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Two mixed randomized response models under
simple and strati�ed random sampling with

replacement schemes
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Abstract

We have proposed two mixed randomized response models for survey-
ing sensitive issues. The properties of proposed estimators are derived
under the simple and strati�ed random sampling schemes while con-
sidering completely and less than completely truthful reporting cases.
We proved that the proposed models are unconditionally e�cient than
[13, 15, 16, 20]. In order to get the idea of gain in e�ciency and model
stability numerical and graphical e�ciency comparisons are done for
the two models under two mentioned cases.
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1. Introduction

Surveys studies related to sensitive issues have wide applicability in social sciences.
One may need to conduct surveys on topics such as alcohol consumption patterns, cocaine
use, crime victims, illegitimacy, sexual orientation, weight/leprosy stigma, experience of
a mental illness associated with a particular race, religion, belief etc and much more. Sev-
eral researcher have considered these problems for instance [2, 3, 4, 5, 7, 9, 14, 23, 24, 26].
A major challenge confronting researchers in such studies is to gain respondent coopera-
tion without o�ending them and gather truthful response. Phillips in [18] has discussed
that the problem of response bias is likely to arise, even in the survey of innocuous nature
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and this bias can raise potentially in surveys that aim at gathering sensitive information.
Perhaps, survey sampling will become worthless unless we succeed in controlling response
and non-response bias. Long run advantages can only be achieved by carefully design-
ing survey procedures for sensitive issues. Otherwise, the results would not re�ect true
picture of the population and would be misleading due to presence response and non-
response bias. These two kind of bias are mainly raised due to two major factors refusal
to response and evasive answer bias.

The solution to these problems was originally suggested by Warner in [27] by securing
the privacy of the interviewee that eventually increases con�dence of respondent not only
to respondent but also to provide true response. From here a fully new technique was
emerged. A technique which aims at collecting the information on sensitive question
without disclosing the identity of the respondent is known as randomized response tech-
nique (RRT). Warner successfully presented estimate of the proportion of the qualitative
sensitive characteristic of population to improve respondent cooperation and to get re-
liable data. Greenberg et al. in [6] extended the idea of Warner to unrelated question
model. In [16], Moors tried to improve the precision of Greenberg et al. model. Unfor-
tunately, in an attempt to increase precision he neglects privacy of the model as he sets
probability P2 = 0 which means only one sample is required instead of two. This endan-
gers not only the randomization of the device but also this implies that the estimate for
innocuous question will be obtained through direct questioning. A detail discussion on
this can be found in [15]. Some authors for instance Mangat et al. and Singh et al. have
tried to improve the privacy problem of Moors model but with a drawback of high cost
in data collection.

Another attempt in this direction is the introduction of mixed randomized response
technique. Dating back to the history of these models Kim and Warde's [10] model is
the most famous one. Kim and Warde proposed the mixed randomized response strategy
by involving direct questioning to the procedure. Therefore, two devices R1 and R2 are
required for two answers `Yes' and `No' to the direct question respectively. R1 of this
procedure can be viewed as Greenberg et al. randomization device when proportion of
non-sensitive attribute is known such that only one sample is required to estimate one
unknown which is proportion of sensitive attribute. Whereas, Kim and Ward utilizes
Warner's device as R2. From this discussion it is clear that Kim and Warde's model is
better than Moors, Mangat et al. and Singh et al. models.

Nazuk and Shabbir [17] follows the same procedure with the di�erence that they keep
similar structure in R2 as that in R1 but with di�erent probabilities in both devices.
Singh and Tarray [20] provided the modi�cation of Kim and Warde's [13] by using Tracy
and Osahan [25] model as R2 instead of Warner's [27] device. Also, Singh and Tarray
[21] proposed mixed model by using Singh et al. [19] device as R2. Moving in the same
direction we plan to further improve the e�ciency of mixed randomized response models
thus models presented in this paper are cost e�ective. In addition, it is shown intuitively
that these models are superior than Moors [16], Mangat et al. [15] and kim and Warde
[13] under e�ciency as a performance criterion.

In Section 2, we aim at presenting two designs for sensitive surveys and derive the
estimators. A researcher must be prepared for incomplete and/or untruthful answers
while dealing with highly sensitive issues. Therefore, in Section 3, we have considered
less than completely truthful reporting problem for both models and have derived the
bias and MSE associated with them.

As Singh and Tarray [20] have proved that their model out performs Kim and Warde's
[13] model unconditionally. Therefore, this model seems to be a fairly good competitor of
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the proposed models. In Section 4, we have compared the e�ciency of both models alge-
braically and numerically under completely and less than completely truthful reporting
cases.

In Section 5, we have extended the proposed models to strati�ed random sampling
scheme. Since population is divided into L strata therefore, it is necessary to provide
minimum variance by optimally distributing the complete sample size among these strata.
In Section 6, we conclude this study by giving important comments.

2. Proposed models

In this section we have proposed two modi�ed mixed randomized response models.
The estimation of sensitive parameter is done by simple random sampling with replace-
ment (SRSWR) scheme by assuming that respondent will provide the truthful response.

2.1. Proposed model 1. Let a random sample of size n be selected using SRSWR.
Each respondent from the sample is instructed to answer the direct question: �Do you
belong to an innocuous group?� If the respondent answers �Yes� then he or she is in-
structed to go to randomization device R1 consisting of the statements (i) �I belong to
sensitive Group A� (ii) �I belong to an innocuous Group B� with respective probabilities
P1 and (1 − P1). If a respondent answers �No� to the direct question then he/she is
instructed to go to randomization device R2 consisting of the statements (i) �I belong to
sensitive Group A�. (ii) �Go to randomization device R3� with respective probabilities P2

and (1− P2). Randomization device R3 consists of statements (i) �I belong to sensitive
Group A� (ii) �Say Yes� (iii) �Say No� with respective known probabilities P , (1− P )/2
and (1 − P )/2. For the second and third statements, the respondent is asked to report
�Yes� or �No� with no relevance to his/her actual status. The underlying assumption
of the survey procedure is that the sensitive and innocuous questions are unrelated and
independent. The privacy of respondent is protected in this way that respondents will
not disclose to the interviewer the question they answered from either R1 or R2. The
diagrammatic presentation of Proposed Model 1 is given in Figure 1, below.

