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Introduction
 
Melanocytic lesions are the pigmented lesions of the human skin that require utmost attention 
due to the risk of skin cancer. During cancer development, the cells of these lesions change 
their behavior resulting in different types of lesions: common nevus (the most benign lesion), 
atypical nevus (benign lesion but mimics most of the physical characteristics of malignancy) 
and melanoma (the malignant lesion). Melanoma is the most aggressive and life-threatening 
form of skin cancer [1]. To cure melanomas, current drug discoveries and targeted therapies in-
dicate evidence for possible opportunities. However, drug resistance can make the outcomes 
cumbersome [2]. Early detection and diagnosis still remain the key to decreasing the mortality 
rate [3]. 

In diagnosis of melanocytic lesions, especially in detecting the early phase of melanoma, der-
moscopy is reported to be a beneficial technique that may reveal the morphological struc-
tures and patterns of a lesion by performing imaging based on optical principles [4]. The imag-
es captured are evaluated by experienced dermatologists to determine several dermoscopic 
measures which are next entered to an algorithm for cancer diagnosis. The ABCD rule, the 
Menzies method and the 7-point checklist are among the main algorithms used [5-7].

The ABCD method relies on the interpretation of the measures of asymmetrical lesion 
shape, lesion border, number of colors and presence of different structural components 
in the lesion [5]. A total dermoscopy score (TDS) is calculated using a formula that incor-
porates points assessed for each measure. Diagnosis is made with respect to communi-
ty-recognized thresholds. In Menzies scoring, the measures of asymmetry of colors and/or 
structures in the lesion are considered in adjunct to the number of colors and the presence 
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ABSTRACT

Melanocytic lesions are the main cause of death from skin cancer, and early diagnosis is the key to decreasing the mortality rate. This study 
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encoding, resulting in five different input-vector sets. Feed-forward neural networks with one hidden layer and one output layer are designed 
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common nevus, atypical nevus, and melanoma. Accordingly, 105 networks are designed and trained using supervised learning and then tested 
by performing a 10-fold cross validation. All the neural networks achieve high sensitivities, specificities, and accuracies in classification. However, 
the network with seven neurons in the hidden layer and raw encoded dermoscopic measures as the input vector realizes the highest sensitivity 
(97.0%), specificity (98.1%), and accuracy (98.0%). The practical use of the network can facilitate lesion classification by retaining the needed 
expertise and minimizing diagnostic variability among dermatologists.
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of different structural components in the lesion [6]. All of 
the measures are scored as categorically present or absent. 
A decision-tree based approach is used to diagnose malig-
nancy. A 7-point checklist considers the presence of differ-
ent structural components in the lesion as the measures [7]. 
Any measure may take one or two points depending on its 
pre-defined importance. A total score is given by calculating 
the points taken. Diagnosis is made with respect to a com-
munity-recognized threshold value. The performances of 
the algorithms mentioned above are limited, and recently 
machine learning based algorithms have been gaining in-
creased interest to improve classification of melanocytic le-
sions in dermoscopy [8-11]. 

In this study, we aim to assess the performances of several 
feed-forward neural networks in classifying melanocytic le-
sions considering dermoscopic measures encoded by different 
schemes as the inputs to the networks. 

Materials and Methods

Study Dataset
 
This retrospective study employs PH2 dataset established by 
a group of researchers from the Technical Universities of Por-
to and the Dermatology Service of Pedro Hispano Hospital in 
Portugal to be used as ground truth in the evaluation of clas-
sification algorithms [12]. The dataset covers 200 melanocytic 
lesions: 80 common nevi, 80 atypical nevi and 40 melanomas. 
For each lesion, a total of 12 measures extracted from the der-
moscopic image of the lesion are provided. These measures are 
listed with attributed values in Table 1.

