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WEDGE CAVITY

HALIS BILGIL, ZARIFE DOLEK

ABSTRACT. This paper analyzes the 2-D Stokes flow in annular wedge cavities with dif-
ferent cavity angles. In order to analyze the flow structures, the two dimensional bi-
harmonic equation is solved analytically. The flow is governed by two physical control
parameters: the cavity angleα and the ratio of the upper and lower lid speeds (S = U1

U2
).

By varying α for each S , the effect of cavity angle on the streamline patterns and their
bifurcations are investigated.

1. INTRODUCTION

Stokes flow generated within different shaped cavities is encountered in several
manufacturing processes and engineering applications. The list of some of these ap-
plications can be found in the references [6,12,14,17]. Flow within the cavities has also
been a focus attention for computational fluid dynamic studies since it is a commonly
used as a benchmark problem.

There are many works in the literature on cavity flows related to eddy structure and
their bifurcations. Gürcan et al. [8] analyzed the generation of eddies in a rectangular
cavity. They showed effects of cavity aspect ratio and speed ratio of the moving lids on
the streamline topology and the flow bifurcations. Flow bifurcation and eddy gener-
ation for steady, viscous flow in an L-shaped cavity, with the lids moving in opposite
directions, has been investigated by Deliceoğlu and Aydın [2]. Arun and Satheesh [1]
analyzed the effects of aspect ratio and Reynolds number on flow structures in a rect-
angular cavity.

Most of the these studies in literature related to cavity flow are concerned with the
square or rectangular cavity flows, although the cavities may be non-rectangular in
applications. Gürcan & Bilgil [9], and Gürcan et al. [10] investigated bifurcations and
eddy genesis mechanisms of Stokes flow in a sectorial cavity. Ertürk and Dursun [3]
solved 2-D steady and driven skewed cavity flow of an incompressible fluid numeri-
cally for skew angles ranging between 15o and 165o . Ertürk and Gökçöl [4] studied 2-D,
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steady and incompressible flow inside a triangular driven cavity. A sequence of flow
structures is illustrated by Gaskell et al. [7] for Stokes flow in a cylindrical cavity. Flow
structures in different shaped cavities investigated by Ozalp et al. [15]. They showed
effects of cavity shape on flow structure within the cavity in detail.

As can be seen from the literature survey given above and references therein, most
of the studies on cavity flows are performed on cavity aspect ratio and speed ratio of
moving lids. There is a need to investigate the effect of cavity angle on flow structure
in annular wedge cavities. This is aim of this study.

2. MATHEMATICAL FORMULATION

We considered a two-dimensional creeping flow in an annular wedge cavity r1 ≤
r ≤ r2,−α ≤ θ ≤ α (Fig. 1). The side walls, r = r1, r = r2 are fixed. The boundaries
θ = α and θ = −α are two moving lids, which translate with speeds U1 and U2 in the
radial direction respectively. The equation for the stream function governing the two-

FIGURE 1. Geometry and boundary conditions for the lid driven cavity

dimensional steady flow of a viscous fluid is

(2.1) ∇2∇2ψ(r,θ ) = 0,

where∇2 stands for the Laplace operator

(2.2)
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in polar coordinates.
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The derivatives ofψ give the velocity components:

(2.3) ur =−
1

r

∂ ψ

∂ θ
, uθ =

∂ ψ

∂ r
,

where ur and uθ are the radial and azimuthal components of velocity, respectively.
The streamfunction is constant (taken to be zero) on the boundaries

(2.4) ψ (r1,θ ) =ψ (r2,θ ) = 0 , ψ (r,±α) = 0 .

The ratio of the radii of the cylinders and speed ratio of the moving lids are our two
control parameters which are defined by:

(2.5) A =
r2

r1
, S =

U1

U2
.

In the plane polar coordinate system (r,θ ), the other boundary conditions are

(2.6) ur (r,α) = S , ur (r,−α) = 1 ,

and on the side walls:

(2.7) uθ (r1,θ ) = uθ (r2,θ ) = 0,

where we fixed U1 = S and U2 = 1.

2.1. Eigenfunction solution. The general solution for the streamfunction can be writ-
ten [13] in separable form as

(2.8) ψ (r,θ ) =
∞
∑

−∞
[En sin(λnθ ) + Fn cos(λnθ )]φ

(n )
1 (r ),

where

(2.9) φ(n )1 (r,λn ) = an r λn + bn r −λn + cn r 2−λn +dn r 2+λn ,

and λn are complex eigenvalues given by

(2.10) sin(bλn ) =±βbλn ,

where

(2.11) bλn = (i log
1

A
)λn and β =

1

2 log A
(A−

1

A
).

