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Volterra type operator on the convex functions
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Abstract
In this paper we study the Volterra type operator Ig on convex func-
tions. Furthermore, some new properties for convex, starlike and spi-
rallike functions of complex order are discussed.
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1. Introduction
The convolution or Hadamard product of two power series functions f(z) =

∑∞
n=0 anz

n

and g(z) =
∑∞
n=0 bnz

n is defined as the power series (f ∗ g) =
∑∞
n=0 anbnz

n.
Let A be the class of functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n,(1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}.
Furthermore, let P denote the class of functions p(z) of the form

p(z) = 1 +

∞∑
n=1

pnz
n,(1.2)

which are analytic in D. If p(z) ∈ P satisfies <{p(z)} > 0 (z ∈ D), then we say that p(z)
is the Carathéodory function, (see [2]).
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If f(z) ∈ A satisfies the following inequality

<
(
zf ′(z)

f(z)

)
> α (z ∈ D),

for some α (0 6 α < 1), then f(z) is said to be starlike of order α in D. We denote by
S∗(α) the subclass of A consisting of functions f(z) which are starlike of order α in D.
Similarly, we say that f(z) is a member of the class K(α) of convex functions of order α
in D if f(z) ∈ A satisfies the following inequality

<
(

1 +
zf ′′(z)

f ′(z)

)
> α (z ∈ D),

for some α (0 6 α < 1).
As usual, in the present investigation, we write

S
∗ = S

∗(0) and K = K(0).

Moreover, for some non-zero complex number b, we consider the subclasses S∗b and Kb

of A as follows:

S
∗
b =

{
f(z) ∈ A : <

{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> 0, (z ∈ D)

}
.

and

Kb =

{
f(z) ∈ A : <

{
1 +

1

b

(
zf ′′(z)

f ′(z)

)}
> 0, (z ∈ D)

}
.

Then we can see that

S
∗
1−α = S

∗(α) and K1−α = K(α).

Let f be a function analytic and locally univalent in the unit disk D. Let

Sf = (f ′′/f ′)′ − 1/2(f ′′/f ′)2

denote its Schwarzian derivative, and let

‖Sf (z)‖ = sup
z∈D

(1− |z|2)2|Sf |

denote its Schwarzian norm.
Recall first, that if f maps the disk conformally onto a convex region, then the function

g(z) = 1 +
zf ′′(z)

f ′(z)

has positive real part in D. (see for instance [2]). Since g(0) = 1, this say that g is
subordinate to the half-plan mapping L(z) = (1 + z)/(1− z), so that g(z) = L (ϕ(z)) for
some Schwarz functions ϕ. In other word,

zf ′′(z)

f ′(z)
=

1 + ϕ(z)

1− ϕ(z)
− 1 =

2ϕ(z)

1− ϕ(z)
,

where ϕ is analytic and has the property |ϕ(z)| 6 |z| in D. With the notation ψ(z) =
ϕ(z)/z this gives the representation

f ′′(z)

f ′(z)
=

2ψ(z)

1− zψ(z)
(1.3)

for the pre-Schwarzian, where ψ is analytic and satisfies |ψ(z)| 6 1 in D. Straight forward
calculation now gives the Schwarzian of f in the form

Sf (z) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

=
2ψ′(z)

(1− zψ(z))2
.
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But |ψ′(z)| 6
(
1− |ψ(z)|2

)
/(1−|z|2) by the invariant form of the Schwarz lemma, so we

conclude that

|Sf (z)| 6 2
1− |ψ(z)|2

(1− |z|2) (1− |zψ(z)|)2
6

2

(1− |z|2)2
.(1.4)

In other words, the inequality (1.4) says that the Schwarzian norm ‖Sf (z)‖ of convex
mapping is no large than 2. The bound is best possible since the parallel strip mapping

L(z) =
1

2
log

(
1 + z

1− z

)
has Schwarzian SL(z) = 2(1−z2)−2. Nehari [6] also stated that |Sf (z)| < 2 if the convex
mapping f is bounded.
For g ∈ H(D), the integral operator Ig

