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SYMMETRY REDUCTIONS AND EXACT SOLUTIONS TO THE

SEVENTH-ORDER KDV TYPES OF EQUATION

YOUWEI ZHANG

Abstract. In present paper, the seventh-order KdV types of equation is con-

sidered by the Lie symmetry analysis. All of the geometric vector fields of the
KdV equation are obtained, then the symmetry reductions and exact solutions

to the KdV equation are investigated by the dynamical system and the power

series method.

1. Introduction

Recently, mathematics and physics field have devoted considerable effort to the
study of solutions to ordinary and partial differential equations (ODEs and PDEs).
Among many powerful methods for solving the equation, Lie symmetry analysis pro-
vides an effective procedure for integrability, conservation laws, reducing equations
and exact solutions of a wide and general class of differential systems representing
real physical problems [12, 15]. Sinkala et al [14] have performed the group classifi-
cation of a bond-pricing PDE of mathematical finance to discover the combinations
of arbitrary parameters that allow the PDE to admit a nontrivial symmetry Lie
algebra, and computed the admitted Lie point symmetries, identify the correspond-
ing symmetry Lie algebra and solve the PDE. Under the condition of the symmetry
group of the PDE is nontrivial, it contains a standard integral transform of the
fundamental solution for PDEs, and fundamental solution can be reduced to in-
verting a Laplace transform or some other classical transform in [1]. In [7], by the
direct construction method, all of the first-order multipliers of the the generalized
nonlinear second-order equation are obtained, and the corresponding complete con-
servation laws of such equations are provided. Furthermore, Lie symmetry analysis
helps to study their group theoretical properties, and effectively assists to derive
several mathematical characteristics related with their complete integrability [10].
Also, Lie symmetry analysis and dynamical system method is a feasible approach
to dealing with exact explicit solutions to nonlinear PDEs and systems, (see, e.g.,
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[2, 3, 8, 11]). Liu et al have derived the symmetries, bifurcations and exact explicit
solutions to the KdV equation by using Lie symmetry analysis and the dynamical
system method [5, 6]. The KdV equation models the dust-ion-acoustic waves in
such cosmic environments as those in the supernova shells and Saturn’s F-ring [4],
etc., In present paper, we will investigate the vector fields, symmetry reductions
and exact solutions to the KdV equation with power law nonlinearity and linear
damping with dispersion

ut + u2ux + uu4x + 2uxu3x + u2
xx + u7x = 0,(1.1)

where u = u(x, t) is the unknown functions, x is the spatial coordinate in the
propagation direction and t is the temporal coordinates, which occur in different
contexts in mathematical physics.

The rest of this paper is organized as follows: in Section 2, the vector fields of
Eqs. (1.1) are presented by using Lie symmetry analysis method. Based on the
optimal system method, all the similarity reductions to the Eqs. (1.1) are obtained.
In Section 3, the exact analytic solutions to the equations are investigated by means
of the power series method. Finally, the conclusions will be given in Section 4.

2. Lie symmetry analysis and similarity reductions

Recall that the geometric vector field of a PDE equation is as follows:

V = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u,(2.1)

where the coefficient functions ξ(x, t, u), τ(x, t, u), η(x, t, u) of the vector field are
to be determined later.

If the vector field (2.1) generates a symmetry of the equation (1.1), then V must
satisfy the Lie symmetry condition

PrV (∆)|∆=0 = 0,

where PrV denotes the 7-th prolongation of V , and ∆ = ut + u2ux + uu4x +
2uxu3x + u2

xx + u7x. Moreover, the prolongation PrV depends on the equation

PrV = η∂u + ηx∂ux
+ ηxx∂uxx

+ η3x∂u3x
+ η4x∂u4x

+ η7x∂u7x
,

where the coefficient functions ηkx(k = 1, 2, 3, 4, 7) are given as

ηkx = Dk
x(η − τut − ξux) + τukxt + ξu(k+1)x, k = 1, 2, 3, 4, 7,

here symbol Dx denotes the total differentiation operator and is defined as

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + . . . .

Then, in terms of the Lie symmetry analysis method, we obtain that all of the
geometric vector fields of Eq. (1.1) are as follows:

V1 = x∂x + 7t∂t − 3u∂u, V2 = ∂x, V3 = ∂t.

