorithm in the analysis of a real data example and in a simulation study. Both the simulation
study and real data analysis confirm that the Mix_EM algorithm achieves satisfactory results.
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