
İSTATİSTİK: JOURNAL OF THE TURKISH STATISTICAL ASSOCIATION
Vol. 7, No. 1, January 2014, pp. 1–14
issn 1300-4077 |14 |1 |1 |14
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Abstract: Chebyshev’s inequality was recently extended to the multivariate case. In this paper this new
inequality is used to obtain distribution-free confidence regions for an arbitrary bivariate random vector
(X,Y ). The regions depend on the means, the variances and the (Pearson) correlation coefficient. The
theoretical method is illustrated by computing the confidence regions for two order statistics obtained from
a sample of iid random variables or obtained from a sequence of dependent components. They are also
computed for an arbitrary bivariate data set (with or without groups) by obtaining plots similar to univariate
box plots.
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1. Introduction Chebyshev’s inequality is a basic tool for random variables which provides a
lower bound for the percentage of the population in a given distance with respect to the population
mean when the variance is known. There are several extensions of this inequality to the multivariate
case (see, e.g., [3, 5] and the references therein). The extension obtained recently by Chen [3]
provided the following multivariate inequality

Pr((X−µ)′V −1(X−µ)≥ ε)≤ k

ε
(1.1)

valid for all ε > 0 and for all random vectors X= (X1, . . . ,Xk)
′ (where w′ denotes the transpose

of w) with finite mean vector µ = E(X) and positive definite covariance matrix V = Cov(X) =
E((X−µ)(X−µ)′). This inequality can also be written as

Pr((X−µ)′V −1(X−µ)< ε)≥ 1− k

ε
(1.2)

for all ε > 0 or as

Pr(dV (X, µ)< δ)≥ 1− k

δ2
(1.3)

for all δ > 0, where dV (X, µ) =
√

(X−µ)′V −1(X−µ) is the Mahalanobis distance associated to
V between X and µ. Therefore (1.3) gives a lower bound for the probability in the concentration
ellipsoid Eδ = {x∈Rk : dV (x, µ)< δ}.

Navarro [7] proved that the bounds in (1.1) are sharp, that is, they are the best possible bounds
for these probabilities when only µ and V are known. A simple proof of (1.1) was obtained in [6]
where the case of a singular covariance matrix is also considered by using the principal components
associated toX. Some extensions of (1.1) to Hilbert-space-valued and Banach-space-valued random
elements were given in [9] and [10], respectively. Additional (related) bounds are obtained in [2].
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In this paper the inequality in (1.1) is used to obtain confidence regions for an arbitrary bivariate
random vector (X,Y ) (Section 2). The regions obtained depend on the means, the variances and
the (Pearson) correlation coefficient. These confidence regions are computed in Section 3 for two
order statistics obtained from a sample of iid random variables or obtained from a sequence of
dependent random variables by using the expressions for the correlation coefficients given in [8].
They are also computed in Section 4 for an arbitrary bivariate data set (with or without groups)
by obtaining plots similar to univariate box plots. Specifically, we consider the famous (Fisher’s or
Anderson’s) iris data set.

2. Main result The following theorem proves that the bound in (1.1) can be used to obtain
a confidence region for an arbitrary bivariate random vector (X,Y ).

Theorem 1. Let (X,Y )′ be a random vector whose random variables have finite means E(X) =
µX and E(Y ) = µY , finite positive variances V ar(X) = σ2

X > 0 and V ar(Y ) = σ2
Y > 0 and correla-

tion coefficient ρ=Cor(X,Y )∈ (−1,1). Then

Pr((X∗ −Y ∗)2 +2(1− ρ)X∗Y ∗ < δ)≥ 1− 2
1− ρ2

δ
(2.1)

for all δ > 0, where X∗ = (X −µX)/σX and Y ∗ = (X −µY )/σY .