Figure 1. Diagrammatic Presentation of Proposed Model 1

Let n be the sample size of respondents confronted with the direct question such that
n1 + n2 = n, where n1 and n2 denote the number of �Yes� and �No� responses from the
sample, respectively.



406

2.1. Theorem. An unbiased estimator of population proportion πs of sensitive attribute

is given by

π̂1 =
n1

n

[
Ŷ − (1− P1)

P1

]
+
n2

n

[
X̂ − (1−P )(1−P2)

2

P2 + (1− P2)P

]
.

Proof. Let Y be the probability of Y es responses from the respondents using R1. Then,

Y = P1πs + (1− P1)πb,

where πs and πb be the population proportions of sensitive and innocuous groups, respec-
tively. Note that the respondent coming to R1 have reported �Yes� to the initial direct
question, therefore πb = 1 in R1. The unbiased estimator for population proportion πs
from the respondents who say `Yes' to the direct question is given as:

(2.1) π̂sa =
Ŷ − (1− P1)

P1
.

Let �X� be the probability of a �Yes� answer from the respondent using R2. Then,

X = P2πs + (1− P2)

[
Pπs +

1− P
2

]
.

An unbiased estimator of πs in terms of sample proportion of �Yes� responses X̂ is given
by:

(2.2) π̂sb =
X̂ − (1−P )(1−P2)

2

P2 + (1− P2)P
.

The mix overall estimator for population proportion having sensitive behavior is given
by:

(2.3) π̂1 =
n1

n
π̂sa +

n2

n
π̂sb, for 0 <

n1

n
< 1.

using (2.1) and (2.2) in (2.3) will given the required result which completes the proof. �

2.2. Theorem. The variance of the proposed estimator π̂1 is given by

(2.4) V (π̂1) =
πs(1− πs)

n
+
λ(1− πs)(1− P1)

nP1
+

(1− λ)(1− α2)

4nα2
,

where λ = n1
n
, 1− λ = n2

n
and α = P2 + P (1− P2).

Proof. The variance of π̂sa is given by:

(2.5) V (π̂sa) =
V (Ŷ )

P 2
1

=
Y (1− Y )

nP 2
1

=
πs(1− πs)

n1
+

(1− πs)(1− P1)

P1n1
.

Similarly, the variance of π̂sb is given by:

(2.6) V (π̂sb) =
πs(1− πs)

n2
+

1− α2

4n2α2
.

The variance of estimator π̂1 is de�ned as:

(2.7) V (π̂1) =
n2
1

n2
V (π̂sa) +

n2
2

n2
V (π̂sb).

using (2.5) and (2.6) in (2.7) and after some simpli�cations we get the required result,
hence the theorem. �
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2.2. Proposed model 2. Consider a random sample of size n selected by using SRSWR
scheme. Each respondent from the sample is instructed to answer the direct question:
�Do you belong to an innocuous group?� If the respondent answers �Yes� then he/she
is instructed to go to randomization device R1 consisting of the statements (i) �I belong
to sensitive Group A� (ii) �Go to randomization device R3� with respective probabilities
T and (1− T ). The randomization device R3 consists of the statements (i) �I belong to
sensitive Group A� (ii) �I belong to an innocuous Group B� with respective probabilities
P1 and (1−P1). If a respondent responds �No� to direct question then he/she is instructed
to go to randomization device R2 consisting of the statements (i) �I belong to sensitive
Group A� (ii) �Go to randomization device R4� with respective probabilities P2 and
(1 − P2). Randomization device R4 consists of the statements (i) �I belong to sensitive
Group A� (ii) �Say Yes� (iii) �Say No� with respective known probabilities P , (1− P )/2
and (1 − P )/2. For the second and third statements, the respondent is to report �Yes�
or �No� with no relevance to his/her actual status. The diagrammatic presentation of
Proposed Model 2 is given in Figure 2, below.

Figure 2. Diagrammatic Presentation of Proposed Model 2

Let πs and πb be the population proportions of sensitive and innocuous group re-
spectively and n be the sample size confronted with the direct question and n1 and n2

(n1+n2 = n) denote the number of �Yes� and �No� responses from the sample. Note that
the respondents coming to R1 have reported �Yes� to the initial direct question, therefore
πb = 1 in R1.

2.3. Theorem. An unbiased estimator of population proportion πs of sensitive attribute

is given by

π̂2 =
n1

n

[
Ŷ − (1− α1)

α1

]
+
n2

n

[
X̂ − (1− α2)/2

α2

]
,

where α1 = T + P1(1− T ) and α2 = P + P2(1− P ).

Proof. Let �Y� and �X� be the probability of �Yes� responses from the respondent coming
from R1 and R2 respectively. Then Y = Tπs + (1 − T )[P1πs + (1 − P1)] and X =
P2πs + (1− P2)[Pπs + (1− P )/2]. Taking expectation of Y and X we get

(2.8) π̂sa =
Ŷ − (1− α1)

α1
,
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and

(2.9) π̂sb =
X̂ − (1− α2)/2

α2
.