Neural Network Design
 
The current study involves the design of multiple feed-forward 
neural networks inherited from a multilayer perceptron with 
one hidden layer and one output layer as seen in Figure 1. The 
output vector, y is written in terms of the input vector, p using 

f ( ) softmax( tanh( ) )= = + +y p B Ap a b   (1)

here A and a denote the matrix of weights for the neurons 
and the bias vector in the hidden layer while B and b are the 
matrix of weights for the neurons and the bias vector in the 
output layer, respectively. The hidden layer owns a hyperbolic 
tangent sigmoid activation function while a softmax activation 
function sits in the output layer. The dimensions of the matrices 
and the length of the vectors are assigned by the number of 
elements in the input vector (R), the number of neurons placed 
in the hidden layer (Nh), and the number of neurons placed in 
the output layer (No). 

Figure 1. Multilayer perceptron having one hidden layer with 
hyperbolic tangent sigmoid activation function and one output 
layer with softmax activation function

Table 1. Dermoscopic measures and attributed values  

Measure Symbol Value Meaning

Asymmetry ma 0/1/2 0: Symmetric, 1: Symmetric in 1-axes or 2: Asymmetric

Color white mc
w 0/1 0: Absent or 1: Present

red mc
r 0/1 0: Absent or 1: Present

light brown mc
lb 0/1 0: Absent or 1: Present

dark brown mc
db 0/1 0: Absent or 1: Present

blue-gray mc
bg 0/1 0: Absent or 1: Present

black  mc
b 0/1 0: Absent or 1: Present

Structure pigment network mp 0/1 0: Atypical or 1:Typical

dots/globules mdg 0/1/2 0: Absent, 1: Atypical or 2: Typical

streaks ms 0/1 0: Absent or 1: Present

regression areas mr 0/1 0: Absent or 1: Present

blue-whitish veil mv 0/1 0: Absent or 1: Present
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In the current study, considering the three different classes of 
melanocytic lesions, namely common nevus, atypical nevus 
and melanoma, No was set to three. However, Nh was set to 
range between two and twenty-two to test the classification 
performance with respect to the number of neurons in the hid-
den layer and R took values from three to sixteen according to 
the five different input vector sets studied.

Input Vector Encoding 
 
The input vector for a neural network was formed by applying 
four different encoding schemes to the measures supplied in 
the study dataset for the melanocytic lesions. These are com-
pact encoding, ACD encoding, 1-of-N encoding, normalized 
scale encoding and raw encoding. In the raw encoding scheme, 
all the measures are directly employed in the input vector. The 
normalized scale encoding is very similar to raw encoding, i.e. 
all the measures are directly used in the input vector, but they 
are divided by their possible maximum values so that all the 
measures are limited to be between 0 and 1. The 1-of-N en-
coding considers binary values for any measure and therefore 
for the measures taking more than two values supplementary 
measures are defined as:

      (2a)

 

      (2b)

 

ACD encoding relies on the concept of the well-recognized 
ABCD evaluation method that looks at the total number of col-
ors among the pre- defined color types and the total number 
of structures among the pre-defined structure types present 
within the lesion [5]. To implement this method, supplementa-
ry measures are defined as follows:

  (3a)

 (3b)

The compact encoding method compresses the measure data 
while performing normalization preserving all measures. The 
following measures obtained from the raw measures are of-
fered by this method:

(4a)
 

 
(4b)

Table 2 shows the input vector and the number of elements in 
the input vector obtained for each encoding scheme studied. 

Neural Network Training and Testing

For each neural network designed, training and testing tasks 
were performed using 10-fold cross validation [13]. The input 
vector set covering all cases in the study dataset was first di-
vided into ten partitions. Next, nine of these partitions were 
assigned to the training dataset while the remaining one parti-
tion was allocated as the test dataset. 

Using the training dataset, a supervised based training was 
initiated by assigning weights for the neurons and the bias 
randomly and the optimal values for the weights and the bias 
were obtained by a backpropagation algorithm using scaled 
conjugate gradient optimization and cross-entropy loss func-
tion between the outputs of the network and the target out-
puts (i.e. lesion classes) [14, 15]. The training was stopped when 
the number of epochs reached its maximum of 103 or the gradi-
ent of the cross-entropy reached its minimum of 10-10. Follow-