These complex eigenvalues are found via a Newton iteration procedure as described
by Robbins & Smith [165], Fettis [5] and Khuri [13]; and values of the corresponding
eigenvalues λn are given in Table 2.1.

The coefficients an , bn , cn and dn have to be determined from the sidewall bound-
ary conditions. These coefficients are given by Khuri [13].

The coefficients En and Fn in Eq. (2.8) have to be determined from the upper and
the lower boundary conditions in (2,4) and (2,6). It is clear that the coefficients and
the eigenvalues depends on S and A, respectively (see for details [55,99]).



4 HALIS BILGIL, ZARIFE DOLEK

Table 2.1: The first 30 roots of λn for r1 = 1, r2 = 4.

n λn n λn

1 1.86054+2.99451i 11 3.75801+48.66728i
2 2.46101+7.70825i 12 3.82201+53.203498i
3 2.78163+12.30346i 13 3.88080+57.739178i
4 3.00270+16.86922i 14 3.93515+62.27442i
5 3.17170+21.42265i 15 3.98570+66.80932i
6 3.30856+25.96964i 16 4.03295+71.34393i
7 3.42358+30.51282i 17 4.07728+75.87830i
8 3.52277+35.05353i 18 4.11906+80.41247i
9 3.60998+39.59256i 19 4.15854+84.94646i

10 3.68778+44.13037i 20 4.19598+89.48031i

The infinite series thereby obtained are in practice truncated after N terms, i.e. the
lower and upper summation limits are replaced by −N and N , respectively. The con-
vergence of the infinite series in (2.9) are necessary to determine the number N which
assures that the truncated series is close enough to the infinite series.

3. RESULTS

We first analyzed flow structures and their bifurcations in a half-annular ring cavity.
Then flow structures and their bifurcations in an annular wedge cavity wiht different
cavity angle are investigated. Effects of the cavity angle on flow topology are revealed.

3.1. Flow structures in a half-annular ring. A half-annular ring cavity, α = π
2 and

3.2 ≤ r ≤ 18, consisting of two stationary side walls and both lids moving is consid-
ered; the boundary conditions and solution procedure are as given in section 2. As
in Gürcan and Bilgil’s work [9], mechanisms for eddy generation are examined via the
emergence and the coalesce of corner-eedies or side-eddies as the aspect ratio is de-
creased; initially for single driven cavity, S = 1, and then for symmetric flow S =−1 and
S = 1. For each case, the flow structures and eddy genesis mechanisms are illustrated
in detail with figures.

3.1.1. Bifurcations for a Single Lid-Driven Sectorial Cavity. The aim of this section is
to consider Stokes flow in a single lid driven annular cavity with three stationary walls
(from Fig 1., S = 0 implies the top lid is stationary ; since the solutions obtained are
independent of which lid is stationary and which one moves, to aid visualsation the
flow patterns presented are for the case of a stationary bottom lid). Although the an-
alytical solution of this problem was obtained by Khuri [13], he was not interested in
the mechanism(s) of eddy generations.

In this case, the boundary conditions are defined as follows:

(3.1) ψ (r1,θ ) =ψ (r2,θ ) = 0 , ψ (r,±α) = 0

and imposing the no-slip condition on all four walls gives,

(3.2) uθ (r1,θ ) = uθ (r2,θ ) = 0

(3.3) ur (r,α) = 1 , ur (r,−α) = 0
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The values of the streamfunction and the radial velocity on top and bottom bound-
aries are given in Table 3.1. For different values of N in the infinite series in (2.8), the
radial velocity on top and bottom boundaries are given in Table 3.2.

To investigate streamline bifurcations and hence a mechanism of eddy generation
in this cavity, the aspect ratio was decreased, starting from A = 18 where the flow con-
sist of a single main eddy and two smaller ones near the bottom corners (Fig. 2a). As A
decreases it is observed that the corner eddies grow in size relative to the large central
eddy, to meet each other on the bottom wall at a critical value of A = 15.49 , see Fig. 2b.
At this critical aspect ratio a new eddy is formed with a saddle point and a separatrix
with streamfunction value ψ = 0. As A is decreased further this new eddy continues
to grow (see Fig. 2c-d), the centers of two sub-eddies approach the saddle point and
the center near the left-bottom of the cavity (say left center) coalesces with the saddle
point to form a cusp bifurcation at A = 12.05. Hence these two critical points disap-
pear and only the center near the right-bottom side of the cavity remains (say right
center). In fact, at this critical aspect ratio the development of this second eddy is now
complete as shown in Fig. 2e, A = 11.10. In this figure small corner eddies can be seen
once again developing in each of the bottom corners. The process of eddy generation
continues as the aspect ratio decreases( see Fig. 2f, where A = 3.20).