T he covariance matrix of the random vector (X∗, Y ∗) is

V =

(
1 ρ
ρ 1

)
with ρ=Cov(X∗, Y ∗) =Cor(X,Y )∈ (−1,1). Then

V −1 =
1

1− ρ2

(
1 −ρ
−ρ 1

)
and, from (1.1), we obtain

Pr

(
1

1− ρ2
(X∗, Y ∗)

(
1 −ρ
−ρ 1

)(
X∗

Y ∗

)
< ε

)
≥ 1− 2

ε
,

for all ε > 0, which gives

Pr
(
(X∗)2 +(Y ∗)2 − 2ρX∗Y ∗ < ε(1− ρ2)

)
≥ 1− 2

ε

for all ε > 0. Hence, by taking δ= ε(1− ρ2), we obtain

Pr
(
(X∗)2 +(Y ∗)2 +2(1− ρ− 1)X∗Y ∗ < δ

)
≥ 1− 2

1− ρ2

δ
,

that is,

Pr
(
(X∗ −Y ∗)2 +2(1− ρ)X∗Y ∗ < δ

)
≥ 1− 2

1− ρ2

δ

for all δ > 0.
Remark 1. Note that if ρ=±1, then a similar expression can be obtained by using the uni-

variate Chebyshev inequality. In [6] it is proved that if V is positive definite and T is an ortogonal



Navarro: A note on confidence regions based on the bivariate Chebyshev inequality. Applications to order statistics and data sets.
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matrix (i.e. T ′T = TT ′ = I) such that T ′V T =D, whereD is a diagonal matrix, then V −1 = TD−1T ′

and (1.2) can also be written as

pε =Pr((X−µ)′TD−1T ′(X−µ)< ε)

= Pr([D−1/2T ′(X−µ)]′[D−1/2T ′(X−µ)]< ε)
= Pr(Z′Z< ε)

= Pr(Z2
1 + · · ·+Z2

k < ε)≥ 1− k

ε
, (2.2)

where Z= (Z1, . . . ,Zk)
′ =D−1/2T ′(X−µ) are the standardized principal components. Hence (2.1)

can also be obtained by computing the eigenvalues and eigenvectors of

V =

(
1 ρ
ρ 1

)
.

The eigenvalues are 1 + ρ and 1 − ρ and the respective eigenvectors are (1/
√
2,1/

√
2) and

(1/
√
2,−1/

√
2). Therefore Z1 = (X∗ + Y ∗)/

√
2(1+ ρ) and Z2 = (X∗ − Y ∗)/

√
2(1− ρ) and, from

(2.2), we obtain

Pr

(
(X∗ +Y ∗)2

2(1+ ρ)
+

(X∗ −Y ∗)2

2(1− ρ)
< ε

)
≥ 1− 2

ε
(2.3)

for all ε > 0. A straightforward calculation shows that this expression is equivalent to (2.1). As
we have mention in the introduction the regions determined by (2.1) (or by (2.3)) for X∗ and Y ∗

correspond to ellipses with the main axes determined by the principal components obtained from
the correlation matriz. They can be transformed into circles in terms of Z1 and Z2 by using (2.3)
or into different ellipses in terms of the original random variables X and Y . Of course, if ρ = 0
and σX = σY , then all these regions are circles. If (X,Y ) have a bivariate normal distribution, the
regions are determined by the level curves of the respective density function. Let us see a simple
example.

Example 1. Let (X,Y ) by an arbitrary random vector whose random variables have means
E(X) =E(Y ) = 1, variances V ar(X) = V ar(Y ) = 1 and correlation coefficient ρ=Cor(X,Y ) = 0.9.
Then (2.1) gives

Pr(5(X −Y )2 +(X − 1)(Y − 1)< 5δ)≥ 1− 2
0.19

δ
,

that is,

Pr(5X2 − 9XY +5Y 2 −X −Y +1< ε)≥ 1− 1.9

ε
for all ε > 1.9. The distribution-free confidence regions for ε = 3,4,5,10 can be seen in Figure 1
containing at least the 36.6666%, 52.5%, 62% and the 81% of the values of (X,Y ) (for any bivariate
distribution). These regions can be simplified if we have some additional information about X and
Y (e.g. that they are positive).