Using (2.8) and (2.9) in (2.3), we get the required result which complete the proof. �

2.4. Theorem. The variance of π̂2 is given by

(2.10) V (π̂2) =
πs(1− πs)

n
+
λ(1− πs)(1− α1)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

,

where λ = n1
n

and 1− λ = n2
n
.

Proof. The variances of π̂sa and π̂sb given in (2.8) and (2.9) are respectively given as:

(2.11) V (π̂sa) =
πs(1− πs)

n1
+

(1− πs)(1− α1)

n1α1
,

and

(2.12) V (π̂sb) =
πs(1− πs)

n2
+

1− α2
2

4n2α2
2

.

using (2.11) and (2.12) in (2.7) we get the required result which completes the proof. �

3. Proposed models under less than completely truthful reporting

While surveying sensitive issues, there is high chance of the problem of less than com-
pletely truthful reporting. It is assumed that respondents do not lie about the innocuous
question but they may lie for the sensitive issue. In the Proposed Models, we assign the
probabilities of truthful responses to the proposed models. Let Wi, for i = 1, 2 be the
probability of less than completely truthful reporting for �rst and second randomization
devices, where 0 ≤Wi≤ 1. Here we will only consider the case of known Wi's. However,
if Wi are not know and their estimation is essential one can extend this whole set up for
two samples from each respondent such that two equations can be obtained to estimate
two unknowns.

3.1. Proposed Model 1. Let Y ∗ and X∗ be the probability of �Yes� from the respon-
dents using R1 and R2. Then Y

∗ = P1πsW1 + (1 − P1) and X
∗ = απsW2 + (1 − α)/2,

where α = P2 + (1− P2)P . Thus π̂
∗
sa and π̂∗

sb are given by:

π̂∗
sa =

Ŷ ∗ − (1− P1)

P1
,

and

π̂∗
sb =

X̂∗ − (1− α)/2
α

.

By de�nition, the overall mixed estimator π̂∗
1 is now given as:

π̂∗
1 =

n1

n
π̂∗
sa +

n2

n
π̂∗
sb,

=
n1

n

[
Ŷ ∗ − (1− P1)

P1

]
+
n2

n

[
X̂∗ − (1− α)/2

α

]
.
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3.1. Theorem. The bias and MSE in proposed estimator π̂1 under less than truthful

reporting case is given as:

(3.1) Bias(π̂∗
1) =

n1

n
πs(W1 − 1) +

n2

n
πs(W2 − 1).

and

MSE(π̂∗
1) =

λπsW1(1−W1πs)

n
+
λ(1− P1)(1−W1πs)

nP1
+

(1− λ)(1− α2)

4nα2

+
πsW2(1−W2πs)(1− λ)

n

+ π2
s [λ(W1 − 1) + (1− λ)(W2 − 1)]2.(3.2)

Proof. We have

Bias(π̂∗
sa) = E[π̂∗

sa − πs] = E
[ Ŷ ∗ − Y

P1

]
= E

[P1π̂saW1 + (1− P1)− P1πs − (1− P1)

P1

]
.

Since π̂sa is unbiased estimator of πs, therefore,

Bias(π̂∗
sa) = πs(W1 − 1)

Similarly,

Bias(π̂∗
sb) =E[π̂∗

sb − πs]

=E
[ X̂∗ − (1− α)/2

α
− X − (1− α)/2

α

]
=E
[απ̂sbW2 + (1− α)/2− απs − (1− α)/2

α

]
.

Since E(π̂sb) = πs, therefore,

Bias(π̂∗
sb) = πs(W2 − 1)

The bias in overall mix estimator π̂∗
1 is de�ned as

(3.3) Bias(π̂∗
1) =

n1

n
Bias(π̂∗

sa) +
n2

n
Bias(π̂∗

sb).

Substitution of results of Bias(π̂∗
sa) and Bias(π̂

∗
sb) in (3.3) will give the required expres-

sion.
The variance of the estimator π̂∗

sa is given by:

(3.4) V (π̂∗
sa) =

Y ∗(1− Y ∗)

n1P 2
1

=
πsW1(1−W1πs)

n1
+

(1− P1)(1−W1πs)

n1P1
.

Similarly, the variance and MSE of the estimator π̂∗
sb can be derived as:

(3.5) V (π̂∗
sb) =

X∗(1−X∗)

n2α2
=

1− α2

4n2α2
+
πsW2(1−W2πs)

n2
.

The MSE for the estimator π̂∗
1 under less than completely truthful reporting case is

de�ned as:

(3.6) MSE(π̂∗
1) = V (π̂∗

1) + [Bias(π̂∗
1)]

2 = λ2V (π̂∗
sa) + (1− λ)2V (π̂∗

sb) + [Bias(π̂∗
1)]

2.

Using (3.1), (3.4) and (3.5) in (3.6) will give the required result which completes the
proof. �
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3.2. Proposed Model 2. Let we denote the probability of �Yes� responses from the re-
spondents coming from R1 and R2 by Y

∗ and X∗. Then Y ∗ = P1πsW1+(1−P1)TπsW1+
(1− P1)(1− T ) and X∗ = P2πsW2 + (1− P2)

[
PπsW2 + (1− P )/2

]
, such that

(3.7) π̂∗
sa =

Ŷ ∗ − (1− α1)

α1
,

and

(3.8) π̂∗
sb =

X̂∗ − (1− α2)/2

α2
.

3.2. Theorem. The bias and MSE in proposed estimator π̂2 under less than truthful

reporting case are given by:

B(π̂∗
2) =

n1

n
πs(W1 − 1) +

n2

n
πs(W2 − 1),

and

MSE(π̂∗
2) =

λπsW1(1−W1πs)

n
+
λ(1− α1)(1−W1πs)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

+
πsW2(1− λ)(1−W2πs)

n

+ π2
s [λ(W1 − 1) + (1− λ)(W2 − 1)]2.(3.9)

The proof is similar to Theorem 3.1.