Igh(z) =

∫ z

0

h′(ξ)g(ξ)dξ, (h ∈ H(D))

was introduced in [12] and is called the Volterra type operator.
In this paper we introduce some new subclasses of H(D) as follow

P (β, b) :=

{
p(z) ∈ P : <

{
1

b

(
zp′(z)

p(z)

)}
≥ β

}
and

P ′(β, b) :=

{
p(z) ∈ P : <

{
1

b

(
zp′(z)

p(z)

)}
≤ β

}
for some real number β and non-zero complex number b.

Examples:

p(z) =
1

1− z = 1 + z + z2 + · · · ∈ P (−1/2, 1),

p(z) =
1

1 + z
= 1− z + z2 − z3 ± · · · ∈ P (−1/2, 1),

p(z) = 1 + z ∈ P ′(1/2, 1), p(z) = 1− z ∈ P ′(1/2, 1).

Moreover, for some non-zero complex numbers b and real λ (−π
2
< λ < π

2
) we define

the subclass Ŝα(b) of A as follow:

Ŝα(b) :=

{
f(z) ∈ A : <

{
eiλ
(

1 +
1

b

(
zf ′(z)

f(z)
− 1

))}
> 0, (z ∈ D)

}
.

If a function f(z) belong to the class Ŝα(b), we say that f(z) is spirallike of type λ
with the complex order b, b 6= 0.

In this paper, we get some properties for functions in S∗b , Kb and Ŝα(b). Also we study
the Volterra type operator Ig on K and Kb. Furthermore, we get necessary and sufficient
condition such that Igh(D) is bounded, moreover we obtain sufficient condition such that
|Sf (z)| < 2.
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2. Preliminaries
In this section we prove some properties of functions in S∗b , Kb and Ŝα(b) as the form

of the lemmas. Also, Here we quote some auxiliary results which will be used in the
proofs of the main results in this paper.

2.1. Lemma. (1) Let b ∈ C, b 6= 0 and β > 0. If g ∈ P (β, b) then Ig is an operator on
Kb.
(2) Let β ∈ R, 0 6 α < 1 and 0 6 α+ β < 1. If g ∈ P (β, 1), then Ig is an operator from
K(α) to K(α+ β).

Proof. Let h ∈ Kb, then

<
{

1 +
1

b

(
z (Igh)′′ (z)

(Igh)′ (z)

)}
= <

{
1 +

1

b

(
zh′′(z)g(z) + zh′(z)g′(z)

h′(z)g(z)

)}
= <

{
1 +

1

b

(
zh′′(z)

h′(z)
+
zg′(z)

g(z)

)}
= <

{
1 +

1

b

(
zh′′(z)

h′(z)

)}
+ <

{
1

b

(
zg′(z)

g(z)

)}
.

(2.1)

By hypothesis of this Lemma and (2.1), we have

<
{

1 +
1

b

(
z (Igh)′′ (z)

(Igh)′ (z)

)}
> 0,

therefore Igh ∈ Kb for each h ∈ Kb .
The proof of (2) is similar to the proof of (1).

�

2.2. Lemma. The function f is convex of complex order b (b 6= 0) in D if and only if

f ′ ∗
z

(
1 + x

2b

)
+ 1− z

(1− z)2 6= 0, (z ∈ D, |x| = 1).

Proof. The function f is convex of complex order b if and only if

<
{

1 +
1

b

(
zf ′′(z)

f ′(z)

)}
> 0, (z ∈ D).(2.2)

It is easy to see that (2.2) is equivalent to

1 +
1

b

(
(zf ′(z))

′

f ′(z)
− 1

)
6= x− 1

x+ 1
, (z ∈ D, |x| = 1, x 6= −1).