The same mechanism of eddy generation has similarly been reported by Gurcan
[8,11] for the case of a rectangular cavity and Gurcan & Bilgil [9] for a sectorial cavity
(for α= π

4 ).

Table 3.1: The values ofψ and ur on boundaries for r1 = 1, r2 = 4 and N = 30.

r ψ
�

r, π2 ; 30
�

ψ
�

r,−π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r, π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 30
�

1.0 -9.6458E-17 -3.2719E-020 1.7708E-15 0
1.2 7.1537E-04 -7.8157E-13 0.8817E+01 -0.1332E-10
1.4 -1.1147E-03 3.0229E-12 0.1071E+01 0.3918E-10
1.6 -1.4256E-03 3.7842E-12 0.1122E+01 0.3750E-09
1.8 9.9134E-04 -3.8356E-12 0.9247E+00 -0.3135E-09
2.0 -1.8560E-03 4.8247E-12 0.1163E+01 0.5496E-09
2.2 -1.4157E-03 2.3535E-12 0.1123E+01 0.3588E-09
2.4 -1.9610E-03 3.1865E-12 0.1139E+01 0.3818E-09
2.6 -1.5174E-03 8.4531E-12 0.1047E+01 0.2580E-09
2.8 2.2270E-03 -3.4649E-12 0.9173E+00 -0.3142E-10
3.0 -1.7164E-04 -2.5217E-12 0.1036E+01 -0.4235E-09
3.2 1.6848E-03 2.0594E-11 0.9621E+00 0.5959E-09
3.4 -2.1931E-03 4.9270E-12 0.1170E+01 0.7111E-09
3.6 2.1211E-03 -1.3457E-11 0.9658E+00 -0.1104E-08
3.8 -4.6814E-05 2.9814E-11 0.1195E+01 -0.1758E-09
4.0 -3.9111E-16 2.0768E-19 0.6123E-15 0

Table 3.2: The values of ur on boundaries for different N and r1 = 1, r2 = 4.
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r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 15
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 15
�

1.0 0 0
1.6 0.9127 -0.1003-07
2.2 1.0922 0.8708E-08
2.8 1.0043 0.5807E-08
3.4 0.9439 -0.1674E-7
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 30
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 30
�

1.0 0 0
1.6 1.1227 0.3750E-09
2.2 1.1236 0.3588E-09
2.8 0.9173 -0.3142E-10
3.4 1.1707 0.7111E-09
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 60
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 60
�

1.0 0 0
1.6 1.0484 -0.2170E-10
2.2 1.0698 -0.9644E-11
2.8 1.0628 -0.2684E-10
3.4 0.8381 0.3904E-10
4.0 0 0

r - 1
r
∂ ψ
∂ θ

�

r, π2 ; 90
�

- 1
r
∂ ψ
∂ θ

�

r,−π2 ; 90
�

1.0 0 0
1.6 1.0015 0.3599E-11
2.2 1.0003 -0.4064E-12
2.8 0.9996 -0.1018E-10
3.4 0.9928 -0.4382E-11
4.0 0 0

3.1.2. Case S =−1. In the case of lids moving in opposite directions with equal speeds,
(i.e. S =−1), the flow structure is symmetrical about θ = 0 for all values of A. For large
aspect ratios, a single eddy occupies the cavity, see Fig. 3a for A = 180. As the aspect
ratio is decreased from 180 there are four main stages in the development of the second
and third eddies. In the first stage, a ’Pitchfork bifurcation appears at a critical value
of A1 = 161.4. Thus, two additional stagnation points are generated in the cavity, (see
Fig. 3b where A = 130).

As A is decreased further, the separatrix continues to grow and the second critical
aspect ratio, A2 = 4.14, is obtained at which two degenerate critical points appear on
the two stationary side walls where side eddies are about to emerge as A is decreased
further, see Fig. 3c-h.