4. Algebraic and numeric e�ciency comparisons

Algebraic e�ciency comparisons of Proposed Models, under completely truthful re-
porting case, has been done with Singh and Tarray (2013) model. The V (π̂t) for Singh
and Tarray (2013) model under completely truthful reporting case is

(4.1) V (π̂t) =
πs(1− πs)

n
+
λ(1− πs)(1− P1)

nP1
+

(1− λ)(1− P 2)

4nP 2
.

The Proposed Models will be e�cient than Singh and Tarray (2013) model if

(4.2) V (π̂i) < V (π̂t), for i=1, 2.

Similarly, algebraic e�ciency comparisons of Proposed Models, under less than com-
pletely truthful reporting case, has been done with Singh and Tarray (2013) model. For
Singh and Tarray (2013) model, we have

MSE(π̂∗
t ) =

λπsW1(1−W1πs)

n
+
λ(1− P1)(1−W1πs)

nP1
+

(1− λ)(1− P 2)

4nP 2

+
πsW2(1−W2πs)(1− λ)

n

+ π2
s [λ(W1 − 1) + (1− λ)(W2 − 1)]2(4.3)

The Proposed Models will be e�cient than Singh and Tarray (2013) model if

(4.4) MSE(π̂∗
i ) < MSE(π̂∗

t ), for i= 1, 2.
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4.1. Proposed model 1 under completely truthful reporting case. Using (2.4)
and (4.1) in (4.2), we get

(1− λ)(1− α2)

4nα2
<

(1− λ)(1− P 2)

4nP 2

⇐⇒1− α2

α2
<

1− P 2

P 2

⇐⇒P 2 < α2,

since α2 = P 2
2 + (1− P2)

2P 2 + 2P2P (1− P2). Therefore,

⇐⇒ (1− P2)
2P + 2P2(1− P2) > 0, 0 < P,P2 < 1.

which is always true for all values of P , and P2. Thus, the Proposed Model 1 is always
more e�cient than the Singh and Tarray (2013) model.
Next, we plan to check the magnitude of gain in e�ciency in order to investigate the
model's stability. The percent relative e�ciency of Proposed Model 1 relative to Singh
and Tarray (2013) model is calculated by using the following formula:

PRE(π̂1, π̂t) =
V (π̂t)

V (π̂1)
∗ 100,

for di�erent values of P , P1 and P2.
The values of P1 vary from 0.1 − 0.9 with a hump of 0.1, P2 = 0.3, n = 1000, λ = 0.8
and πs = 0.1. Some of the results are reported in Table 1. Figure 3, shows upward trend
in PRE of Proposed Model 1 with increase in P1.

Figure 3. E�ect of P1 and P2 on PRE of Proposed Model 1

4.2. Proposed model 2 under completely truthful reporting case. By using
(2.10) and (4.1) in (4.2) we get

λ(1− πs)(1− α1)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

<
λ(1− πs)(1− P1)

nP1
+

(1− λ)(1− P 2)

4nP 2

⇐⇒λ(1− πs)
n

{1− α1

α1
− 1− P1

P1

}
+

1− λ
4n

{1− α2
2

α2
2

− 1− P 2

P 2

}
< 0

⇐⇒λ(1− πs)
n

{P1 − α1

P1α1

}
+

1− λ
4n

{P 2 − α2
2

P 2α2
2

}
< 0,
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Table 1. Percent Relative E�ciency of Model-I relative to Singh and
Tarray (2013) model for n = 1000 and λ = n1

n
= 0.8

PRE π1

P P1 P2 0.1 0.2 0.3 0.4 0.5

0.3

0.1

0.1 102.76 103.05 103.42 103.90 104.56
0.3 105.41 105.99 106.73 107.72 109.10
0.5 106.58 107.30 108.22 109.44 111.15
0.7 107.20 107.99 109.00 110.35 112.25
0.9 107.56 108.39 109.46 110.89 112.90

0.3

0.1 109.12 109.66 110.39 111.36 112.70
0.3 118.99 120.23 121.90 124.18 127.40
0.5 123.78 125.39 127.58 130.61 134.93
0.7 126.41 128.24 130.74 134.20 139.18
0.9 127.99 129.96 132.65 136.38 141.78

0.5

0.1 116.91 117.06 117.53 118.38 119.72
0.3 138.15 138.56 139.82 142.13 145.86
0.5 149.77 150.35 152.15 155.45 160.86
0.7 156.59 157.27 159.42 163.38 169.90
0.9 160.86 161.61 163.99 168.38 175.66

0.7

0.1 126.66 125.39 124.87 125.01 125.83
0.3 167.18 163.01 161.34 161.79 164.45
0.5 193.64 186.98 184.34 185.05 189.26
0.7 210.90 202.37 199.02 199.91 205.29
0.9 222.48 212.58 208.72 209.75 215.96

0.9

0.1 139.22 134.83 132.39 131.27 131.21
0.3 216.36 197.31 187.66 183.41 183.20
0.5 283.43 246.00 228.37 220.88 220.51
0.7 337.58 282.00 257.25 246.99 246.48
0.9 379.93 308.33 277.74 265.28 264.68

since P1 − α1 = −T (1− P1) and P
2 − α2

2 = −P [P (1− P2)
2 + 2P2(1− P2)],

⇐⇒ λT (1− πs)(1− P1)

α1P1
+

(1− λ)
[
P (1− P2)

2 + 2P2(1− P2)
]

4α2
2P

> 0,

the left hand side of the above inequality is always greater than 0 irrespective of the
parametric values involved. Thus the Proposed Model 2 is always more e�cient than
the Singh and Tarray (2013) model. The percent relative e�ciency of Proposed Model 2
relative to Singh and Tarray (2013) model is calculated to check the magnitude of gain
in e�ciency by using the following formula:

PRE(π̂2, π̂t) =
V (π̂t)

V (π̂2)
∗ 100,

for di�erent values of P , P1, P2, and T . The parameter are �xed at 0.1, 0.3, 0.5, 0.7 and
0.9. Some of the PRE results are reported in Table 2. It is evident from Figure 4, that
PRE increases by increasing P2 and T .