Which simplifies to

(1 + x)
(
zf ′(z)

)′
+ (2b− x− 1)f ′(z) 6= 0,

we have

(1 + x)
(
zf ′(z)

)′
= f ′(z) ∗ 1 + x

(1− z)2

and

(2b− x− 1)f ′(z) = f ′(z) ∗ 2b− x− 1

1− z .
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So that
(1 + x) (zf ′(z))

′
+ (2b− x− 1)f ′(z) =

f ′(z) ∗ 1 + x

(1− z)2 + f ′(z) ∗ 2b− x− 1

1− z =

f ′(z) ∗ (1 + x) + (1− z)(2b− x− 1)

(1− z)2 =

f ′(z) ∗ (1 + x− 2b)z + 2b

(1− z)2 6= 0.

Since b 6= 0 therefore we get

f ′ ∗
z

(
1 + x− 2b

2b

)
+ 1

(1− z)2 6= 0, (z ∈ D, |x| = 1, x 6= −1).

The case x = 1 in the convolution condition is equivalent to stating f ′ 6= 0 for each
z ∈ D, which is a necessary condition for univalence, and the proof of this lemma is
complete. �

Note: If we put b = 1− α in the above lemma, we get the Theorem 1 in [11].

2.3. Lemma. Let b ∈ C, b 6= 0, λ ∈ (−π/2, π/2) and β = e−iλ cosλ. Then f ∈ Ŝα(b) if
and only if there is g ∈ S∗b such that

f(z) = z

(
g(z)

z

)β
.(2.3)

The branch of the power function is chosen such that
(
g(z)

z

)β ∣∣∣
z=0

= 1.

Proof. First assume f ∈ Ŝα(b). Clearly (2.3) is equivalent to

g(z) = z

(
f(z)

z

) eiλ

cosλ

, (z ∈ D).

we choose the branch of the power function such that
(
f(z)

z

) eiλ

cosλ ∣∣∣
z=0

= 1. A simple

computation yields the relation

1 +
1

b

(
zg′(z)

g(z)
− 1

)
= (1 + i tanλ)

(
1 +

zf ′(z)

bf(z)

)
− 1 + i tanλ

b
− i tanλ.

Therefore

<
{

1 +
1

b

(
zg′(z)

g(z)
− 1

)}
=

1

cosλ
<
{
eiλ
(

1 +
1

b

(
zg′(z)

g(z)
− 1

))}
.

Since f ∈ Ŝα(b), consequently g is starlike of complex order b.
Conversely, if g ∈ S∗b , then in view of the above relation and the fact that λ ∈

(−π/2, π/2), one deduces that

<
{
eiλ
(

1 +
1

b

(
zg′(z)

g(z)
− 1

))}
> 0 (z ∈ D).

Thus, f is spirallike of type λ with complex order b. This completes the proof. �

2.4. Lemma. Let b ∈ C and b 6= 0. Then we have the following equality:

S
∗
b =

{
zh′(z) : h ∈ Kb

}
.
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Proof. Let f(z) = z +
∑∞
n=2 anz

n ∈ S∗b . It’s obvious that

f(z) = z

(
1 +

∞∑
n=2

anz
n−1

)
.

We put

h′(z) = 1 +

∞∑
n=2

anz
n−1,

therefore

h(z) = z +

∞∑
n=2

1

n
anz

n.

Then f(z) = zh′(z). Applying that h(z) ∈ Kb if and only if zh′(z) ∈ S∗b , we deduce,
h(z) ∈ Kb and the proof of this lemma is complete. �

2.5. Lemma. For the function f(z) ∈ A, it follows that

f(z) ∈ S
∗
b ⇐⇒ z

(
f(z)

z

)1/b

∈ S
∗.

Proof. Let f(z) be a starlike of complex order b. By using of Lemma 2.4, there is h ∈ Kb

such that f(z) = zh′(z). Since h ∈ Kb, then by using Theorem 1.2 in [3] we have
z (h′(z))

1
b ∈ S∗. �

(Another proof for this theorem: we set F (z) = z

(
f(z)

z

)1/b

. Therefore

<
{
zF ′(z)

F (z)

}
= <

{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> 0,

and then f ∈ S∗b .)