Table 2. Encoding schemes and resulting input vectors

Encoding Raw Normalized 1-of-N ACD Compact

p

ma ma/2 ma,0 ma ma/2

mc
w mc

w ma,1 mC mCC

mc
r mc

r ma,2 mD mDC

mc
lb mc

lb mc
w

mc
db mc

db mc
r

mc
bg mc

bg mc
lb

mc
b mc

b mc
db

mp mp mc
bg

mdg mdg/2 mc
b

ms ms mp

mr mr mdg,0

mv mv mdg,1

mdg,2

ms

mr

mv

R 12 12 16 3 3
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ing training, the network was tested with the testing dataset 
unknown to the network. The outputs of the network were re-
corded to assess the classification performance of the network. 
The folding process, explained in the details above, was repeat-
ed ten times to be able to consider each partition generated 
during the 10-fold cross validation as the test dataset.

Assessing the Performance of Classification
 
Classification performance is assessed by sensitivity (Se), spec-
ificity (Sp) and accuracy (Acc) metrics obtained by computing 
the arithmetic mean of these metrics determined for each fold-
ing process. For the k-th folding process, the overall sensitivity, 
specificity and accuracy for that fold can be calculated using

    (5a)
 

 (5b)
 

 
 (5c)

Here n denotes the class number and ranges from 1 to 3 ac-
cording to the three classes (c1: common nevus, c2: atypical ne-
vus and c3: melanoma). Pr(n) is the probability of a lesion being 
in class n. Se(k,n), Sp(k,n) and Acc(k,n) are calculated consider-
ing the classification results by the neural network for the n-th 
class for the k-th fold by [16] 

(6a)

 

(6b)
 

 (6c)

The neural networks designed were numerically implement-
ed and classifications were performed on a standard desktop 
PC (Intel i5-4460 3.20GHz processor, 6GB memory and 64-bit 
operating system) using our in-house computer software tools 
developed using MATLAB (v8.2; Natick, MA).

Results

A total of five different input vectors were analyzed in the clas-
sification of melanocytic lesions into common nevus, atypical 
nevus and melanoma by feed-forward neural networks hav-
ing one hidden layer and one output layer inherited from a 
multi-layer perceptron. Each type of input vector was fed into a 
dedicated neural network while the number of neurons in the 
hidden layer of the network was changed from two to twen-
ty-two. This led to the design and analysis of 105 neural net-
works in total. 

Table 3 tabulates the classification performances of the neu-
ral networks fed by the input vectors formed using raw en-
coding, normalized scale encoding, 1-of-N encoding, ACD 
encoding and compact encoding with respect to the number 
of neurons employed in the hidden layer of the networks. 
Corresponding plots for the performances are seen in Figures 
2a-2c. The raw encoding and the normalized scale encoding 
let the neural networks provide the same very high sensitivi-
ties (96.1%-97.0%), specificities (97.7%-98.1%) and accuracies 
(97.4%-98.0%). On the other hand, the neural networks fed by 
the input vectors formed using 1-of-N encoding achieve very 
high sensitivities (95.9%-97.1%), specificities (97.5%-98.1%) 
and accuracies (97.2%-98.0%), too. However, ACD encoding 
induces lower sensitivities (85.9%-87.5%), specificities (91.8%-
92.5%) and accuracies (90.3%-91.3%). For compact encoding, a 
wide range of sensitivities, specificities and accuracies are de-
termined, and better values are obtained when the numbers of 
neurons in the hidden layer of the networks are increased. In 

Figure 2. a-c. Plots for classification sensitivity (a); specificity (b) and accuracy obtained for the neural networks (c)
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contrast to this, very similar performance values are offered by 
the networks fed by the input vectors formed using the other 
encoding schemes, independent of the number of neurons in 
the hidden layer. 

The highest classification accuracy value is considered to de-
termine the best classification performance achieved for each 
encoding scheme. Raw and the normalized scale encodings 
offer the same best classification performance: Se= 97.0%, Sp= 
98.1% and Acc= 98.0%. This performance is provided by two 
networks both employing seven neurons in the hidden layer. 
The 1-of-N encoding offers the best performance with Se= 
97.1%, Sp= 98.1% and Acc= 98.0% and a network having ten 
hidden neurons delivers this performance. For the ACD encod-
ing, the best performance is Se= 87.5%, Sp= 92.6% and Acc= 
91.3% by a network with ten hidden neurons. The compact en-
coding delivers the best performance as Se= 95.6%, Sp= 97.2% 

and Acc= 96.9% when a network having twenty hidden neu-
rons is considered. 