4.3. Proposed model 1 vs proposed model 2 under completely truthful report-

ing case. Proposed model 1 will be e�cient than Proposed model 2 if V (π̂1) < V (π̂2).
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Table 2. Percent Relative E�ciency of Model-II relative to Singh and
Tarray (2013) model for T = 0.3, n = 1000 and λ = n1

n
= 0.8

PRE π2

P P1 P2 0.1 0.2 0.3 0.4 0.5

0.3

0.1

0.1 433.77 410.58 389.22 369.06 349.47
0.3 485.23 461.61 440.78 422.29 405.80
0.5 511.13 487.49 467.22 450.01 435.80
0.7 525.64 502.06 482.19 465.83 453.14
0.9 534.59 510.96 491.37 475.59 463.90

0.3

0.1 207.43 198.04 190.18 183.54 177.86
0.3 246.27 235.39 227.14 221.19 217.48
0.5 267.67 256.02 247.71 242.43 240.36
0.7 280.28 268.18 259.87 255.10 254.18
0.9 288.20 275.82 267.54 263.13 263.01

0.5

0.1 165.91 159.24 154.28 150.61 148.03
0.3 212.21 201.83 195.11 191.29 190.18
0.5 240.93 227.86 219.96 216.22 216.50
0.7 259.06 244.15 235.49 231.86 233.21
0.9 270.97 254.78 245.60 242.07 244.20

0.7

0.1 151.54 145.63 141.75 139.31 138.03
0.3 213.42 198.96 190.69 186.58 185.93
0.5 258.51 235.86 223.67 218.21 218.28
0.7 290.24 260.89 245.66 239.18 239.87
0.9 312.63 278.11 260.60 253.39 254.57

0.9

0.1 147.04 140.74 137.08 135.09 134.37
0.3 235.86 210.23 197.21 190.95 189.42
0.5 317.85 266.41 242.68 231.92 229.58
0.7 387.56 309.15 275.55 260.86 257.88
0.9 444.43 341.07 299.19 281.36 277.86

Figure 4. E�ect of T and P2 on PRE of Proposed Model 2

Using (2.4) and (2.10) in this inequality, we get

λ(1− πs)(1− P1)

nP1
+

(1− λ)(1− α2)

4nα2
<
λ(1− πs)(1− α1)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

,
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since α2 = α,

⇐⇒ (1− P1)

P1
<

(1− α1)

α1

⇐⇒α1 < P1

⇐⇒T (1− P1) < 0,

since 0 < T,P1 < 1 thus above inequality will never exist. Which further implies that
converse which is V (π̂2) < V (π̂1) will always be true thus model 2 outperforms model 1
in terms of e�ciency.

4.4. Proposed model 1 under less than completely truthful reporting case.

By using (3.2) and (4.3) in (4.4), we get

(1− λ)(1− α2)

4nα2
<

(1− λ)(1− P 2)

4nP 2
,

⇐⇒α2 − P 2 > 0

⇐⇒(1− P2)
2P + 2P2(1− P2) > 0

which is always true for all values of P and P2. Thus π̂
∗
1 is always e�cient than π̂∗

t .
The PRE of Proposed Model 1 relative to Singh and Tarray (2013) model is calculated
by using the following formula:

PRE(π̂∗
1 , π̂

∗
t ) =

MSE(π̂∗
t )

MSE(π̂1
∗)
∗ 100,

for di�erent values of P , P1, W1 and W2. Some �ndings are reported in Table 3 in
Appendix B and graphical representation in Figure 5. Figure 5, shows that there is
increase in PRE with the increase in P1 and P2.

Figure 5. E�ect of P1 and P2 on PRE of Proposed Model 1 under
Less than Completely Truthful Reporting case

4.5. Proposed model 2 under less than completely truthful reporting case.

By using (3.9) and (4.3) in (4.4) we get

λ(1− α1)(1−W1πs)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

<
λ(1− P1)(1−W1πs)

nP1
+

(1− λ)(1− P 2)

4nP 2
,
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Table 3. Percent Relative E�ciency of Model-I relative to Singh and
Tarray (2013) model under Less Than Completely Truthful Reporting
for P1 = 0.7, P2 = 0.3, n = 1000 and λ = n1

n
= 0.8

PRE π∗
1

P W1 W2 0.1 0.2 0.3 0.4 0.5

0.3

0.5

0.5 183.55 163.01 176.59 179.52 183.55
0.6 174.48 175.23 177.00 179.74 183.45
0.7 174.79 175.65 177.36 179.89 183.24
0.8 175.09 176.04 177.67 179.95 182.90
0.9 175.38 176.42 177.94 179.93 182.44

0.6

0.5 173.49 173.45 174.6 176.89 180.31
0.6 173.81 173.91 175.07 177.22 180.38
0.7 174.12 174.36 175.48 177.47 180.32
0.8 174.42 174.77 175.85 177.63 180.13
0.9 174.72 175.17 176.16 177.70 179.81

0.7

0.5 172.87 172.32 173.06 175.00 178.19
0.6 173.19 172.81 173.57 175.42 178.41
0.7 173.50 173.27 174.04 175.77 178.50
0.8 173.81 173.71 174.46 176.02 178.46
0.9 174.12 174.12 174.83 176.19 178.27