In the third stage, at A3 = 3.56, the heteroclinic connections coalesce with each
other at the interior saddle point to produce four heteroclinic connections between
the saddle point and the four separation points on the side walls, as shown in Fig. 3i
(where A = 3.5).

At this critical aspect ratio, A3, there are now two complete eddies within the cavity
and between them a third is about to be created. As A decreases, the sub-eddy center
lying left of the saddle on θ = 0 approach the saddle point on θ = 0 and coalesce,
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(a) (b) (c)

(d) (e) (f)

FIGURE 2. Eddy generation with decreasing A and S fixed at S = 0.
a) A = 18.0, b) A = 15.49, c) A = 13.20, d) A = 12.50, e) A = 11.10, f)
A = 3.20

disappearing at A4 = 3.29. This is a cusp (saddle-node) bifurcation. At this critical
aspect ratio the formation of a third eddy, between the other two, is completed so that
three eddies now occupy the cavity (Fig. 3j).

This is a mechanism for eddy generation in which one eddy becomes three. The
number of complete eddies increases from 3 to 5 and 5 to 7 etc. via similar eddy genesis
mechanism (see Fig. 3k-m).



8 HALIS BILGIL, ZARIFE DOLEK

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

FIGURE 3. Eddy generation via the appearance of sides-eddies with
decreasing A and S fixed at S =−1 for α= π

2 .
a) A = 180, b) A = 130, c) A = 90, d) A = 25, e) A = 12, f) A = 5, g) A = 4,
h) A = 3.6, i) A = 3.5, j) A = 3.2, k) A = 2.4, l) A = 2, m) A = 1.4
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Eddy generation with decreasing A and S fixed at S = 1.
a) A = 5, b) A = 3.1, c) A = 2.85, d) A = 2.8, e) A = 2.4, f) A = 1.74

3.1.3. Case S = 1. In the case of lids moving in the same radial direction with equal
speed, (i.e. S = 1), the flow structure is symmetric about θ = 0 for all values of A. It is
clear that the peripheral velocity is zero on θ = 0.

For large aspect ratios, only two symmetric eddies occupy the cavity; see Fig. 4a
for A = 5. As the aspect ratio is decreased from 5, there are three main stages in the
simultaneously development of the third and fourth eddies. In the first stage, as A is
decreased the first critical aspect ratio, A1 = 3.076, is reached at which two degenerate
critical points appear on each stationary sidewall; see Fig. 4b for A = 3.10. The side
eddies approach each other as A is further decreased, such that, when A2 = 2.831 is
reached, they coalesce on θ = 0. Thence a separatrix with a saddle point and two
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centers (i.e. two sub-eddies) is seen in the cavity (see Fig.4c-d). As A decreases, the
sub-eddy centers lying to the left of each of the saddles, approach the saddle point
and coalesce, disappearing at A3 = 2.664 which means that this is a cusp (saddle–node)
bifurcation. Hence four fully developed eddies are now visible in the cavity (see Fig.
4e-f).

This is a mechanism that consists from three steps for eddy generation from two
complete eddies to four. Firstly, side eddies born on each stationary sidewall. Sec-
ondly, these side eddies approach and coalesce each other to produce two reflected
separatrices enclosing two sub-eddies. In the last step, the cusp bifurcation are seen
on the each separatrix and there are now four complete eddies within the cavity. A
similar mechanism in a sectorial cavity is given by Gürcan and Bilgil [9].

3.2. Effect of the cavity angle on flow structures. It is the aim of this section to track
the various flow transformations arising in the cavity as α is gradually increased for
0 < α < π, and to expose the mechanisms by which new eddies emerge and develop
within a sectorial cavity.

This work is, which to our knowledge, the first such study in the literature in terms
of effect of cavity angle on flow structures and bifurcations.

For S = 0, A = 3 and S = 1, A = 2, the various flow transformations are tracked as α is
increased and hence the means is identified by which new eddies appear and become
fully developed.

3.2.1. Case: S = 0, A = 3. Solution of this problem is introduced in above section. For
narrow cavity angle, a single eddy occupies the cavity; see Fig.5 for α = 15, where the
flow consist of a single main eddy and two smaller ones near the bottom corners.