Conclusion
 
Feed-forward neural networks obtained from a multilayer per-
ceptron with one hidden layer and one output layer can classify 
melanocytic lesions from dermoscopic measures of the lesions 
with quite high sensitivity, high specificity and high accuracy. 
However, the specificity is always higher than the sensitivity. 
The input vectors of the networks can be formed by applying 
different encoding schemes to the measures. This process re-
quires utmost attention since it has a remarkable impact on the 
classification performance. 

The ACD encoding that relies on the concept of well-recognized 
ABCD evaluation method offers limited classification sensitivity, 

Table 3. Classification performances of the neural networks for the encoding schemes

Raw Encoding Normalized Encoding 1-of-N Encoding ACD Encoding Compact Encoding

Nh Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc

2 96.1 97.7 97.4 96.1 97.7 97.4 95.9 97.5 97.2 85.9 91.8 90.3 83.3 90.2 88.1

3 96.8 98.0 97.9 96.8 98.0 97.9 96.5 97.8 97.6 87.2 92.4 91.1 83.5 90.1 88.2

4 96.8 97.9 97.8 96.8 97.9 97.8 96.8 98.0 97.8 87.3 92.5 91.1 84.5 90.7 88.8

5 96.7 98.0 97.8 96.7 98.0 97.8 96.6 97.9 97.7 87.2 92.4 91.1 86.2 91.7 89.9

6 96.8 98.0 97.9 96.8 98.0 97.9 96.9 98.1 97.9 87.4 92.5 91.2 87.8 92.5 91.0

7 97.0 98.1 98.0 97.0 98.1 98.0 96.7 97.9 97.8 87.4 92.5 91.2 88.2 92.8 91.4

8 97.0 98.1 98.0 97.0 98.1 98.0 96.9 98.0 97.9 87.4 92.4 91.2 89.6 93.3 92.2

9 96.7 97.9 97.8 96.7 97.9 97.8 96.8 98.0 97.9 87.4 92.5 91.2 90.7 94.0 93.0

10 96.8 98.0 97.9 96.8 98.0 97.9 96.8 98.0 97.9 87.5 92.6 91.3 90.8 94.1 93.1

11 96.9 98.0 97.9 96.9 98.0 97.9 97.0 98.1 97.9 87.3 92.4 91.2 92.4 95.1 94.4

12 97.0 98.1 98.0 97.0 98.1 98.0 96.8 98.0 97.9 87.4 92.5 91.2 92.4 95.2 94.4

13 96.8 98.0 97.8 96.8 98.0 97.8 96.7 98.0 97.8 87.3 92.4 91.2 91.8 94.7 93.8

14 96.9 98.0 97.9 96.9 98.0 97.9 96.9 98.0 97.9 87.5 92.5 91.3 93.3 95.7 95.1

15 97.0 98.1 98.0 97.0 98.1 98.0 96.8 98.0 97.8 87.5 92.5 91.3 93.0 95.5 94.9

16 96.8 98.0 97.8 96.8 98.0 97.8 97.1 98.1 98.0 87.4 92.5 91.2 93.4 95.7 95.2

17 97.0 98.1 98.0 97.0 98.1 98.0 96.9 98.0 97.9 87.5 92.5 91.3 94.7 96.6 96.2

18 96.9 98.0 97.9 96.9 98.0 97.9 97.0 98.1 98.0 87.4 92.5 91.2 94.5 96.4 96.0

19 96.7 97.9 97.8 96.7 97.9 97.8 96.8 98.0 97.9 87.4 92.5 91.2 95.0 96.8 96.4

20 96.9 98.0 97.9 96.9 98.0 97.9 96.8 98.0 97.9 87.4 92.5 91.2 95.6 97.2 96.9

21 96.9 98.0 97.9 96.9 98.0 97.9 96.9 98.0 97.9 87.4 92.5 91.2 94.8 96.7 96.3

22 96.9 98.0 97.9 96.9 98.0 97.9 96.8 98.0 97.9 87.4 92.5 91.2 95.0 96.8 96.4
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specificity and accuracy. This is due to the fact that the ABCD 
method looks at the dermoscopic measures as the asymmetry 
of the lesion, the total number of colors among the pre- de-
fined color types and the total number of structures among the 
pre-defined structure types present within the lesion. When 
compared to the ACD encoding, the compact encoding reveals 
better sensitivity, specificity and accuracy. This may be as a result 
of using normalized lesion asymmetry in addition to the com-
pressed and then normalized data of the presence of each col-
or and each pre-defined structure within the lesion separately. 
On the other hand, the raw encoding that relies on direct use of 
the lesion asymmetry and the presence of each color and each 
pre-defined structure within the lesion as the measures delivers 
the highest sensitivity, specificity and accuracy. Very similar per-
formances are achieved when the data are encoded in a normal-
ized fashion (i.e. normalized scale encoding) or encoded in the 
binary form (i.e. 1-of-N encoding). Since it requires no additional 
process such as normalization or binary transformation, use of 