0.8

0.5 172.30 171.39 171.91 173.80 177.15
0.6 172.63 171.90 172.48 174.33 177.53
0.7 172.94 172.38 173.00 174.77 177.77
0.8 173.26 172.84 173.47 175.12 177.87

0.9

0.5 171.79 170.65 171.17 173.30 177.22
0.6 172.12 171.18 171.79 173.92 177.76
0.7 172.44 171.68 172.36 174.46 178.16
0.8 172.76 172.16 172.88 174.90 178.40
0.9 173.07 172.62 173.35 175.25 178.49

⇐⇒λ(1−W1πs)

[
P1 − α1

α1P1

]
+

(1− λ)
4

[
P 2 − α2

2

α2
2P2

]
< 0

⇐⇒Tλ(1−W1πs)(1− P1)

α1P1
+

(1− λ)
[
P (1− P2)

2 + 2P2(1− P2)
]

4α2
2P

> 0,

which is always true for all values of T , W1, P , P1, P2 and πs. Thus π̂
∗
2 is always better

than π̂∗
t . The percent relative e�ciency of Proposed Model 2 relative to Singh and Tarray

(2013) model is calculated by using the following formula:

PRE(π̂∗
2 , π̂

∗
t ) =

MSE(π̂∗
t )

MSE(π̂2
∗)
∗ 100,

for di�erent values of T , W1, P , P1, P2 and πs and W2. Some of the PRE results are
reported in Table 4 and graphical representation in Figure 6. Figure 6 depicts increase
in PRE with an increase in T and P2.

4.6. Proposed model 1 vs proposed model 2 under less than completely

truthful reporting case. Proposed model 1 will be e�cient than Proposed model
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Table 4. Percent Relative E�ciency of Model-II relative to Singh and
Tarray (2013) model under Less Than Completely Truthful Reporting
case for T = 0.3, P1 = 0.7, P2 = 0.3, n = 1000 and λ = n1

n
= 0.8

PRE π∗
2

P W1 W2 0.1 0.2 0.3 0.4 0.5

0.3

0.5

0.5 223.52 210.81 200.21 191.24 183.55
0.6 223.03 210.21 199.73 191.00 183.61
0.7 222.55 209.66 199.32 190.85 183.79
0.8 222.08 209.14 198.97 190.79 184.09
0.9 221.63 208.66 198.68 190.83 184.53

0.6

0.5 221.87 208.88 198.74 190.64 184.05
0.6 221.38 208.27 198.21 190.31 183.98
0.7 220.90 207.70 197.75 190.07 184.05
0.8 220.44 207.17 197.35 189.93 184.23
0.9 219.99 206.67 197.02 189.87 184.55

0.7

0.5 220.27 207.03 197.35 190.12 184.70
0.6 219.78 206.41 196.77 189.71 184.50
0.7 219.31 205.82 196.27 196.27 189.38
0.8 218.84 205.28 195.82 189.15 184.50
0.9 218.39 204.76 195.43 189.00 184.70

0.8

0.5 218.71 205.25 196.03 189.70 185.51
0.6 218.22 204.62 195.41 189.19 185.18
0.7 217.75 204.02 195.41 188.77 184.98
0.8 217.29 203.46 194.36 188.45 184.92
0.9 216.84 202.93 193.93 188.22 184.98

0.9

0.5 217.19 203.54 194.78 189.35 186.50
0.6 216.71 202.89 194.12 188.75 186.02
0.7 216.24 202.29 193.52 188.25 185.68
0.8 215.78 201.71 192.98 187.84 185.48
0.9 215.33 201.17 192.51 187.52 185.41

Figure 6. E�ect of T and P2 on PRE of Proposed Model 2 under Less
than Completely Truthful Reporting Case

2 if MSE(π̂∗
1) < MSE(π̂∗

2). Using (3.2) and ( 3.9) in this inequality, we get

λ(1− P1)(1−W1πs)

nP1
+

(1− λ)(1− α2)

4nα2

<
λ(1− α1)(1−W1πs)

nα1
+

(1− λ)(1− α2
2)

4nα2
2

,
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since α = α2, therefore,

⇐⇒1− P1

P1
<

1− α1

α1

⇐⇒α1 − P1 < 0

⇐⇒(1− P1)T < 0

since 0 ≤ P1, T ≤ 1 therefore, above inequality never holds, which implies thatMSE(π̂∗
2) <

MSE(π̂∗
1). Thus model 2 is always e�cient than model 1 under less than completely

truthful reporting case.

5. Proposed models under strati�ed random sampling

Strati�cation gives the best representative sample of the population being studied,
that reduces sample selection bias by ensuring certain part of the population are not
under or over represented. Thus, the bene�ts are in terms of accuracy, greater precision
and less cost. It is applied by partitioned the population into non-overlapping groups
called strata and sample is selected by using SRSWR. Then randomized response (RR)
technique is applied to each stratum. Many researchers have extended RR models to
strati�cation such as [1, 8, 10, 11, 12, 13, 20, 22]. In the following sub section we also
extend proposed models to strati�ed sampling framework.

5.1. Proposed model 1. In this sampling design, the population of N units is subdi-
vided into L strata, such that the jth stratum consists of Nj units, where j = 1, 2, ..., L

and
∑L
j=1Nj = N . Let we want to draw a sample of size m. From jth population

stratum, a sample of size mj is drawn using SRSWR is drawn such that
∑L
j=1mj = m.