Remark 2. In the multivariate case (when k > 2), we can obtain similar plots for the stan-
dardized principal components Z= (Z1, . . . ,Zk)

′ =D−1/2T ′(X− µ) used in (2.2). For example, as
(Z1,Z2)

′ has mean (0,0)′ and covariance matrix Cov(Z1,Z2) = I2 (the identity matrix of dimension
2), then

Pr(Z2
1 +Z2

2 < ε)≥ 1− 2

ε
. (2.4)

The same holds for the other pairs of principal components. A similar expression can be obtained
for the usual principal components Y = (Y1, . . . , Yk)

′ = T ′X, that is, for Yi = E(Yi) +
√
λiZi, i =

1, . . . , k. Thus, from (2.4), we obtain

Pr

(
(Y1 −E(Y1))

2

λ1

+
(Y2 −E(Y2))

2

λ2

< ε

)
≥ 1− 2

ε
. (2.5)

Let us see an example.
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Figure 1. Confidence regions for the random vector in Example 1 for ε= 3,4,5,10 containing at least the 36.6666%,
52.5%, 62% and the 81% of the values of (X,Y ).

Example 2. Let (X1,X2,X3) by an arbitrary random vector with means E(Xi) = 1, variances
V ar(Xi) = 1 and correlation ρi,j = 0.9 for i, j = 1,2,3, i ̸= j. Then the two greatest eigenvalues are
λ1 = 1+2ρ= 2.8, λ2 = 0.1 and the (some) associated eigenvectors are t1 = (1/

√
3,1/

√
3,1/

√
3)′ and

t2 = (1/
√
2,−1/

√
2,0)′. Then, from (2.4), we have

Pr(Z2
1 +Z2

2 < ε)≥ 1− 2

ε
.

for Z1 = (X1 +X2 +X3 − 3)/
√
8.4 and Z2 = (X1 −X2)/

√
0.2. Hence

Pr

(
(X1 +X2 +X3 − 3)2

8.4
+

(X1 −X2)
2

0.2
< ε

)
≥ 1− 2

ε
.

Analogously, from (2.5), we obtain

Pr

(
(Y1 − 3)2

2.8
+

Y 2
2

0.1
< ε

)
≥ 1− 2

ε
,

where Y1 = (X1 +X2 +X3)/
√
3 and Y2 = (X1 −X2)/

√
2. Thus, the distribution-free confidence

regions for Y1 and Y2 and ε= 4,8 can be seen in Figure 2 containing at least the 50% and the 75%,
respectively, of the values of (Y1, Y2) (for any joint distribution).

3. Applications to order statistics Let us consider now the order statistics (ordered data)
X1:k, . . . ,Xk:k obtained from the random sequence X1, . . . ,Xk. This sequence can be the usual
sample of independent and identically distributed (iid) random variables or they can be any random
vector (X1, . . . ,Xk) (including a dependence structure, groups or outliers). They can also be seen
in the context of the reliability theory as the lifetimes of j-out-of-k systems (i.e. systems which
work when at least j of their k components work).
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Y1

Y
2

−2 0 2 4 6 8

−
2

−
1

0
1

2

Figure 2. Confidence regions for the principal components of the random vector in Example 5 for ε= 4,8 containing
at least the 50% and the 75% of the values of (Y1, Y2).

In all these cases, a procedure to compute the respective correlation coefficients is given in [8].
Thus, for example, in the general case, for k= 2, from (2.2) in [8], we have

ρ1,2:2 =Cor(X1:2,X2:2) = ρ
σ1σ2

σ1:2σ1:2

+
(µ1 −µ1:2)(µ2 −µ1:2)

σ1:2σ1:2

,

where µi =E(Xi), µi:2 =E(Xi:2), σ
2
i = V ar(Xi), σ

2
i:2 = V ar(Xi:2), for i= 1,2, and ρ=Cor(X1,X2).

In particular, if X1 and X2 are identically distributed (id) then

ρ1,2:2 =Cor(X1:2,X2:2) = ρ
σ2

σ1:2σ1:2

+
(µ−µ1:2)

2

σ1:2σ1:2

,

where µ=E(Xi) and σ2 = V ar(Xi) for i= 1,2. Hence, in both cases, from Theorem 1, we have

Pr((X∗
2:2 −X∗

1:2)
2 +2(1− ρ1,2:2)X

∗
2:2X

∗
1:2 < δ)≥ 1− 2

1− ρ21,2:2
δ

, (3.1)

where X∗
i:2 = (Xi:2−µi:2)/σi:2, i= 1,2. Notice that in this case we also have the relation X2:2 ≥X1:2.