0 , 00 , 20 , 40 , 60 , 81 , 01 , 21 , 41 , 61 , 82 , 02 , 22 , 42 , 62 , 83 , 0

0

3 0

6 0
9 0

1 2 0

1 5 0

1 8 0

2 1 0

2 4 0
2 7 0

3 0 0

3 3 0

0 , 00 , 20 , 40 , 60 , 81 , 01 , 21 , 41 , 61 , 82 , 02 , 22 , 42 , 62 , 83 , 0

FIGURE 5. The cavity geometry and flow structure for S = 0, A = 3 and
α= 15.
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As α increases it is observed that the corner eddies grow and meet each other on
the bottom wall at a critical value of α = 47.31 , see Fig. 6a-d. At this critical cavity
angle a new eddy is formed with a separatrix. As α is increased further this new eddy
continues to grow and the centers of two sub-eddies approach the saddle point and
the center near the left-bottom of the cavity coalesces with the saddle point to form
a cusp bifurcation at α = 50.902. Hence these two critical points disappear and only
the center near the right-bottom side of the cavity remains see Fig. 6e-f. Hence the
second eddy is completed in the cavity. As α increases the small corner eddies can
be seen once again developing in each of the bottom corners. The process of eddy
generation continues as the cavity angle increases (see Fig. 6g-p). It is seen that, as
α→ π, the number of completed eddy is five in the cavity for A = 3, see Fig.6p. It is
clear that, in case of selecting smaller aspect ratio, the number of completed eddy will
be more.

3.2.2. Case: S = −1, A = 2. In this special case the flow is symmetric about θ = 0 for
all values of α. When 5 ≤ α ≤ 17.44 (Fig. 7a-b) the flow in the cavity is in its simplest
form: one single eddy with a centre-type stagnation point on θ = 0. As α is gradually
increased a sequence of flow transformations unfold, by which two additional eddies
are generated in the cavity. For example, at α = 17.44 the centre on θ = 0 becomes a
saddle point and two new centres appear (see Fig.7b where α = 22). As α is increased
further, the separatrix continues to grow and the second critical aspect angle is α =
48.24, at which two degenerate critical points appear on the two side walls (see Fig.
7c-f).

As α increases, the side eddies expand and approach the saddle point on θ = 0, and
at α = 53.1 coalesce with each other at the interior saddle point. At this critical cavity
angle there are now two complete eddies within the cavity and between them a third is
about to be created. Asα is increased further, it seen that there are a separatrix between
the two complete eddies (see Fig. 7g). As α increases, the sub-eddy center lying left of
the saddle approach the saddle point on θ = 0 and coalesce at α = 56.7 to produce
a centre. At this critical aspect ratio the development of the third eddy, between the
other two, is complete so that three eddies now occupy the cavity (see Fig. 7h).

It can be seen from the above that there are four main stages in the development of
the flow as the cavity aspect angle is increased: an interior saddle point appears; side
eddies appear; the left side eddy and saddle point touch; and the interior substructure
disappears.

This mechanism of eddy generation continues as the cavity angle increases (see Fig.
7i-r). It is seen that, as α is increased up to π, there are seven complete eddy and one
separatrix in the cavity for A = 2 (see Fig. 7r). It is clear that, in the case of selecting
smaller aspect ratio than A = 2, the number of complete eddy will be more.

In this study, derived from the one of the most important results, decreasing the
aspect ratio (A) of cavity with increasing the cavity angle of flow structures cavity shows
similar effects on the eddy genesis and their bifurcations.
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(e) (f) (g) (h)

(i) (j) (k)

(Continue)
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(l) (m) (n)

(o) (p) (q)

(r) (s)

FIGURE 6. Eddy generation with increasing α for S = 0 and A = 3.
a) α= 25, b) α= 35, c) α= 43, d) α= 46, e) α= 48, f) α= 52, g) α= 65,
h) α = 87, i) α = 90, j) α = 110, k) α = 120, l) α = 127, m) α = 130, n)
α= 155, o) α= 170, p) α→ 180
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(a) (b) (c)
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(g) (h) (i)

(Continue)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIGURE 7. Eddy generation with increasing α for S =−1 and A = 4.
a) θ = 5, b) θ = 15, c) θ = 22, d) θ = 30, e) θ = 45, f) θ = 52, g) θ = 54,
h) θ = 60, i) θ = 80, j) θ = 100, k) θ = 105, l) θ = 106.76, m) θ = 107, n)
θ = 120, o) θ = 130, p) θ = 158, r) θ = 170, s) θ → 180
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[3] E. Erturk, B. Dursun, Numerical solution of 2-D steady incompressible flow in a driven skewed cavity, Z.
Angew. Math. Mech. 87 (2007), 377âĂŞ392.
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