2.6. Lemma. Let b ∈ C and b 6= 0, also let λ ∈ (−π/2, π/2) and β = e−iλ cosλ. Then
f ∈ Ŝλ(b) if and only if there is h ∈ Kb such that

f(z) = z
(
h′(z)

)
.

Proof. By using Lemmas 2.3 and 2.4, the proof of this lemma is obvious. �

2.7. Lemma. Let f(z) = z + a2z
2 + a3z

3 + · · · be a starlike function of complex order
b (b 6= 0). Then |a2| 6 2|b|. This bound is sharp. Equality is attained for fb(z) =

z

(1− z)2b .

Proof. Let f(z) ∈ S∗b , by using Lemma 2.5, we have g(z) = z

(
f(z)

z

)1/b

∈ S∗. Let

g(z) = z + b2z
2 + b3z

3 + · · · , therefore b2 =
1

b
a2. So, by using Bieberbach theorem we

have |a2| = |b||b2| 6 2|b|. Since

z

(1− z)2b = z +
1

2b− 1

∞∑
n=2

∏n
j=1 (j + 2(b− 1))

(n− 1)!
zn,

Then it is obvious that equality is attained for fb. �

2.8. Lemma. Let f(z) = z + a2z
2 + a3z

3 + · · · be a spirallike function of type λ with
complex order b (b 6= 0). Then |a2| 6 2|b| cosλ.
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Proof. Let f(z) ∈ Ŝλ(b), by using Lemma 2.3, there is g(z) = z + b2z
2 + b3z

3 + · · · ∈ S∗b

such that f(z) = z

(
g(z)

z

)β
, (β = e−iλ cosλ). Then a2 = b2β, so |a2| = |b2| cosλ. By

using Lemma 2.6 we have |a2| 6 2|b| cosλ and the proof of this Lemma is complete. �

Note: since Ŝλ(1) = Ŝλ. then we get the Corollary 2.4.12 in [4] as a result of the
above lemma.

3. Volterra type operator on K and K(α)

3.1. Theorem. Let β ∈ R, 0 6 α < 1, α + β > 0 and let g ∈ P (β, 1) and h ∈ K(α).
Then the image (Igh)(D) is bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣∣∣2 +

zh′′(z)

h′(z)
+
zg′(z)

g(z)

∣∣∣∣ < 1.

Proof. By using of the Lemma 2.1 part (2), we have Igh ∈ K. In (1.3), we put f = Igh.
Then there is an analytic function ψ such that

(Igh)′′(z)

(Igh)′(z)
=

2ψ(z)

1− zψ(z)
,

therefore

ψ(z) =
(Igh)′′(z)/(Igh)′(z)

2 + z(Igh)′′(z)/(Igh)′(z)
=

g′(z)/g(z) + h′′(z)/h′(z)

2 + zg′(z)/g(z) + zh′′(z)/h′(z)
,

we have
1− |z|
|1− zψ(z)| =

1− |z|∣∣∣∣1− zg′(z)/g(z) + zh′′(z)/h′(z)

2 + zg′(z)/g(z) + zh′′(z)/h′(z)

∣∣∣∣
=

1− |z|
2

2+zg′(z)/g(z)+zh′′(z)/h′(z)

=
1

2
(1− |z|)

∣∣∣∣2 +
zh′′(z)

h′(z)
+
zg′(z)

g(z)

∣∣∣∣ .
(3.1)

By Theorem 2 in [1] we get the image (Igh)(D) is bounded if and only if

lim sup
|z|→1

1− |z|
|1− zψ(z)| <

1

2
.

By (3.1), the proof is complete.
�

3.2. Theorem. Let g ∈ P and h ∈ A, such that (h′g) (z) ∗ (x− 1)z

2(1− z)2 6= 0. Then the

image (Igh)(D) is bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣2 +

zh′′(z)

h′(z)
+
zg′(z)

g(z)

∣∣ < 1.