Moreover, it is necessary to show that the vector fields of Eq. (1.1) are closed
under the Lie bracket, we have

[Vi, Vi] = 0, i = 1, 2, 3,

[V1, V2] = −[V2, V1] = V2, [V1, V3] = −[V3, V1] = 7V3, [V2, V3] = −[V3, V2] = 0.

In the preceding section, we obtained the vector fields and the optimal systems
of Eq. (1.1). Now, we deal with the symmetry reductions and exact solutions to the
equations. We will consider the following similarity reductions and group-invariant
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solutions based on the optimal system method. From an optimal system of group-
invariant solutions to an equation, every other such solution to the equation can be
derived.

For the generator V1, we have

u = t−
3
7 f(z),(2.2)

where z = xt−
1
7 . Substituting (2.2) into Eq. (1.1), we reduce it into the following

ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 − 1

7
zf ′ − 3

7
f = 0,(2.3)

where f ′ = df
dz .

For the generator V2, we get the trivial solution to Eq. (1.1) is u(x, t) = c, where
c is an arbitrary constant.

For the generator V3, we have

u = f(z),(2.4)

where z = x. Substituting (2.4) into Eq. (1.1), we reduce it into the following ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 = 0,(2.5)

where f ′ = df
dz .

For the generator V3 + υV2, υ is an arbitrary constant, we have

u = f(z),(2.6)

where z = x− υt. Substituting (2.6) into Eq. (1.1), we reduce it into the following
ODE

f (7) + f2f ′(4) + 2f ′(3) + f ′′2 − υf ′ = 0,(2.7)

where f ′ = df
dz .

3. The exact power series solutions

By seeking for exact solutions of the PDEs, we mean that those can be obtained
from some ODEs or, in general, from PDEs of lower order than the original PDE.
In terms of this definition, the exact solutions to Eq. (1.1) are obtained actually
in both of the preceding Sections 2. In spite of this, we still want to detect the
explicit solutions expressed in terms of elementary or, at least, known functions of
mathematical physics, in terms of quadratures, and so on. But this is not always
the case, even for simple semilinear PDEs. However, we know that the power series
can be used to solve differential equations, including many complicated differential
equations [9, 13]. In this section, we will consider the exact analytic solutions to
the reduced equations by using the power series method. Once we get the exact
analytic solutions of the reduced ODEs, the exact power series solutions to the
original PDEs are obtained, now we consider the solutions of ODEs (2.3), (2.5) and
(2.7).

3.1 Exact analytic solutions to Eq. (2.3)
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In view of (2.3), we seek a solution in a power series of the form

f(z) =

∞∑
n=0

cnz
n.(3.1)

Substituting (3.1) into (2.3), and comparing coefficients, then we obtain the follow-
ing recursion formula:

cn+7 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2

− 1

7
ncn −

3

7
cn

)
,

(3.2)

for all n = 0, 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 6), we obtain

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
.(3.3)

Furthermore, from (3.2), it yield

c8 = − 1

20160

(
c0c

2
1 + c20c2 + 60c0c5 + 36c1c4 + 24c2c3 −

2

7
c1
)
,

c9 = − 1

181440

(
3c20c3 + c31 + 6c0c1c2 + 360c0c6 + 240c1c5 + 144c2c4

+ 72c23 + 24c0c4 −
5

7
c2
)
,

(3.4)

and so on.
Thus, for arbitrary chosen constant numbers ci (i = 0, 1, . . .), the other terms

of the sequence {cn}∞n=0 can be determined successively from (3.3) and (3.4) in a
unique manner. This implies that for Eq. (2.3), there exists a power series solution
(3.1) with the coefficients given by (3.3) and (3.4). Furthermore, it is easy to prove
the convergence of the power series (3.1) with the coefficients given by (3.3) and
(3.4). Therefore, this power series solution (3.1) to Eq. (2.3) is an exact analytic
solution.
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Hence, the power series solution of Eq. (2.3) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 + c7z

7 +

∞∑
n=1

cn+7z
n+7

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6

− 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
z7

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2 −
1

7
ncn −

3

7
cn

)
zn+7.