Each selected unit in the sample is instructed to answer the direct question: �Do you
belong to an innocuous group?� If the respondent answers �Yes� then he/she is instructed
to go to randomization device R1j consisting of the statements (i) �I belong to sensitive
Group A� (ii) �I belong to an innocuous Group B� with respective probabilities P1j and
(1− P1j). If a respondent answers �No� to the direct question then he/she is instructed
to go to randomization device R2j consisting of the statements: (i) �I belong to sensitive
Group A� (ii) �Go to randomization device R3j� with respective probabilities P2j and
(1 − P2j). Randomization device R3j consists of statements (i) �I belong to sensitive
Group A� (ii) �Say Yes� (iii) �Say No� with respective known probabilities Pj , (1−Pj)/2
and (1− Pj)/2. For the second and third statements, the respondent is asked to report
�Yes� or �No� with no relevance to his/her actual status.
Note that in each stratum there will be some respondents that will respond `Yes' to the
direct question and some who will respond `No' to the direct question therefore, sam-
ple size in each stratum is further subdivided as m1j and m2j , respectively, such that
m1j +m2j = mj .
Assume the response of ith unit of the study variable selected from the jth stratum using
randomization device R1j is denoted by Yji, where i = 1, 2, ...,mj and Gj = Nj/N is the
known stratum weights in the population. Then,

Yj = P1jπsj + (1− P1j)πbj .

An unbiased estimator of πsj in terms of sample proportion Ŷj of �Yes� responses is given
by:

(5.1) π̂saj =
Ŷj − (1− P1j)

P1j
.
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The variance of π̂saj is given by:

(5.2) V (π̂saj) =
πsj(1− πsj)

m1j
+

(1− πsj)(1− P1j)

P1jm1j
.

Assume �Xj� be the probability of �Yes� responses from the respondents in the jth stra-
tum using randomization device using R2j . Then

Xj = P2jπsj + (1− P2j)

[
Pjπsj +

1− Pj
2

]
.

An unbiased estimator of πsj in terms of sample proportion X̂j of �Yes� responses is given
by:

(5.3) π̂sbj =
X̂j − (1−Pj)(1−P2j)

2

P2j + (1− P2j)Pj
.

The variance of π̂sbj is given by:

(5.4) V (π̂sbj) =
πsj(1− πsj)

m2j
+

1− α2
j

4m2jα2
j

,

where αj = P2j + (1− P2j)Pj .

5.1. Theorem. An unbiased estimator of population proportion of sensitive attribute

under strati�ed random sampling with replacement is given by

π̂1 =

L∑
j=1

Gj
mj

[
m1j

(
Ŷj − (1− P1j)

P1j

)
+ (mj −m1j)

(
X̂j − (1− Pj)(1− P2j)/2

P2j + (1− P2j)Pj

)]
.

and

V (π̂1) =

L∑
j=1

G2
j

mj

[
πsj(1− πsj)

+
4α2

jλj(1− πsj)(1− P1j) + P1j(1− λj)(1− α2
j )

4P1jα2
j

]
,(5.5)

where λj = m1j/mj.

Proof. π̂1j is de�ned as

(5.6) π̂1j =
m1j

mj
π̂saj +

mj −m1j

mj
π̂sbj , for 0 <

m1j

mj
< 1.

We have

(5.7) π̂1 =
L∑
j=1

Gj π̂1j =

L∑
j=1

Gj

[
m1j

mj
π̂saj +

mj −m1j

mj
π̂sbj

]
.

Using (5.1) and (5.3) in (5.7) and some simpli�cation will give the required result.
Let the sample are drawn independently in di�erent strata then, the variance of π̂1 is
de�ned as:

(5.8) V (π̂1) =

L∑
j=1

G2
jV (π̂1j)

where

(5.9) V (π̂1j) =
m2

1j

m2
j

V (π̂saj) +
m2

2j

m2
j

V (π̂sbj)
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Using (5.2) and (5.4) in (5.9) we get

(5.10) V (π̂1j) =
πsj(1− πsj)

mj
+

4α2
jλj(1− πsj)(1− P1j) + P1j(1− λj)(1− α2

j )

4mjP1jα2
j

,

where mj = m1j +m2j and λj =
m1j

mj
.

Using (5.10) in (5.8) will give the required result hence the theorem. �

If prior information about λj =
m1j

mj
and πsj is known from previous some surveys,

then optimal allocation of sample size can be derived by using following theorem.

5.2. Theorem. The optimal allocation of sample size m to strata sizes m1,m2, ...,mL

subject to m =

L∑
j=1

mj is given by:

mj

m
=

Gj

[
πsj(1− πsj) +

4α2
jλj(1−πsj)(1−P1j)+P1j(1−λj)(1−α2

j )

4P1jα
2
j

] 1
2

L∑
j=1

Gj

[
πsj(1− πsj) +

4α2
jλj(1− πsj)(1− P1j) + P1j(1− λj)(1− α2

j )

4P1jα2
j

] 1
2

,

where mj = m1j +m2j and λj =
m1j

mj
.

Thus the minimum variance of the estimator π̂1 is given by:

Vmin(π̂1) = 1
m

 L∑
j=1

Gj

πsj(1 − πsj) +
4α2

jλj(1 − πsj)(1 − P1j) + P1j(1 − λj)(1 − α2
j )

4α2
jP1j


1
2


2

.