By combining this expression with (3.1) we can obtain confidence regions for (X1:2,X2:2). Note
that this can also be applied to the study of a two components parallel system (with lifetime
X2:2 = max(X1,X2)) and the time of the first component failure (X1:2 = min(X1,X2)). Here we
might also have some additional restrictions (e.g. X1:2 ≥ 0). Let us see some examples.

Example 3. If (X1,X2) has an exchangeable Pareto distribution with joint reliability function

F (x, y) = Pr(X1 >x,X2 > y) = (1+λx+λy)−θ

for x, y ≥ 0, where λ > 0 and θ > 2, then µ= 1/(λθ− λ), σ2 = µ2/(1− 2ρ) and ρ= 1/θ ∈ (0,1/2).
Moreover, µ1:2 = µ/2, µ2:2 = 3µ/2

σ2
1:2 =

µ2

4(1− 2ρ)
,
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σ2
2:2 =

µ2(6+3ρ)

4(1− 2ρ)

and

ρ1,2:2 =
1+2ρ√
6+3ρ

(see Example 2.10 in [8]). For example, if λ = 0.5 and θ = 3, then µ = 1, ρ = 1/3, µ1:2 = 1/2,
µ2:2 = 3/2, σ1:2 = 0.8660254, σ2:2 = 2.291288 and ρ1,2:2 = 0.6299408. Hence, from (3.1), we have

Pr

((
X2:2 − 1.5

2.291288
− X1:2 − 0.5

0.8660254

)2

+0.7401
X2:2 − 1.5

2.291288

X1:2 − 0.5

0.8660254
< δ

)
≥ 1− 1.2063

δ

for all δ > 0. The confidence regions for (X1:2,X2:2) obtained from this expression and 0≤X1:2 ≤
X2:2 for δ= 2,4,6 are plotted in Figure 3. They contain at least the 39.68254%, the 69.84127% and
the 79.89418%, respectively, of the values of (X1:2,X2:2).

X_1:2

X
_2

:2

0 1 2 3 4

0
2

4
6

8

x mean

Figure 3. Confidence regions for the order statistics when (X1,X2) have a Pareto distribution (see Example 3) with
λ= 0.5 and θ= 3 for δ= 2,4,6 containing at least the 39.68254%, the 69.84127% and the 79.89418% of the values of
(X1:2,X2:2).

Example 4. If (X1,X2) has an exchangeable normal distribution with common mean µ, com-
mon variance σ2 and correlation ρ∈ (−1,1), then (see Example 2.9 in [8])

µ1:2 = µ−σ

√
1− ρ

π
,

µ2:2 = µ+σ

√
1− ρ

π
,
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σ1:2 = σ2:2 = σ

√
1− 1− ρ

π

ρ1,2:2 =
1+ (π− 1)ρ

π− 1+ ρ
,

(see Example 2.9 in [8]). For example, if µ = 3, σ = 1 and ρ = 0.5, then µ1:2 = 2.601058, µ2:2 =
3.398942, σ1:2 = σ2:2 = 0.916976 and ρ1,2:2 = 0.7839196. Hence, from (3.1), we have

Pr

((
X2:2 − 3.4

0.916976
− X1:2 − 2.6

0.916976

)2

+0.432
X2:2 − 3.4

0.916976

X1:2 − 2.6

0.916976
< δ

)
≥ 1− 0.77094

δ

for all δ > 0. The confidence regions for (X1:2,X2:2) obtained from this expression and X1:2 ≤X2:2

for δ = 2,3,4 are plotted in Figure 4. They contain at least the 61.453%, the 74.302% and the
80.7265%, respectively, of the values of (X1:2,X2:2).
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Figure 4. Confidence regions for the order statistics when (X1,X2) have an exchangeable Normal distribution (see
Example 4) with µ= 3, σ= 1 and ρ= 0.5 for δ= 2,3,4 containing at least the 61.453%, the 74.302% and the 80.7265%
of the values of (X1:2,X2:2).