Thus, the exact power series solution of Eq. (1.1) is

u(x, t) = c0t
− 3

7 + c1xt
− 4

7 + c2x
2t−

5
7 + c3x

3t−
6
7 + c4x

4t−1 + c5x
5t−

8
7

+ c6x
6t−

9
7 − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c22 −

3

7
c1
)
x7t−

10
7

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(n+ 7)

×
( n∑

k=0

k∑
i=0

(n− k + 1)cick−icn−k+1

+
n∑

k=0

(n− k + 1)(n− k + 2)(n− k + 3)(n− k + 4)ckcn−k+4

+ 2

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)(k + 1)ck+1cn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)(k + 2)ck+2cn−k+2 −
1

7
ncn

− 3

7
cn

)
× xn+7t−

n+10
7 .

(3.5)

3.2 Exact analytic solutions to Eq. (2.5)

In view of (2.5), we have

1

3
f3 + ff ′′′ + f ′f ′′(6) + c = 0,(3.6)
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where c is an integration constant.
We seek a solution of Eq. (3.6) in a power series of the form (3.1). Substituting

(3.1) into (3.6), and comparing coefficients, we obtain

cn+6 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
,

(3.7)

for all n = 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 5), we have

c6 = − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
.

Furthermore, from (3.7), we have

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c1c2

)
,

c8 = − 1

20160

(
c20c2 + c0c

2
1 + 60c0c5 + 36c1c4 + 24c2c3

)
,

and so on.
Hence, the power series solution of Eq. (2.5) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 +

∞∑
n=1

cn+6z
n+6

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
z6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
zn+6.



128 YOUWEI ZHANG

Thus, the exact power series solution of Eq. (1.1) is

u(x, t) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5

− 1

720

(1

3
c30 + 6c0c3 + 2c1c2 + c

)
x6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2

)
xn+6.

(3.8)

3.3 Exact analytic solutions to Eq. (2.7)

In view of (2.7), we have

1

3
f3 + ff ′′′ + f ′f ′′(6) − υf + c = 0,(3.9)

where c is an integration constant.
Similarly, we seek a solution of Eq. (3.9) in a power series of the form (3.1).

Substituting (3.1) into (3.9), and comparing coefficients, we obtain

cn+6 = − 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)
,

(3.10)

for all n = 1, 2, . . ..
Thus, for arbitrarily chosen constants ci (i = 0, 1, . . . , 5), we can get

c6 = − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 − υc0 + c

)
.

Furthermore, from (3.10), we have

c7 = − 1

5040

(
c20c1 + 24c0c4 + 12c1c3 + 4c1c2 − υc1

)
,

c8 = − 1

20160

(
c20c2 + c0c

2
1 + 60c0c5 + 36c1c4 + 24c2c3 − υc2

)
,

and so on.
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Hence, the power series solution of Eq. (2.7) can be written as

f(z) = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 + c6z
6 +

∞∑
n=1

cn+6z
n+6

= c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2 − υc0

)
z6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

(
1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)
zn+6.

Thus, we obtain the traveling wave solution to Eq. (1.1) as follows

u(x, t) = c0 + c1(x− υt) + c2(x− υt)2 + c3(x− υt)3 + c4(x− υt)4

+ c5(x− υt)5 − 1

720

(1

3
c30 + 6c0c3 + 2c1c2

)
(x− υt)6

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)

×
(

1

3

n∑
k=0

k∑
i=0

cick−icn−k

+

n∑
k=0

(n− k + 1)(n− k + 2)(n− k + 3)ckcn−k+3

+

n∑
k=0

(n− k + 1)(n− k + 2)(k + 1)ck+1cn−k+2 − υcn
)

× (x− υt)n+6.

(3.11)

Remark 3.1. We would like to reiterate that the power series solutions which have
been obtained in this section are exact analytic solutions to the equations. More-
over, we can see that these power series solutions converge for the given chosen
constants ci (i = 0, 1, . . . , 6) of (3.5), ci (i = 0, 1, . . . , 5) of (3.8) and (3.11), respec-
tively, it is actual value for mathematical and physical applications.

4. Summary and discussion

In this paper, we have obtained the symmetries and similarity reductions of the
seventh-order KdV types of equations by using Lie symmetry analysis method. All
the group-invariant solutions to the equations are considered based on the optimal
system method. Then the exact analytic solutions are investigated by using the
power series method, and we can see that these power series solutions converge.
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