Proof. The proof of this Theorem is similar to the proof of Theorem 3.1. Only in this
proof we using of the Lemma 2.2. By Lemma 2.2, we have Igh ∈ K, the remain proof is
analogue the above proof. �
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By using of the Lemma 2.1 part (2), we have the following corollary.
Corollary 3.3 Let β ∈ R, 0 6 α < 1, α+ β > 0. If g ∈ P (β, 1) and h ∈ K(α), then∣∣SIgh∣∣ 6 2.

By using of the Lemma 2.2, we have the following corollary.

Corollary 3.4. Let g ∈ P and h ∈ A. If (h′g) (z) ∗ (x− 1)z

2(1− z)2 6= 0 then∣∣SIgh∣∣ 6 2.

By using of the Theorem 3.1, we have the following corollary.
Corollary 3.5. Let β ∈ R, 0 6 α < 1 and α+ β > 0. Let g ∈ P (β, 1) and h ∈ K(α).

If

lim sup
|z|→1

(1− |z|)
∣∣∣∣2 +

zh′′(z)

h′(z)
+
zg′(z)

g(z)

∣∣∣∣ < 1,

then ∣∣SIgh∣∣ < 2.

By using of the Theorem 3.2, we have the following corollary.

Corollary 3.6. Let g ∈ P and h ∈ A, such that (h′g) (z) ∗ (x− 1)z

2(1− z)2 6= 0. If

lim sup
|z|→1

(1− |z|)
∣∣∣∣2 +

zh′′(z)

h′(z)
+
zg′(z)

g(z)

∣∣∣∣ < 1,

then ∣∣SIgh∣∣ < 2.

4. Product of Composition operators and Volterra-type operator
on K and K(α)

Products of composition operators and integral type operators have been recently
introduced by S. Li and S. Stevic in [7, 8, 9, 10]. Here we shall be interested in studding
the product of composition operators and Volterra-type integral operators, which are
defined by

(CσIgh)(z) =

∫ σ(z)

0

h′(ξ)g(ξ)dξ (z ∈ D)

on subclasses of H(D), where g ∈ H(D) and σ is an analytic self-map of the unit disk.

In this section we assume that σ(z) be the Möbius automorphism σ(z) =
z + z0
1 + z̄0z

on D,
where, z0 be the fixed point in D.

4.1. Theorem. Let β ∈ R, 0 6 α < 1 and 0 6 α+ β < 1. If g ∈ P (β, 1), then CσIg is
an operator from K(α) to K.

Proof. By hypothesis of this theorem and by using of the Lemma 2.1 part (2), it is
obvious that Ig is an operator from K(α) to K. Therefore Igh is a convex map. We let
f = Igh. By using of the Lemma 1 in [4] we have foσ is a convex mapping of D. We
know

foσ(z) = f (σ(z)) = (Igh) (σ(z)) =

∫ σ(z)

0

h′(ξ)g(ξ)dξ = (CσIgh)(z)

and the proof is complete. �
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4.2. Theorem. Let g ∈ P and h ∈ A. If(
h′g
)

(z) ∗ (x− 1)z

2(1− z)2 6= 0,

then CσIgh ∈ K.

Proof. By using of the Lemma 2.2 and Lemma 1 in [1] the proof is obvious. �

4.3. Theorem. Let β ∈ R, 0 6 α < 1 and α + β > 0. Let g ∈ P (β, 1) and h ∈ K(α).
Then the image (CσIgh)(D) is bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣∣ (σ(z)− z0)A(z) + 2

(σ(z)− z0 + z̄0zσ(z)− z)A(z) + 2z̄0z + 2

∣∣∣ < 1

2
,

where A(z) =
g′ (σ(z))

g (σ(z))
+
h′′ (σ(z))

h′ (σ(z))
.

Proof. By using of the Theorem 4.1, we have (CσIgh) ∈ K. In the proof of the Theorem
3.1 we saw that

ψ(z) =
g′(z)/g(z) + h′′(z)/h′(z)

2 + zg′(z)/g(z) + zh′′(z)/h′(z)
.