5.2. Proposed model 2. In the Proposed Model 2 the whole setup is same as that
in Proposed model 1 except each respondent selected in the sample is instructed to
answer the direct question: �Do you belong to an innocuous group�? If the respondent
answers �Yes� then he/she is instructed to go to randomization device R1j consisting of
the statements (i) �I belong to sensitive Group A� (ii) �Go to randomization device R3j�
with respective probabilities Tj and (1− Tj). The randomization device R3j consists of
the statements (i) �I belong to sensitive Group A� (ii) �I belong to an innocuous Group
B� with respective probabilities P1j and (1 − P1j). If a respondent responds �No� to
direct question then he/she is instructed to go to randomization device R2j consisting
of the statements (i) �I belong to sensitive Group A� (ii) �Go to randomization device
R4j� with respective probabilities P2j and (1− P2j). Randomization device R4j consists
of the statements (i) �I belong to sensitive Group A� (ii) �Say Yes� (iii) �Say No� with
respective known probabilities Pj , (1− Pj)/2 and (1− Pj)/2. For the second and third
statements, the respondent is to report �Yes� or �No� with no relevance to his/her actual
status.
Let mj be the number of units in the sample from the jth stratum and m be the total
number of units from all strata. Let m1j be the respondents which respond �Yes� to the
direct question and m2j be the respondents which respond �No� to the direct question

such that m =

L∑
j=1

(m1j + m2j). Let Yj be the probability of �Yes� response using

randomization device R1j in the jth stratum. Assuming πsj and πbj be the population
proportions of sensitive and innocuous group in stratum j, respectively. Let �Yj� be the
probability of �Yes� from the respondent using R1j . Then

Yj = Tjπsj + (1− Tj)
[
P1jπsj + (1− P1j)πbj

]
,
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An unbiased estimator of πsj in terms of sample proportion of �Yes� responses Ŷj is given
by:

(5.11) π̂saj =
Ŷj − (1− Tj)(1− P1j)

Tj + P1j(1− Tj)
.

The variance of π̂saj is given by:

(5.12) V (π̂saj) =
πsj(1− πsj)

m1j
+

(1− πsj)(1− α1j)

m1jα1j
,

where α1j = Tj + (1− Tj)P1j .
Let �Xj� be the probability of �Yes� from the respondent using R2j , then

Xj = P2jπsj + (1− P2j)

[
Pjπsj +

1− Pj
2

]
,

An unbiased estimator of πsj in terms of sample proportion of �Yes� responses X̂j is
given by:

(5.13) π̂sbj =
X̂ − (1−P2)(1−P )

2

P2 + (1− P2)P
.

The variance of π̂sbj is given by:

(5.14) V (π̂sbj) =
πsj(1− πsj)

m2j
+

1− α2
2j

4m2jα2
2j

.

where α2j = P2j + (1− P2j)Pj .

5.3. Theorem. An unbiased estimator of population proportion of sensitive attribute

under strati�ed random sampling with replacement is given by

π̂2 =

L∑
j=1

Gj
mj

[
m1j

(
Ŷj − (1− Tj)(1− P1j)

Tj + P1j(1− Tj)

)
+ (mj −m1j)

(
X̂ − (1−P2)(1−P )

2

P2 + (1− P2)P

)]
.

and

V (π̂2) =

L∑
j=1

G2
j

mj

[
πsj(1− πsj)

+
4α2

2jλj(1− πsj)(1− α1j) + α1j(1− λj)(1− α2
2j)

4α1jα2
2j

]
,(5.15)

where λj = m1j/mj.

Proof. The unbiased estimator of π̂2 is given by:

π̂2 =
L∑
j=1

(Gjπ2j) =
L∑
j=1

Gj

[
m1j

mj
π̂saj +

mj −m1j

mj
π̂sbj

]
.

Using (5.11) and (5.13) in above equation will prove the �rst part of the theorem.

The variance of π̂2j for the j
th stratum is given by:

(5.16) V (π̂2j) =
πsj(1− πsj)

mj
+

4α2
2jλj(1− πsj)(1− α1j) + α1j(1− λj)(1− α2

2j)

4mjα1jα2
2j

,
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where mj = m1j +m2j and λj =
m1j

mj
.

Thus the variance of estimator π̂2 is given by:

V (π̂2) =

L∑
j=1

G2
jV (π̂2j).

Using 5.16 in above equation will prove the theorem. �

5.4. Theorem. The optimal allocation of total sample sizem to strata sizesm1,m2, ...,mL

subject to m =

L∑
j=1

mj is given by:

mj

m
=

Gj

[
πsj(1− πsj) +

4α2
2jλj(1−πsj)(1−α1j)+α1j(1−λj)(1−α2

2j)

4α1jα
2
2j

] 1
2

L∑
j=1

Gj

[
πsj(1− πsj) +

4α2
2jλj(1− πsj)(1− α1j) + α1j(1− λj)(1− α2

2j)

4α1jα2
2j

] 1
2

,

where α1j = Tj + (1− Tj)P1j, α2j = P2j + (1− P2j)Pj, mj = m1j +m2j and λj =
m1j

mj
.

Thus the minimum variance for π̂2 is given by:

Vmin(π̂2) = 1
m

 L∑
j=1

Gj

πsj(1 − πsj) +
4α2

2jλj(1 − πsj)(1 − α1j) + α1j(1 − λj)(1 − α2
2j)

4α1jα
2
2j


1
2


2

.

6. Discussion

The main idea of this paper is to propose such mixed randomized response models
which yield e�cient results and secure the privacy of respondent while asking question
about sensitive issue. As argument developed in Section 1, Kim and Warde's [13] model
is better than Moors [16] and Mangat et al. [15]. Also, Singh and Tarray [20] have proved
that their model is e�cient than Kim and Warde's [13] model. In Section 4, of this study
we have proved that the proposed models are unconditionally e�cient than Singh and
Tarray's (2013) model for completely and less than completely truthful reporting case.
Thus it also follows that proposed models are also more e�cient than Moors [16], Mangat
et al. [15] and Kim and Warde's [13] models. Further more for less than completely
truthful reporting case proposed model 2 is always more e�cient than proposed model
1. Moreover, it is interesting to note that the e�ciency conditions of π̂1 relative to π̂t
turns out to be same irrespective of completely truthful or less than completely truthful
reporting.
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