raw encoding would be preferable.

There are a number of studies in the literature that employ ma-
chine learning techniques to classify melanocytic lesions into 
common nevus, atypical nevus and melanoma using the der-
moscopic measures of the lesions mentioned above. The find-
ings demonstrate that artificial neural networks perform better 
than support vector machines, K-nearest neighbor classifiers 
and also decision tree classifiers [10, 11]. A feed-forward neural 
network having eighteen neurons in the hidden layer is illus-
trated to offer 92.5% accuracy when fed by the dermoscopic 
measures encoded using 1-of-N encoding scheme [11]. On the 
other hand, a deep neural network with a Softmax activation 
function is reported to achieve 91.9% classification accuracy 
for the measures encoded using normalized scale encoding 
[10]. Meanwhile, a feed-forward neural network with fifteen 
neurons in the hidden layer is reported to offer 93.3% classi-
fication accuracy for the measures applied with raw encoding 
method [9]. This network is equipped with a linear activation 
function at the output layer. In the current study, we report an 
improved accuracy of 98.0% from a feed-forward neural net-
work with seven neurons in the hidden layer for the measures 
applied with raw encoding method. This network houses a 
Softmax activation function at the output layer. 

The Softmax activation function is habitually employed in 
the output layer of the neural networks aiming at multiclass 
classification [17]. Therefore, its use in the network developed 
during the current study makes the classification of the three 
different types of melanocytic lesions possible. On the other 
hand, the output of a Softmax activation function is a proba-
bility distribution. Accordingly, cross-entropy loss function was 
used during the training of the designed network. Due to the 
cooperative use of cross-entropy loss function and Softmax 
activation function, the network obtained carries out a nonlin-
ear variant of multinomial logistic regression that leads to an 
improved classification performance with a small number of 
neurons in the hidden layer. 

There are some limitations of the current study. The results are 
for the melanocytic lesions from the PH2 dataset that delivers 
histological diagnoses only for the lesions considered highly 
suspicious by dermatologists. The dataset offers several der-
moscopic measures but measures for border characteristics of 
the lesion, diameter of the lesion or occurrence of atypical vas-
cular pattern in the lesion, are not covered which may allow for 
further improvements in the classification performance. The 
neural networks developed are all trained using scaled con-
jugate gradient optimization and cross-entropy loss function. 
Other optimization algorithms such as Marquardt-Levenberg 
and other loss functions such as mean square may improve the 
classification performance further. 

In conclusion, the classification of melanocytic lesions of the 
human skin, especially of melanomas, requires the utmost at-
tention since melanoma is the most aggressive and life-threat-
ening form of skin cancer. Early diagnosis is the key to decreas-
ing the mortality rate. A feed-forward neural network fed by 
the lesion measures from dermoscopy can perform cancer 
detection while discriminating the non-cancerous types with 
quite high accuracy. However, for improved classification per-
formance, the measures need to be encoded properly and then 
fed into the network. Practical use of such a network setup may 
facilitate lesion classification by minimizing the need for exper-
tise and also by reducing the diagnostic variability among the 
dermatologists.
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