Similar confidence regions can be obtained for the general order statistics Xi:k and Xj:k from
Theorem 1 whenever we can compute their means, variances and correlation coefficients. If these
order statistics come from a sample of iid random variables, then their means, variances and
correlation coefficients can be obtained from the expressions given Theorem 3.3 of [8].

In particular, if the order statistics come from a sample of iid exponential distributions, then the
correlation coefficients for k≤ 6 are given in Table 1 of [8]. Alternatively, in this case, if E(Xi) = 1
for i= 1, . . . , k, then they can be computed from the following well known (see [1]) expressions

µi:k =E(Xi:k) =

k∑
j=k−i+1

1

j
,
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σ2
i:k = V ar(Xi:k) =

k∑
j=k−i+1

1

j2

and

ρi,j:k =Cor(Xi:k,Xj:k) =
σi:k

σj:k

for 1 ≤ i < j ≤ k. Hence we can use Theorem 1 to obtain confidence regions for (Xi:k,Xj:k). For

example, if k = 3, i= 2 and j = 3, then µ2:3 = 5/6, µ3:3 = 11/6, σ2:3 = 0.6009252, σ3:3 = 1.166667,

and ρ2,3:3 = 0.5150788. Hence, from (2.1), we have

Pr

((
X3:3 − 11/6

1.166667
− X2:3 − 5/6

0.6009252

)2

+0.9698
X3:3 − 11/6

1.166667

X2:3 − 5/6

0.6009252
< δ

)
≥ 1− 1.4694

δ

for all δ > 0. The confidence regions for (X2:3,X3:3) obtained from this expression and 0≤X2:3 ≤
X3:3 for δ = 4,6,8 are plotted in Figure 5. They contain at least the 63.2653%, the 75.5102% and

the 81.6326%, respectively, of the values of (X2:3,X3:3).
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Figure 5. Confidence regions for the order statistics when X1,X2,X3 are iid with an exponential distribution with
mean 1 for δ= 2,3,4 containing at least 63.2653%, the 75.5102% and the 81.6326% of the values of (X2:3,X3:3).

Analogously, we can consider the random vector (X1:k, . . . ,Xk:k)
′ and to obtain confidence regions

for it from (1.2). Thus, we obtain

Pr(X′
OSR

−1XOS)< ε)≥ 1− k

ε
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for all ε > 0, where XOS = (X∗
1:k, . . . ,X

∗
k:k) and X∗

i:k = (Xi:k − µi:k)/σi:k for i = 1, . . . , k and R =
Cor(X1:k, . . . ,Xk:k)

′. For example, in the present case of exponential distributions with common
mean 1, if k= 3 we obtain

R=

 1 0.5547002 0.2857143
0.5547002 1 0.5150788
0.2857143 0.5150788 1


(see Table 1 in [8]) and the confidence region

Rε = {(x, y, z) : 1.444x2 − 1.602xy+1.805y2 − 1.402yz+1.361z2 < ε}

containing XOS = (X∗
1:3,X

∗
2:3,X

∗
3:3)

′ with a probability greater than 1− k/ε. A similar confidence
region can be obtained for (X1:3,X2:3,X3:3)

′.
In a similar way, we can use the expressions (2.2) or (2.4) for the principal components obtained

from the order statistics. For example, with the last one, from the matrix R above, we obtain

Pr

(
Y 2
1

1.9129431
+

Y 2
2

0.77153779
< ε

)
≥ 1− 2

ε
(3.2)

for all ε > 0, where

Y1 = 0.5548133X∗
1:3 +0.6382230X∗

2:3 +0.5337169X∗
3:3

and

Y2 = 0.66914423X∗
1:3 +0.03890251X∗

2:3 − 0.7421136X∗
3:3.

The confidence regions obtained from this expression for ε= 4,6,8 are plotted in Figure 6. They
contain at least the 50%, the 66.6667% and the 75%, respectively, of the values of (X1:3,X2:3,X3:3).