By using of the Lemma 1 in [1], there is an analytic function λ such that

(CσIgh)′′

(CσIgh)′
=

2λ(z)

1− zλ(z)
,

where

λ(z) =
ψ (σ(z))− z̄0
1− z0ψ (σ(z))

.

We have

zλ(z) =

zA(z)

2 + σ(z)A(z)
− z̄0z

1− z0A(z)

2 + σ(z)A(z)

=
(z − z̄0zσ(z))A(z)− 2z̄0z

(σ(z)− z0)A(z) + 2
,

hence
1− |z|
|1− zλ(z)| =

1− |z|∣∣1− (z − z̄0zσ(z))A(z)− 2z̄0z

(σ(z)− z0)A(z) + 2

∣∣
= (1− |z|)

∣∣∣ (σ(z)− z0)A(z) + 2

(σ(z)− z0 + z̄0zσ(z)− z)A(z) + 2z̄0z + 2

∣∣∣.,(4.1)

By using of the Theorem 2 in [1]] we get the image (CσIgh)(D) is bounded if and only if

lim sup
|z|→1

1− |z|
|1− zλ(z)| <

1

2
.

By (4.1), the proof is complete. �

4.4. Theorem. Let g ∈ P and h ∈ A, such that (h′g) (z) ∗ (x− 1)z

2(1− z)2 6= 0. Then the

image (CσIgh)(D) is bounded if and only if

lim sup
|z|→1

(1− |z|)
∣∣∣ (σ(z)− z0)A(z) + 2

(σ(z)− z0 + z̄0zσ(z)− z)A(z) + 2z̄0z + 2

∣∣∣ < 1

2
,

where A(z) =
g′ (σ(z))

g (σ(z))
+
h′′ (σ(z))

h′ (σ(z))
.
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Proof. The proof of this theorem is similar to the proof of Theorem 4.3. Only, in this
proof we using of the Theorem 4.2. By using of the Theorem 4.2, we have CσIgh ∈ K,
the remain proof of this theorem is analogue the above proof. �

By using of the Theorem 4.1, we have the following corollary:
Corollary 4.5. Let β ∈ R, 0 6 α < 1, α+ β > 0. If g ∈ P (β, 1) and h ∈ K(α), then∣∣SCσIgh∣∣ 6 2.

By using of the Theorem 4.2, we have the following corollary:
Corollary 4.6. Let g ∈ P and h ∈ A. If(

h′g
)

(z) ∗ (x− 1)z

2(1− z)2 6= 0,

then ∣∣SCσIgh∣∣ 6 2.

By using of the Theorem 4.3, we have the following corollary.
Corollary 4.7. Let β ∈ R, 0 6 α < 1 and α+ β > 0. Let g ∈ P (β, 1) and h ∈ K(α).

If

lim sup
|z|→1

(1− |z|)
∣∣∣∣ (σ(z)− z0)A(z) + 2

(σ(z)− z0 + z̄0zσ(z)− z)A(z) + 2z̄0z + 2

∣∣∣∣ < 1

2
,

then ∣∣SCσIgh∣∣ < 2.

Where A(z) =
g′ (σ(z))

g (σ(z))
+
h′′ (σ(z))

h′ (σ(z))
.

By using of the Theorem 4.3, we have the following corollary.

Corollary 4.8. Let g ∈ P and h ∈ A, such that (h′g) (z) ∗ (x− 1)z

2(1− z)2 6= 0. If

lim sup
|z|→1

(1− |z|)
∣∣∣∣ (σ(z)− z0)A(z) + 2

(σ(z)− z0 + z̄0zσ(z)− z)A(z) + 2z̄0z + 2

∣∣∣∣ < 1

2
,

then ∣∣SCσIgh∣∣ < 2.

Where A(z) =
g′ (σ(z))

g (σ(z))
+
h′′ (σ(z))

h′ (σ(z))
.
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