4. Applications to samples The confidence regions obtained from Theorem 1 can be used
to obtain bivariate plots similar to (univariate) box plots. Thus if we have a sample Oi = (Xi, Yi)

′,
i= 1, . . . , n from (X,Y )′ (i.e. iid random vectors equal in law to (X,Y )′) or just a collection of n
pairs of data (they can be dependent and with different distributions), we can consider the empirical
(discrete) distribution associated to the data set which choose the data Oi with probability 1/n.
The mean of this discrete distribution is of course

O=
1

n

n∑
i=1

Oi = (X,Y )

where X = 1
n

∑n

i=1Xi and Y = 1
n

∑n

i=1 Yi. Analogously, its covariance matrix is

V̂ =
1

n

n∑
m=1

(Om −O)(Om −O)′ = (V̂i,j),

where

V̂1,1 =
1

n

n∑
i=1

(Xi −X)2,

V̂2,2 =
1

n

n∑
i=1

(Yi −Y )2
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Figure 6. Confidence regions obtained from (3.2) for the principal components of the order statistics whenX1,X2,X3

are iid with an exponential distribution with mean 1 for ε= 4,6,8 containing at least the 50%, the 66.6667% and the
75% of the values of (X1:3,X2:3,X3:3).

and

V̂1,2 = V̂2,1 =
1

n

n∑
i=1

(Xi −X)(Yi −Y )

. Hence the correlation coefficient is

r=
V̂1,2√
V̂1,1V̂2,2

.

Then, from Theorem 1, if −1< r < 1, we have

Pr((X∗
I −Y ∗

I )
2 +2(1− r)X∗

I Y
∗
I < δ)≥ 1− 2

1− r2

δ
(4.1)

for all δ > 0, where X∗
I = (XI −X)/

√
V̂1,1, Y

∗
I = (YI − Y )/

√
V̂2,2 and I = i with probability 1/n

for i= 1,2, . . . , n, that is, (XI , YI) is a randomly chosen data in the data set {Oi = (Xi, Yi)
′, i=

1, . . . , n}.
Then, by taking δ= 4(1− r2) in (4.1), the confidence (elliptical) region

R1 = {(x, y)∈R2 : (x∗ − y∗)2 +2(1− r)x∗y∗ < 4(1− r2)},

where x∗ = (x−X)/
√

V1,1, y
∗ = (y−Y )/

√
V2,2, contains (for sure) at least the 50% of the data (in

this data set).
Analogously, by taking δ= 8(1− r2) in (4.1), the confidence (elliptical) region

R2 = {(x, y)∈R2 : (x∗ − y∗)2 +2(1− r)x∗y∗ < 8(1− r2)},
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contains (for sure) at least the 75% of the data and the region

R3 = {(x, y)∈R2 : (x∗ − y∗)2 +2(1− r)x∗y∗ ≥ 8(1− r2)},

contains (for sure) at most the 25% of the data.
These regions can be used to obtain bivariate plots similar to (univariate) box plots containing

(for sure) more than the 50% and 75% of the data (R1 and R2) and less than the 25% of the data
(R3), respectively. Note that n can be as big as we want and hence this procedure can be applied
to (very) big data sets even if they come from different populations, contain outliers and/or are
dependent (e.g. time-dependent). Obviously, the regions will be more accurate if we really have
a sample from a given population (distribution) or if they are computed in each group (if there
are different groups). Similar regions can be obtained from (2.4) and (2.5) (or from (4.1) for the
scores in a principal components analysis. Let us see a simple example. A similar procedure can
be applied to the canonical projections in a discriminant analysis.

Example 5. Let us consider the data set called “iris” included in the statistical program R.
This famous (Fisher’s or Anderson’s) iris data set (see [4]) gives the measurements in centimeters
of the variables sepal length and width and petal length and width, respectively, for 50 iris flowers
from each of 3 species of iris. The species are iris setosa, versicolor, and virginica. In this data set
we consider the variables X = Petal.Length and Y = Petal.Width. For these variables (without
consider separate groups for each specie), we obtain r = 0.9628654 and the confidence regions R1

and R2 determined by(
x− 3.758

1.759404
− y− 1.199333

0.7596926

)2

+2(1− r)
x− 3.758

1.759404

y− 1.199333

0.7596926
< 0.2915606

and (
x− 3.758

1.759404
− y− 1.199333

0.7596926

)2

+2(1− r)
x− 3.758

1.759404

y− 1.199333

0.7596926
< 0.5831213,

respectively. The confidence regions and the data can be seen in Figure 7. Note that, of course, these
regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this
case) and the outside region R3 contains less than the 25% of the data (in this case it contains only
2 data which is less than 37). Note that the data come from three different populations (species).
Also note that if the data set is big, then we do not need to plot the data. In a similar way, we can
compute the confidence regions for the data in each group obtaining the plot in Figure 8.

Analogously, we can consider the two first principal components Y1 and Y2 computed from the
correlation matrix of the four variables in this data set. The two first eigenvalues are 2.91849782
and 0.91403047 and the principal components are obtained as

Y1 = 0.5210659X∗
1 − 0.2693474X∗

2 +0.5804131X∗
3 +0.5648565X∗

4

and
Y2 =−0.37741762X∗

1 − 0.92329566X∗
2 − 0.02449161X∗

3 − 0.06694199X∗
4 ,

where X∗
i = (Xi −X i)/

√
V̂i,i, i = 1,2,3,4 are the standardized versions of the original variables

X1 = sepal.length X2 = sepal.width, X3 = petal.length and X4 = petal.width. In this case, Y 1 =
Y 2 = 0 and r= 0 and hence the confidence regions R1 and R2 are determined by

x2

2.91849782
+

y2

0.91403047
< 4

and
x2

2.91849782
+

y2

0.91403047
< 8,

respectively. These regions will contain (for sure) the 50% and 75% of the data scores for these
principal components. These scores and the regions are plotted in Figure 9.
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Figure 7. Confidence regions R1 and R2 for the variables X = Petal.Length and Y = Petal.Width included in the
data set “iris” considered in Example 5 containing (for sure) at least the 50% and 75% of the data.
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Figure 8. Confidence regions R1 and R2 for the variables X = Petal.Length and Y = Petal.Width included in the
data set “iris” considered in Example 5 containing (for sure) at least the 50% and 75% of the data by species.
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Figure 9. Confidence regions R1 and R2 for the scores in the two first principal components of the variables included
in the data set “iris” considered in Example 5 containing (for sure) at least the 50% and 75% of the data scores.

Note that we can obtain regions of this type containing exactly the 50% or the 75% of the data
by computing the median and the third quartile of Mahalanobis distances dV̂ (Oi,O), i= 1, . . . , n.
In this case we do not need to use Theorem 1.

Finally, it is important to note that all the confidence regions obtained in this sections are only
for the data in the data set. We may wonder if these confidence regions will contain a new data
(obtained by a similar procedure). In this case we may use a standard cross validation technique to
compute the confidence probabilities for this new data in each data set (i.e., we can compute the
confidence region without using a given data in the data set and then study if this region contains
this data).

5. Conclusions Theorem 1 gives a distribution free confidence region for (X,Y ) based on
the means, the variances and the correlation coefficient. As the bounds are sharp, this is the best
confidence region that can be obtained without additional assumptions. This region can be applied
to any pair of related random variables. In this paper we apply them theoretical models, principal
components and the order statistics. We also apply them to data sets by using the sample measures
obtaining bivariate plots similar to univariate box plots.

Acknowledgements This work is partially supported by Ministerio de Economa y Com-
petitividad under grant MTM2012-34023-FEDER and Fundacin Sneca of C.A.R.M. under grant
08627/PI/08.

References
[1] Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N.(2008). A First Course in Order Statistics. Classic

ed., SIAM, Philadelphia, Pennsylvania.

[2] Budny, K. (2014). A generalization of Chebyshev’s inequality for Hilbert-space-valued random elements.
Statistics & Probability Letters, 88, 62-65.



Navarro: A note on confidence regions based on the bivariate Chebyshev inequality. Applications to order statistics and data sets.
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